1
|
Kumar S, Shukla R. Advancements in microneedle technology: current status and next-generation innovations. J Microencapsul 2024; 41:782-803. [PMID: 39475226 DOI: 10.1080/02652048.2024.2418613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/15/2024] [Indexed: 11/29/2024]
Abstract
Microneedle technology is a pivotal component of third-generation transdermal drug delivery systems featuring tiny needles that create temporary microscopic channels in the stratum corneum which facilitate drug penetration in the dermis. This review offers a detailed examination of the current types of microneedles, including solid, coated, dissolving, hollow, and swelling microneedles, along with their preparation techniques as well as their benefits and challenges. Use of 3D printing technology is especially gaining significant attention due to its ability to achieve the high dimensional accuracy required for precise fabrication. Additionally, its customisability presents significant potential for exploring new designs and creating personalised microneedles products. Furthermore, this review explores next generation microneedles, especially stimuli-responsive microneedle, bioinspired microneedle and microneedles combined with other transdermal technology like sonophoresis, electroporation and iontophoresis. Regulatory aspects, characterisation techniques, safety considerations, and cost factors have also been addressed which are crucial for translation from lab to the market.
Collapse
Affiliation(s)
- Siddhant Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Raebareli, UP, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Raebareli, UP, India
| |
Collapse
|
2
|
Chen S, Scholiers V, Zhang M, Zhang J, Zhu J, Prez FED, Pan X. Thermally Responsive Selenide-containing Materials Based on Transalkylation of Selenonium Salts. Angew Chem Int Ed Engl 2023; 62:e202309652. [PMID: 37851486 DOI: 10.1002/anie.202309652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C-Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.
Collapse
Affiliation(s)
- Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Vincent Scholiers
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Mengyao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Filip E Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Department Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Wang T, Wu C, Hu Y, Zhang Y, Ma J. Stimuli-responsive nanocarrier delivery systems for Pt-based antitumor complexes: a review. RSC Adv 2023; 13:16488-16511. [PMID: 37274408 PMCID: PMC10233443 DOI: 10.1039/d3ra00866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/30/2023] [Indexed: 06/06/2023] Open
Abstract
Platinum-based anticancer drugs play a crucial role in the clinical treatment of various cancers. However, the application of platinum-based drugs is heavily restricted by their severe toxicity and drug resistance/cross resistance. Various drug delivery systems have been developed to overcome these limitations of platinum-based chemotherapy. Stimuli-responsive nanocarrier drug delivery systems as one of the most promising strategies attract more attention. And huge progress in stimuli-responsive nanocarrier delivery systems of platinum-based drugs has been made. In these systems, a variety of triggers including endogenous and extracorporeal stimuli have been employed. Endogenous stimuli mainly include pH-, thermo-, enzyme- and redox-responsive nanocarriers. Extracorporeal stimuli include light-, magnetic field- and ultrasound responsive nanocarriers. In this review, we present the recent advances in stimuli-responsive drug delivery systems with different nanocarriers for improving the efficacy and reducing the side effects of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Tianshuai Wang
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Chen Wu
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- Hubei Key Lab of Wudang Local Chinese Medicine Research, Hubei University of Medicine Shiyan 442000 Hubei China
- College of Pharmaceutical Sciences, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
4
|
Li Z, Shang Y, Liu L, Long H, Feng Y, Billon L, Yin H. Selenium-decorated biocompatible honeycomb films with redox-switchable surface for controlling cell adhesion/detachment. J Colloid Interface Sci 2023; 635:503-513. [PMID: 36599247 DOI: 10.1016/j.jcis.2022.12.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
HYPOTHESIS Selenium (Se)-containing compound is sensitive to redox stimulation, showing hydrophobic-hydrophilic reversible transition. Introduction of such compound into honeycomb film could confer on it redox-switchable surface wettability, which is expected to control cell adhesion/detachment behavior. EXPERIMENTS Didodecyl selenide was designed and mixed with polystyrene to prepare honeycomb films using "breath figure" method. The film microstructures were characterized by scanning electron microscope and atomic force microscopy, and the arrangement of Se atoms in honeycomb film was determined by X-ray photoelectron spectroscopy and energy dispersive spectrometry. The variation of film wettability upon the alternating stimulation of H2O2 and Vc was examined. Then the cell adhesion, proliferation, and controlled detachment on honeycomb films were conducted. FINDINGS The introduction of didodecyl selenide helps to form ordered honeycomb film, and Se atoms were found to located on the bottom, pore walls, and top surface of the film. The presence of didodecyl selenide not only greatly improves film biocompatibility by enhancing cell thioredoxin reductase activity, but also imparts the film with H2O2-/vitamin C-regulated tunable wettability that controls cell adhesion and detachment. H2O2 treatment produces a hydrophilic surface for cell adhesion and proliferation, whereas the addition of vitamin C generates hydrophobic surfaces and allows cells to detach while remaining alive with high activity.
