1
|
Munyebvu N, Akhmetbayeva Z, Dunn S, Howes PD. Flow synthesis and multidimensional parameter screening enables exploration and optimization of copper oxide nanoparticle synthesis. NANOSCALE ADVANCES 2024:d4na00839a. [PMID: 39633870 PMCID: PMC11613990 DOI: 10.1039/d4na00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024]
Abstract
Copper-based nanoparticles (NPs) are highly valued for their wide-ranging applications, with particular significance in CO2 reduction. However current synthesis methods encounter challenges in scalability, batch-to-batch variation, and high energy costs. In this work, we describe a novel continuous flow synthesis approach performed at room temperature to help address these issues, producing spherical, colloidally stable copper(ii) oxide (CuO) NPs. This approach leverages stabilizing ligands like oleic acid, oleylamine, and soy-lecithin, a novel choice for CuO NPs. The automated flow platform facilitates facile, real-time parameter screening of Cu-based nanomaterials using optical spectroscopy, achieving rapid optimization of NP properties including size, size dispersity, and colloidal stability through tuning of reaction parameters. This study highlights the potential of continuous flow synthesis for efficient parameter exploration to accelerate understanding, optimization, and eventually enable scale-up of copper-based NPs. This promises significant benefits for various sectors, including energy, healthcare, and environmental conservation, by enabling reliable production with reduced energy and cost requirements.
Collapse
Affiliation(s)
- Neal Munyebvu
- School of Engineering, London South Bank University London SE1 0AA UK
| | | | - Steven Dunn
- School of Engineering, London South Bank University London SE1 0AA UK
| | - Philip D Howes
- School of Engineering, London South Bank University London SE1 0AA UK
- School of Engineering and Informatics, University of Sussex Brighton BN1 9RH UK
| |
Collapse
|
2
|
Kotuniak R, Sudzik D, Ufnalska IM, Bal W. Nobody's Perfect: Choice of the Buffer and the Rate of Cu 2+ Ion-Peptide Interaction. Inorg Chem 2024; 63:12323-12332. [PMID: 38872340 PMCID: PMC11220749 DOI: 10.1021/acs.inorgchem.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
The choice of correct pH buffer is crucial in chemical studies modeling biological processes involving Cu2+ ions. Popular buffers for physiological pH are known to form Cu(II) complexes, but their impact on kinetics of Cu(II) complexation has not been considered. We performed a stopped-flow kinetic study of Cu2+ ion interactions with four popular buffers (phosphate, Tris, HEPES, and MOPS) and two buffers considered as nonbinding (MES and PIPPS). Next, we studied their effects on the rate of Cu2+ reaction with Gly-Gly-His (GGH), a tripeptide modeling physiological Cu(II) sites, which we studied previously at conditions presumably excluding the buffer interference [Kotuniak, R.; Angew. Chem., Int. Ed. 2020, 59, 11234-11239]. We observed that (i) all tested pH 7.4 buffers formed Cu(II) complexes within the stopped-flow instrument dead time; (ii) Cu(II)-peptide complexes were formed via ternary complexes with the buffers; (iii) nevertheless, Good buffers affected the observed rate of Cu(II)-GGH complex formation only slightly; (iv) Tris was a competitive inhibitor of Cu(II)-GGH complexation; while (v) phosphate was a reaction catalyst. This is particularly important as phosphate is a biological buffer.