Collapse
Affiliation(s)
- Zongcheng Li
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuting Shang
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Lu Liu
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Hu Long
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Laurent Billon
- Bio-Inspired Materials: Functionalities & Self-Assembly, Universite de Pau & Pays Adour, Helioparc, 2 avenue Angot, Pau 64053, France
| | - Hongyao Yin
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
5
|
A ROS-Sensitive Diselenide-Crosslinked Polymeric Nanogel for NIR Controlled Release. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Liu M, Chen S, Lin X, He H, Gao J, Zhai Y, Wu Y, Zhu J, Pan X. Diselenide–yne chemistry for selenium-containing linear polymer modification. Polym Chem 2022. [DOI: 10.1039/d2py00621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenium-containing brush polymers with diverse functional segments were easily prepared through diselenide–yne chemistry.
Collapse
Affiliation(s)
- Ming Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
| | - Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
| | - Xiaofang Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
| | - Hanliang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
- The Department of Orthopedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
- Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yonghua Zhai
- Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Yan Wu
- Department of Biomaterial, College of Life Sciences, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
7
|
Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. NANOSCALE 2021; 13:13943-13961. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-radiotherapy is a common and effective combinational treatment for cancer. This study aimed to explore the ionizing radiation-optimized drug treatment based on nanomaterials so as to improve the synergistic efficacy of drug-radiotherapy against cancer and limit the adverse effect on healthy organs. In this review, these emerging strategies were divided into four parts. First, the delivery of the drug-loaded nanoparticles was optimized owing to the strengthened passive targeting process, active targeting process, and cell targeting process of nanoparticles after ionizing radiation exposure. Second, nanomaterials were designed to respond to the ionizing radiation, thus leading to the release of the loading drugs controllably. Third, radiation-activated pro-drugs were loaded onto nanoparticles for radiation-triggered drug therapy. In particular, nontoxic nanoparticles with radiosensitization capability and innocuous radio-dynamic contrast agents can be considered as radiation-activated drugs, which were discussed in this review. Fourth, according to the various synergetic mechanisms, radiotherapy could improve the drug response of cancer, obtaining optimized drug-radiotherapy. Finally, relative suggestions were provided to further optimize these aforementioned strategies. Therefore, a novel topic was selected and the emerging strategies in this region were discussed, aiming to stimulate the inspiration for the development of ionizing radiation-optimized drug treatment based on nanomaterials.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | |
Collapse
|
8
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
9
|
Zhang F, Chen F, Yang C, Wang L, Hu H, Li X, Zheng X, Wang Z, Chang Z, Li T, Li L, Ge M, Du J, Sun W, Dong WF, Shao D. Coordination and Redox Dual-Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100006. [PMID: 34081391 DOI: 10.1002/smll.202100006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Amplifying the chemotherapy-driven immunogenic cell death (ICD) for efficient and safe cancer chemoimmunotherapy remains a challenge. Here, a potential ICD nanoamplifier containing diselenide-bridged mesoporous organosilica nanoparticles (MONs) and chemotherapeutic ruthenium compound (KP1339) to achieve cancer chemoimmunotherapy is tailored. KP1339-loaded MONs show controlled drug release profiles via glutathione (GSH)-responsive competitive coordination and matrix degradation. High concentration of MONs selectively evoked reactive oxygen species production, GSH depletion, and endoplasmic reticulum stress in cancer cells, thus amplifying the ICD of KP1339 and boosting robust antitumor immunological responses. After the combination of PD-L1 checkpoint blockade, cancer cell membrane-cloaked KP1339-loaded MONs not only regress primary tumor growth with low systemic toxicity, but also inhibit distant tumor growth and pulmonary metastasis of breast cancer. The results have shown the potential of coordination and redox dual-responsive MONs boosting amplified ICD for cancer chemoimmunotherapy.
Collapse
Affiliation(s)
- Fan Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Fangman Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510630, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiao Zheng
- School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510630, China
| | - Zheng Wang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhimin Chang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mingfeng Ge
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jinzhi Du
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
10
|
Makvandi P, Jamaledin R, Chen G, Baghbantaraghdari Z, Zare EN, Di Natale C, Onesto V, Vecchione R, Lee J, Tay FR, Netti P, Mattoli V, Jaklenec A, Gu Z, Langer R. Stimuli-responsive transdermal microneedle patches. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 47:206-222. [PMID: 36338772 PMCID: PMC9635273 DOI: 10.1016/j.mattod.2021.03.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Guojun Chen
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zahra Baghbantaraghdari
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | | | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
| | - Jesse Lee
- Department of Biomedical Engineering, and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Franklin R. Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Paolo Netti
- Center for Advanced Biomaterials for Health Care (iit@CRIB), Istituto Italiano di Tecnologia, Naples, 80125, Italy
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Ana Jaklenec
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhen Gu
- Department of Bioengineering and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, 90095, United States
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. J Colloid Interface Sci 2020; 580:785-793. [DOI: 10.1016/j.jcis.2020.07.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
|
13
|
Dong S, Jiang Y, Qin G, Liu L, Zhao H. Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules 2020; 21:4063-4075. [PMID: 32914964 DOI: 10.1021/acs.biomac.0c00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we synthesized a block copolymer containing pendent thioether functionalities by reversible addition-fragmentation chain transfer polymerization of a tert-butyloxycarbonyl (Boc)-l-methionine-(2-methacryloylethyl)ester (Boc-METMA) monomer using a poly(ethylene glycol) (PEG)-based chain transfer agent. The deprotection of Boc groups resulted in an oxidation and pH dual-responsive cationic block copolymer PEG-b-P(METMA). The block copolymer PEG-b-P(METMA) possessing protonable amine groups was water-soluble at pH < 6.0 and self-assembled to form spherical micelles at pH > 6.0. In the presence of H2O2, the micelles first became highly swollen with time and completely disassembled at last, demonstrating the H2O2-responsive feature because of the oxidation of hydrophobic thioether to hydrophilic sulfoxide. The anticancer drug curcumin (Cur) was entrapped in the polymeric micelles and the Cur-loaded micelles displayed a H2O2-triggered release profile as well as a pH-dependent release behavior, making PEG-b-P(METMA) micelles promising nanocarriers for reactive oxygen species-responsive drug delivery. Taking advantage of the protonated amine groups, the cationic polyelectrolyte PEG-b-P(METMA) formed polyion complex micelles with glucose oxidase (GOx) through electrostatic interactions at pH 5.8. By cross-linking the cores of PIC micelles with glutaraldehyde, the PIC micelles were fixed to generate stable GOx nanogels under physiological conditions. The GOx nanogels were glucose-responsive and exhibited glucose-dependent H2O2-generation activity in vitro and improved storage and thermal stability of GOx. Cur can be encapsulated in the GOx nanogels, and the Cur-loaded GOx nanogels demonstrate the glucose-responsive release profile. The GOx nanogels displayed high cytotoxicity to 4T1 cells and were effectively internalized by the cells. Therefore, these GOx nanogels have potential applications in the areas of cancer starvation and oxidation therapy.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
15
|
Cheng CC, Sun YT, Lee AW, Huang SY, Fan WL, Chiao YH, Tsai HC, Lai JY. Self-Assembled Supramolecular Micelles with pH-Responsive Properties for More Effective Cancer Chemotherapy. ACS Biomater Sci Eng 2020; 6:4096-4105. [PMID: 33463316 DOI: 10.1021/acsbiomaterials.0c00644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
pH-Responsive hydrogen-bonded supramolecular micelles, composed of a water-soluble poly(ethylene glycol) polymer with two terminal sextuple hydrogen bonding groups, can spontaneously organize in aqueous media to give well-defined, uniformly sized spherical micelles. The supramolecular micelles exhibit a number of unique physical characteristics, such as interesting amphiphilic behavior, desirable micellar size and nanospherical morphology, excellent biocompatibility, tailorable drug-loading capacities, and high structural stability in media containing serum or red blood cells. In addition, the drug release kinetics of drug-loaded micelles can be easily manipulated to achieve the desired release profile by regulating the environmental pH, thus these micelles are highly attractive candidates as an intelligent drug carrier system for cancer therapy. Cytotoxicity assays showed that the drug-loaded micelles induced pH-dependent intracellular drug release and exerted strong antiproliferative and cytotoxic activities toward cancer cells. Importantly, cellular uptake and flow cytometric analyses confirmed that a mildly acidic intracellular environment significantly increased cellular internalization of the drug-loaded micelles and subsequent drug release in the cytoplasm and nucleus of cancer cells, resulting in more effective induction of apoptotic cell death. Thus, this system may provide an efficient route toward achieving the fundamental properties and practical realization of pH-sensitive drug-delivery systems for chemotherapy.
Collapse
Affiliation(s)
- Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ya-Ting Sun
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ai-Wei Lee
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shan-You Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wen-Lu Fan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Hsuan Chiao
- Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 32043, Taiwan
| |
Collapse
|
16
|
Li Q, Zhang Y, Chen Z, Pan X, Zhang Z, Zhu J, Zhu X. Organoselenium chemistry-based polymer synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00640h] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel synthesis of selenium containing polymers with pre-determined structures and applications thereof.