Collapse
Affiliation(s)
- Radosław Kotuniak
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Dobromiła
Z. Sudzik
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Iwona M. Ufnalska
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry
and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
3
|
Xie S, Deng C, Huang Q, Zhang C, Chen C, Zhao J, Sheng H. Facilitated Photocatalytic CO 2 Reduction in Aerobic Environment on a Copper-Porphyrin Metal-Organic Framework. Angew Chem Int Ed Engl 2023; 62:e202216717. [PMID: 36597591 DOI: 10.1002/anie.202216717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Herein, we fabricated a π-π stacking hybrid photocatalyst by combining two two-dimensional (2D) materials: g-C3 N4 and a Cu-porphyrin metal-organic framework (MOF). After an aerobic photocatalytic pretreatment, this hybrid catalyst exhibited an unprecedented ability to photocatalytically reduce CO2 to CO and CH4 under the typical level (20 %) of O2 in the air. Intriguingly, the presence of O2 did not suppress CO2 reduction; instead, a fivefold increase compared with that in the absence of O2 was observed. Structural analysis indicated that during aerobic pretreatment, the Cu node in the 2D-MOF moiety was hydroxylated by the hydroxyl generated from the reduction of O2 . Then the formed hydroxylated Cu node maintained its structure during aerobic CO2 reduction, whereas it underwent structural alteration and was reductively devitalized in the absence of O2 . Theoretical calculations further demonstrated that CO2 reduction, instead of O2 reduction, occurred preferentially on the hydroxylated Cu node.
Collapse
Affiliation(s)
- Shijie Xie
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chaoyuan Deng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qing Huang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
4
|
Wang S, Xu S, Zhou Q, Liu Z, Xu Z. State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications. J Sep Sci 2023:e2201059. [PMID: 36842066 DOI: 10.1002/jssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Molecular imprinted colorimetric sensors can realize visual semi-quantitative analysis without the use of any equipment. With the advantages of low cost, fast response, ease of handling, and excellent recognition ability, the molecular imprinted colorimetric sensor shows great application potential in the field of sample rapid assay. Molecular imprinted colorimetric sensors can be prepared in various forms to meet the needs of different sample determination, such as film, hydrogel, strip, and adsorption coating. In this review, the preparation methods for various types of molecularly imprinted colorimetric sensors are systematically introduced. Their applications in the field of on-site biological sample detection, drug detection, disease treatment, chiral substance detection and separation, environmental analysis, and food safety detection are introduced. The limitations encountered in the practical application are presented, and the future development directions prospect.
Collapse
Affiliation(s)
- Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| |
Collapse
|
5
|
Intrafibrillar Dispersion of Cuprous Oxide (Cu 2O) Nanoflowers within Cotton Cellulose Fabrics for Permanent Antibacterial, Antifungal and Antiviral Activity. Molecules 2022; 27:molecules27227706. [PMID: 36431816 PMCID: PMC9692297 DOI: 10.3390/molecules27227706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.
Collapse
|
6
|
Primo JDO, Bittencourt C, Acosta S, Sierra-Castillo A, Colomer JF, Jaerger S, Teixeira VC, Anaissi FJ. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater. Front Chem 2020; 8:571790. [PMID: 33330360 PMCID: PMC7732540 DOI: 10.3389/fchem.2020.571790] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.
Collapse
Affiliation(s)
- Julia de O Primo
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| | - Carla Bittencourt
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Mons, Belgium
| | - Selene Acosta
- Chimie des Interactions Plasma-Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Mons, Belgium
| | - Ayrton Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), Université de Namur, Namur, Belgium
| | - Jean-François Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), Université de Namur, Namur, Belgium
| | - Silvia Jaerger
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| | - Verônica C Teixeira
- Laboratório Nacional de Luz Síncrotron (LNLS), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil
| | - Fauze J Anaissi
- Laboratório de Materiais e Compostos Inorgânicos (LabMat), Departamento de Química, Universidade Estadual Do Centro-Oeste, Guarapuava, Brazil
| |
Collapse
|
7
|
Yang Z, Wang J, Shah T, Liu P, Ahmad M, Zhang Q, Zhang B. Development of surface imprinted heterogeneous nitrogen-doped magnetic carbon nanotubes as promising materials for protein separation and purification. Talanta 2020; 224:121760. [PMID: 33379006 DOI: 10.1016/j.talanta.2020.121760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
To promote the development of molecular imprinting technique in the separation and analysis of protein, novel bovine serum albumin (BSA) surface imprinted nitrogen-doped magnetic carbon nanotubes (N-MCNTs@MIPs) are developed by this paper. The imprinted materials are prepared by depositing polydopamine (PDA) on the surface of nitrogen-doped magnetic carbon nanotubes (N-MCNTs). N-MCNTs prepared by high temperature pyrolysis and chemical vapor deposition exhibit high specific surface area, positive hydrophilicity, abundant nitrogen functional groups and excellent magnetic properties. These characteristics are conducive to the increase of effective binding sites, the smooth development of the protein imprinting process in the aqueous phase, the improvement of the binding capacity and the simplification of the separation process. The amount of BSA adsorbing on the N-MCNTs@MIPs can reach 150.86 mg/g within 90 min. The imprinting factor (IF) is 1.43. The results of competitive adsorption and separation of fetal bovine serum showed that N-MCNTs@MIPs can specifically recognize BSA. The excellent reusability and separation ability for real sample prove that N-MCNTs@MIPs have the potential to be applied to the separation and purification of proteins in complex biological samples.