Collapse
Affiliation(s)
- Qilong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zijun Chen
- The Faculty of Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
17
|
Zhang CJ, Cao XH, Zhang XH. Metal-Free Alternating Copolymerization of Nonstrained γ-Selenobutyrolactone with Epoxides for Selenium-Rich Polyesters. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Yu L, Ke HL, Du FS, Li ZC. Redox-Responsive Fluorescent Polycarbonates Based on Selenide for Chemotherapy of Triple-Negative Breast Cancer. Biomacromolecules 2019; 20:2809-2820. [PMID: 31185717 DOI: 10.1021/acs.biomac.9b00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transient increase of reactive oxygen species (ROS) is vital for some physiological processes, whereas the chronic and sustained high ROS level is usually implicated in the inflammatory diseases and cancers. Herein, we report the innovative redox-responsive theranostic micellar nanoparticles that are able to load anticancer drugs through coordination and hydrophobic interaction and to fluorescently monitor the intracellular redox status. The nanoparticles were formed by the amphiphilic block copolymers composed of a PEG segment and a selenide-containing hydrophobic polycarbonate block with a small fraction of coumarin-based chromophore. Under the alternative redox stimulation that might be encountered in the physiological process of some healthy cells, these nanoparticles underwent the reversible changes in size, morphology, and fluorescence intensity. With the assistance of small model compounds, we clarified the chemistry behind these changes, that is, the redox triggered reversible transformation between selenide and selenoxide. Upon the monotonic oxidation similar to the sustained high ROS level of cancer cells, the nanoparticles could be disrupted completely, which was accompanied by the drastic decrease in fluorescence. Cisplatin and paclitaxel were simultaneously coloaded in the nanoparticles with a moderate efficacy, and the coordination between selenide and platinum improved the stability of the drug-loaded nanoparticles against dilution. The naked nanoparticles are cytocompatible, whereas the dual drug-loaded nanoparticles exhibited a concentration dependent and synergistic cytotoxicity to triple-negative breast cancer (TNBC) cells. Of importance, the drug-loaded nanoparticles are much more toxic to TNBC cells than to normal cells due in part to ROS overproduction in the former cell lines.
Collapse
Affiliation(s)
- Li Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - He-Liang Ke
- Emergency Center , First Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
19
|
Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Recent Advances on Reactive Oxygen Species-Responsive Delivery and Diagnosis System. Biomacromolecules 2019; 20:2441-2463. [PMID: 31117357 DOI: 10.1021/acs.biomac.9b00628] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in biological metabolism and intercellular signaling. However, ROS level is dramatically elevated due to abnormal metabolism during multiple pathologies, including neurodegenerative diseases, diabetes, cancer, and premature aging. By taking advantage of the discrepancy of ROS levels between normal and diseased tissues, a variety of ROS-sensitive moieties or linkers have been developed to design ROS-responsive systems for the site-specific delivery of drugs and genes. In this review, we summarized the ROS-responsive chemical structures, mechanisms, and delivery systems, focusing on their current advances for precise drug/gene delivery. In particular, ROS-responsive nanocarriers, prodrugs, and supramolecular hydrogels are summarized in terms of their application for drug/gene delivery, and common strategies to elevate or diminish cellular ROS concentrations, as well as the recent development of ROS-related imaging probes were also discussed.
Collapse
Affiliation(s)
- Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Shanzhou Duan
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Thoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Yong Liu
- Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , The Netherlands
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123 , China
| |
Collapse
|
20
|
Huang C, Zeng T, Li J, Tan L, Deng X, Pan Y, Chen Q, Li A, Hu J. Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury. ACS Biomater Sci Eng 2019; 5:2877-2886. [PMID: 33405591 DOI: 10.1021/acsbiomaterials.9b00119] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Caili Huang
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Tao Zeng
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Tan
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiulong Deng
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yanchao Pan
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qi Chen
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianqiang Hu
- Nanobiological Medicine Center, Key Laboratory of Fuel Cell Technology of Guangdong Province, Department of Chemistry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
21
|
An X, Lu W, Pang M, Zhang Z, Zhu X, Zhu J, Pan X. One-pot cascade polymerization based on the addition reactions of electrophilic selenium reagents to alkenes. Polym Chem 2019. [DOI: 10.1039/c8py01441h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct polymerization based on the addition reactions of electrophilic selenium reagents to alkenes was established.
Collapse
Affiliation(s)
- Xiaowei An
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Weihong Lu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Minglun Pang
- Department of Chemistry
- Xi'an Jiaotong-Liverpool University
- Suzhou 215123
- P.R. China
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
22
|
Yang XL, Xing X, Li J, Liu YH, Wang N, Yu XQ. Enzymatic synthesis of selenium-containing amphiphilic aliphatic polycarbonate as an oxidation-responsive drug delivery vehicle. RSC Adv 2019; 9:6003-6010. [PMID: 35517302 PMCID: PMC9060885 DOI: 10.1039/c8ra10282a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/04/2019] [Indexed: 11/30/2022] Open
Abstract
Although functional aliphatic polycarbonates (APCs) have attracted prominent research interest as stimuli-responsive biomaterials, the majority of functional APCs are fabricated by detrimental organometallic catalysts or organo-catalysts. Herein, a facile synthetic strategy based on enzymatic polymerization was developed to construct a selenium-containing amphiphilic aliphatic polycarbonate (mPEG-b-CMP45). Specifically, the selenium in its backbone framework underwent a hydrophobic–hydrophilic transition upon exposure to the abnormal ROS level of the tumor, thus providing a promising platform for ROS-triggered drug release. This amphiphilic mPEG-b-CMP45 efficiently encapsulated doxorubicin (DOX) via self-assembly in aqueous solution and showed an excellent ability to regulate the release of DOX in response to H2O2 at biologically relevant concentrations (100 μM). These DOX-loaded nanoparticles could easily be internalized into U87 cells and possess the inherent antitumor properties of DOX, while they exhibited much lower cytotoxicity in normal cells HL-7702. Moreover, in many cases, the introduction of selenium caused high cytotoxicity of the materials, but the cytotoxicity results in HL-7702 cells demonstrated the good biocompatibility of mPEG-b-CMP45. These collective data suggested the potential use of mPEG-b-CMP45 as a biocompatible and smart drug delivery vehicle. A facile synthetic strategy based on enzymatic polymerization was developed to construct a ROS-responsive polycarbonate served as biocompatible drug vehicle.![]()
Collapse
Affiliation(s)
- Xian-Ling Yang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiu Xing
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Jun Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
23
|
Dariva CG, Coelho JF, Serra AC. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. J Control Release 2019; 294:337-354. [DOI: 10.1016/j.jconrel.2018.12.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
|
24
|
Buwalda S, Nottelet B, Bethry A, Kok RJ, Sijbrandi N, Coudane J. Reversibly core-crosslinked PEG-P(HPMA) micelles: Platinum coordination chemistry for competitive-ligand-regulated drug delivery. J Colloid Interface Sci 2018; 535:505-515. [PMID: 30340170 DOI: 10.1016/j.jcis.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS The presence of pendant thioether groups on poly(ethylene glycol)-poly(N(2-hydroxypropyl) methacrylamide) (PEG-P(HPMA)) block copolymers allows for platinum-mediated coordinative micellar core-crosslinking, resulting in enhanced micellar stability and stimulus-responsive drug delivery. EXPERIMENTS A new PEG-P(HPMA) based block copolymer with pendant 4-(methylthio)benzoyl (MTB) groups along the P(HPMA) block was synthesized by free radical polymerization of a novel HPMA-MTB monomer using a PEG based macro-initiator. As crosslinker the metal-organic linker [ethylenediamineplatinum(II)]2+ was used, herein called Lx, which is a coordinative linker molecule that has been used for the conjugation of drug molecules to a number of synthetic or natural carrier systems such as hyperbranched polymers and antibodies. FINDINGS The introduction of Lx in the micellar core results in a smaller size, a lower critical micelle concentration and a better retention of the hydrophobic drug curcumin thanks to coordination bonds between the central platinum atom of Lx and thioether groups on different polymer chains. The drug release from Lx crosslinked micelles is significantly accelerated under conditions mimicking the intracellular environment due to competitive coordination and subsequent micellar de-crosslinking. Because of their straightforward preparation and favorable drug release characteristics, core-crosslinked Lx PEG-P(HPMA) micelles hold promise as a versatile nanomedicine platform.
Collapse
Affiliation(s)
- Sytze Buwalda
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France.
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France.
| | - Audrey Bethry
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France.
| | - Robbert Jan Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands.
| | - Niels Sijbrandi
- LinXis B.V., Boelelaan 1085c, Amsterdam 1081 HV, the Netherlands.
| | - Jean Coudane
- IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France.
| |
Collapse
|
25
|
Xia J, Li T, Lu C, Xu H. Selenium-Containing Polymers: Perspectives toward Diverse Applications in Both Adaptive and Biomedical Materials. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01597] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tianyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Chenjie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
26
|
Tuten BT, Bloesser FR, Marshall DL, Michalek L, Schmitt CW, Blanksby SJ, Barner-Kowollik C. Polyselenoureas via Multicomponent Polymerizations Using Elemental Selenium as Monomer. ACS Macro Lett 2018; 7:898-903. [PMID: 35650962 DOI: 10.1021/acsmacrolett.8b00428] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multicomponent polymerizations (MCPs) have emerged as a powerful tool in the synthesis of advanced, sequence-regulated polymers based on their mild reaction conditions, ease of use, and high atom economy. Herein, we exploit MCP methodology to introduce elemental selenium into a polymer chain, accessing a unique polymer class,i.e., polyselenoureas. These polyselenoureas can be synthesized from a broad range of commercially available starting materials, in a simple ambient temperature one-step procedure. The incorporation of selenium directly into the polymer backbone provides a unique handle for polymer characterization based on the distinctive isotope profiles exposed by high-resolution mass spectrometry, along with diagnostic signals observed in infrared and X-ray photoelectron spectroscopies. In addition, diffusion ordered spectroscopy provides access to hydrodynamic diameter information on the generated unique polymer class.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christopher Barner-Kowollik
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Li T, Xiang W, Li F, Xu H. Self-assembly regulated anticancer activity of platinum coordinated selenomethionine. Biomaterials 2018; 157:17-25. [DOI: 10.1016/j.biomaterials.2017.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 12/12/2022]
|
28
|
Wang Y, Deng Y, Luo H, Zhu A, Ke H, Yang H, Chen H. Light-Responsive Nanoparticles for Highly Efficient Cytoplasmic Delivery of Anticancer Agents. ACS NANO 2017; 11:12134-12144. [PMID: 29141151 DOI: 10.1021/acsnano.7b05214] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stimuli-responsive nanostructures have shown great promise for intracellular delivery of anticancer compounds. A critical challenge remains in the exploration of stimuli-responsive nanoparticles for fast cytoplasmic delivery. Herein, near-infrared (NIR) light-responsive nanoparticles were rationally designed to generate highly efficient cytoplasmic delivery of anticancer agents for synergistic thermo-chemotherapy. The drug-loaded polymeric nanoparticles of selenium-inserted copolymer (I/D-Se-NPs) were rapidly dissociated in several minutes through reactive oxygen species (ROS)-mediated selenium oxidation upon NIR light exposure, and this irreversible dissociation of I/D-Se-NPs upon such a short irradiation promoted continuous drug release. Moreover, I/D-Se-NPs facilitated cytoplasmic drug translocation through ROS-triggered lysosomal disruption and thus resulted in highly preferable distribution to the nucleus even in 5 min postirradiation, which was further integrated with light-triggered hyperthermia for achieving synergistic tumor ablation without tumor regrowth.
Collapse
Affiliation(s)
- Yangyun Wang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Yibin Deng
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Huanhuan Luo
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Aijun Zhu
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Hengte Ke
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Hong Yang
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| | - Huabing Chen
- School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and School of Radiation Medicine and Protection, and ‡Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, China
| |
Collapse
|
29
|
|
30
|
Shi T, Gu L, Sun Y, Wang S, Zhang X, Zhu J, Sun B. A series of enzyme-controlled-release polymer-platinum-based drug conjugates for the treatment of gastric cancer. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine (Lond) 2017; 12:1075-1089. [PMID: 28440710 DOI: 10.2217/nnm-2017-0024] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.
Collapse
Affiliation(s)
- Fiona Maiyo
- Non-Viral Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal, South Africa
| | - Moganavelli Singh
- Non-Viral Gene & Drug Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
32
|
Du X, Zeng Q, Zhang H, Yang B. Hybrid Solar Cells from Aqueous Polymers and Colloidal Nanocrystals. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaohang Du
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry; Jilin University; Changchun Jilin 130012 China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry; Jilin University; Changchun Jilin 130012 China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry; Jilin University; Changchun Jilin 130012 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry; Jilin University; Changchun Jilin 130012 China
| |
Collapse
|
33
|
Ding C, Fan C, Pan X, Zhang Z, Zhu J, Zhu X. Selenium borohydride reaction as a versatile platform for the straightforward preparation of selenide-containing topological polymers. Polym Chem 2017. [DOI: 10.1039/c7py00676d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and versatile method for preparing selenide-containing polymers with desired topologies is established based on the reaction of a selenide-functionalized borohydride exchange resin with end-functionalized polymers.
Collapse
Affiliation(s)
- Chunlai Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Caiwei Fan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
34
|
Wang L, Wang W, Cao W, Xu H. Multi-hierarchical responsive polymers: stepwise oxidation of a selenium- and tellurium-containing block copolymer with sensitivity to both chemical and electrochemical stimuli. Polym Chem 2017. [DOI: 10.1039/c7py00971b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A multi-hierarchical responsive selenium- and tellurium-containing block copolymer that can be stepwise oxidized by both chemical methods and electrochemical methods.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Wencong Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Wei Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
35
|
Quinn JF, Whittaker MR, Davis TP. Glutathione responsive polymers and their application in drug delivery systems. Polym Chem 2017. [DOI: 10.1039/c6py01365a] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Materials which respond to biological cues are the subject of intense research interest due to their possible application in smart drug delivery vehicles.
Collapse
Affiliation(s)
- John F. Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Melbourne
- Australia
| |
Collapse
|
36
|
Zhou Y, Jie K, Huang F. A redox-responsive selenium-containing pillar[5]arene-based macrocyclic amphiphile: synthesis, controllable self-assembly in water, and application in controlled release. Chem Commun (Camb) 2017; 53:8364-8367. [DOI: 10.1039/c7cc04779g] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A selenium-containing pillar[5]arene-based macrocyclic amphiphile was prepared. This amphiphile self-assembled in water to form vesicles with redox responsiveness. Then, these pillar[5]arene-based vesicles were used in the controlled release of DOX.
Collapse
Affiliation(s)
- Yujuan Zhou
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
37
|
Wang Y, Zhu L, Wang Y, Li L, Lu Y, Shen L, Zhang LW. Ultrasensitive GSH-Responsive Ditelluride-Containing Poly(ether-urethane) Nanoparticles for Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35106-35113. [PMID: 27966861 DOI: 10.1021/acsami.6b14639] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel ultrasensitive redox-responsive system for the controlled release of doxorubicin (DOX) was fabricated by ditelluride-containing poly(ether-urethane) copolymers. In this study, the ditelluride group was introduced for the first time into water-soluble copolymers used for drug delivery. Doxorubicin loaded in the copolymer nanoparticles can be released in a controlled manner through the cleavage of ditelluride bonds by glutathione (GSH). The ditelluride-containing poly(ether-urethane) nanoparticles were demonstrated to be biocompatible as drug delivery vehicles, therefore opening a new avenue in drug delivery systems for chemotherapy. Furthermore, the in vitro and in vivo studies revealed that the DOX-loaded ditelluride-containing poly(ether-urethane) nanoparticles exhibited efficient uptake in cancer cells, specific tumor targeting and antitumor activity, indicating their excellent potential as novel nanocarriers for drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Yangyun Wang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Lina Zhu
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Yong Wang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Liubing Li
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Yufeng Lu
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Liqin Shen
- The Second Affiliated Hospital of Soochow University , 1055 Sanxiang Road, Suzhou, 215004 Jiangsu, China
| | - Leshuai W Zhang
- School for Radiological & Interdisciplinary sciences (RAD-X) and School of Radiation Medicine and Protection, Soochow University , Suzhou, 215123 Jiangsu, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| |
Collapse
|
38
|
Yan Y, Zhang J, Ren L, Tang C. Metal-containing and related polymers for biomedical applications. Chem Soc Rev 2016; 45:5232-63. [PMID: 26910408 PMCID: PMC4996776 DOI: 10.1039/c6cs00026f] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical, University, Xi’an, Shannxi, 710129, China
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lixia Ren
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
39
|
Li T, Li F, Xiang W, Yi Y, Chen Y, Cheng L, Liu Z, Xu H. Selenium-Containing Amphiphiles Reduced and Stabilized Gold Nanoparticles: Kill Cancer Cells via Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22106-12. [PMID: 27517121 DOI: 10.1021/acsami.6b08282] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Selenium has attracted increasing interest in recent decades because of the function of regulating the redox balance in the human body. However, biomedical studies of selenium are still limited. Gold nanoparticles (AuNPs), typically prepared by a first reduction step followed by a second stabilization step, are widely applied in biomedical studies. However, their own anticancer activity is less studied. Here, we report 2 nm AuNPs with significant anticancer activity (IC50 = 20 μM) that is stabilized by a selenium-containing amphiphile EGSe-tMe. The AuNPs are prepared by simply mixing chloroauric acid (HAuCl4) with EGSe-tMe, which acts as both a reducing agent and a stabilizer. In contrast to AuNPs prepared by EGSe-tMe, EGSe-tMe alone and typically prepared AuNPs show little anticancer activity even at concentrations up to 250 μM. Mechanistic studies suggest that selenium in cooperation with AuNPs can induce high concentrations of reactive oxygen species (ROS) in cancer cells, leading to cellular apoptosis.
Collapse
Affiliation(s)
- Tianyu Li
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing, 100084, People's Republic of China
| | - Feng Li
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing, 100084, People's Republic of China
| | - Wentian Xiang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing, 100084, People's Republic of China
| | - Yu Yi
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing, 100084, People's Republic of China
| | - Yuyan Chen
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou, Jiangsu 215123, People's Republic of China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing, 100084, People's Republic of China
| |
Collapse
|
40
|
Li T, Smet M, Dehaen W, Xu H. Selenium-Platinum Coordination Dendrimers with Controlled Anti-Cancer Activity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3609-3614. [PMID: 26390019 DOI: 10.1021/acsami.5b07877] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dendrimers are considered as good vectors for drug delivery in cancer treatment. However, most anticancer drugs are conjugated to the peripheral surface of dendrimers, sacrificing the advantages of monodispersity and stability belonging to dendrimers. Furthermore, dendrimers in current studies of cancer treatment are mostly used as vectors for drugs, whereas the anticancer activity of dendrimers on their own is less studied. Here we have prepared monodisperse selenium-platinum coordination dendrimers with a selenium-platinum core buried inside. Structures of the dendrimers were determined by various characterizations. The coordination dendrimers showed controlled anticancer activity by themselves, without loading additional drugs. The in vivo study further demonstrated their anticancer activity and low toxicity to normal tissues.
Collapse
Affiliation(s)
- Tianyu Li
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Mario Smet
- Department of Chemistry, University of Leuven , Celestijnenlaan 200F, B-3001 Heverlee (Leuven), Belgium
| | - Wim Dehaen
- Department of Chemistry, University of Leuven , Celestijnenlaan 200F, B-3001 Heverlee (Leuven), Belgium
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| |
Collapse
|
41
|
Ji S, Xia J, Xu H. Dynamic Chemistry of Selenium: Se-N and Se-Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Lett 2016; 5:78-82. [PMID: 35668594 DOI: 10.1021/acsmacrolett.5b00849] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of selenium in the responsive polymer system and the enzyme mimic system have been well studied. Our group initiated this line of research in 2009 by first extending selenium chemistry to dynamic chemistry. In this article, the discovery, progress, and application of selenium-related dynamic covalent bonds will be introduced. The dynamic property of Se-N bond and Se-Se bond were revealed and have been applied in the polymer system as enzyme mimic and self-healing materials, respectively. Further studies that need to be done and potential application of selenium-related dynamic chemistry will also be discussed.
Collapse
Affiliation(s)
- Shaobo Ji
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiahao Xia
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Cao W, Li F, Chen R, Xu H. Tellurium-containing nanoparticles for controlled delivery of cisplatin based on coordination interaction. RSC Adv 2016. [DOI: 10.1039/c6ra19768j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tellurium containing nanoparticles were designed and synthesized for the delivery of cisplatin.
Collapse
Affiliation(s)
- Wei Cao
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Feng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ruofan Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
43
|
Ji S, Cao W, Yu Y, Xu H. Visible-Light-Induced Self-Healing Diselenide-Containing Polyurethane Elastomer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7740-7745. [PMID: 26484966 DOI: 10.1002/adma.201503661] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/30/2015] [Indexed: 06/05/2023]
Abstract
Visible light is an easily achievable and mild trigger for self-healing materials. By incorporating dynamic diselenide bonds into polyurethane, visible-light-induced self-healing materials can be fabricated. Besides mild visible light, the healing process can also be realized using directional laser irradiation, which makes the system a remotely controllable self-healing system.
Collapse
Affiliation(s)
- Shaobo Ji
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Cao
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ying Yu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
44
|
Thomas J, Dobrzańska L, Van Meervelt L, Quevedo MA, Woźniak K, Stachowicz M, Smet M, Maes W, Dehaen W. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures. Chemistry 2015; 22:979-87. [DOI: 10.1002/chem.201503385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Joice Thomas
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Liliana Dobrzańska
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Luc Van Meervelt
- Biomolecular Architecture; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica; CONICET. Departamento de Farmacia; Universidad Nacional de Córdoba; Córdoba Argentina
| | - Krzysztof Woźniak
- Department of Chemistry; Warsaw University; Pasteura 1 02-093 Warsaw Poland
| | - Marcin Stachowicz
- Department of Chemistry; Warsaw University; Pasteura 1 02-093 Warsaw Poland
| | - Mario Smet
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Wouter Maes
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
- Design and Synthesis of Organic Semiconductors (DSOS); Institute for Materials Research (IMO-IMOMEC); Hasselt University; Agoralaan 1-Building D 3590 Diepenbeek Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis; Department of Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
45
|
Hu XY, Chen Y, Liu Y. Redox-responsive supramolecular nanoparticles based on amphiphilic sulfonatocalixarene and selenocystamine dihydrochloride. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Fan C, Ding C, Pan X, Zhang Z, Zhu J, Zhu X. A Straightforward Method for Preparing Well-Defined Responsive Diselenide-Containing Polymers Based on ATRP. Macromol Rapid Commun 2015; 36:903-8. [DOI: 10.1002/marc.201500034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/21/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Caiwei Fan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Chunlai Ding
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Xiangqiang Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jian Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Department of Polymer Science and Engineering College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| |
Collapse
|
47
|
Yu G, Jie K, Huang F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem Rev 2015; 115:7240-303. [DOI: 10.1021/cr5005315] [Citation(s) in RCA: 766] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
48
|
Luan J, Shen W, Chen C, Lei K, Yu L, Ding J. Selenium-containing thermogel for controlled drug delivery by coordination competition. RSC Adv 2015. [DOI: 10.1039/c5ra22307e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A coordination-responsive selenium-containing thermogel was designed and synthesized for controlled cisplatin delivery by competitive coordination of glutathione, which broadens the strategy of tuning drug release using thermogelling systems.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Kewen Lei
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers
- Collaborative Innovation Center of Polymers and Polymer Composite Materials
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
| |
Collapse
|
49
|
Zhou Y, Jie K, Shi B, Yao Y. A γ-ray and dual redox-responsive supramolecular polymer constructed by a selenium containing pillar[5]arene dimer and a neutral guest. Chem Commun (Camb) 2015; 51:11112-4. [DOI: 10.1039/c5cc02886h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel linear supramolecular polymer was fabricated by self-assembly of a selenium containing pillar[5]arene dimer 1 and a neutral guest 2. This supramolecular polymer can be destroyed by irradiating γ-radiation, or adding H2O2 or GSH.
Collapse
Affiliation(s)
- Yujuan Zhou
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Kecheng Jie
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Bingbing Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yong Yao
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
50
|
Cao W, Wang L, Xu H. Coordination responsive tellurium-containing multilayer film for controlled delivery. Chem Commun (Camb) 2015; 51:5520-2. [DOI: 10.1039/c4cc08588d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A coordination-responsive tellurium-containing film was fabricated to load cisplatin by Te–Pt coordination, and competitive bio-ligands could trigger the release of cisplatin.
Collapse
Affiliation(s)
- Wei Cao
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Lu Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|