Collapse
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Jiqi Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Tariq Shah
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China
| | - Pei Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China.
| | - Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, PR China; Sunresins New Materials Co. Ltd., Xi'an, 710072, PR China.
| |
Collapse
|
8
|
Piloto AM, Ribeiro DSM, Rodrigues SSM, Santos C, Santos JLM, Sales MGF. Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci Rep 2018; 8:4944. [PMID: 29563532 PMCID: PMC5862838 DOI: 10.1038/s41598-018-23271-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
A highly sensitive fluorescence detection probe was developed by tailoring plastic antibodies on the external surface of aqueous soluble quantum dots (QDs). The target was Myoglobin (Myo), a cardiac biomarker that quenched the intrinsic fluorescent emission of cadmium telluride (CdTe) QDs capped with mercaptopropionic acid (CdTe-MPA-QDs). The QDs were incubated with the target protein and further modified with a molecularly-imprinted polymer (MIP) produced by radical polymerization of acrylamide and bisacrylamide. The main physical features of the materials were assessed by electron microscopy, dynamic light scattering (DLS), UV/Vis spectrophotometry and spectrofluorimetry. The plastic antibodies enabled Myo rebinding into the QDs with subsequent fluorescence quenching. This QD-probe could detect Myo concentrations from 0.304 to 571 pg/ml (50.6 fM to 95 pM), with a limit of detection of 0.045 pg/ml (7.6 fM). The proposed method was applied to the determination of Myo concentrations in synthetic human serum. The results obtained demonstrated the ability of the modified-QDs to determine Myo below the cut-off values of myocardial infarction. Overall, the nanostructured MIP-QDs reported herein displayed quick responses, good stability and sensitivity, and high selectivity for Myo, offering the potential to be explored as new emerging sensors for protein detection in human samples.
Collapse
Affiliation(s)
- Ana Margarida Piloto
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal
| | - David S M Ribeiro
- LAQV/REQUIMTE, Faculty of Pharmacy of Porto University, Porto, Portugal
| | | | - Catarina Santos
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Setúbal, Portugal
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João L M Santos
- LAQV/REQUIMTE, Faculty of Pharmacy of Porto University, Porto, Portugal
| | - M Goreti F Sales
- BioMark/ISEP, School of Engineering of the Polytechnic Institute of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Hassanzadeh M, Ghaemy M. Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water. J Sep Sci 2018; 41:2296-2304. [DOI: 10.1002/jssc.201701452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Marjan Hassanzadeh
- Polymer Chemistry Research Laboratory; Faculty of Chemistry; University of Mazandaran; Babolsar Iran
| | - Mousa Ghaemy
- Polymer Chemistry Research Laboratory; Faculty of Chemistry; University of Mazandaran; Babolsar Iran
| |
Collapse
|
10
|
Zhang Z, Zhang X, Liu B, Liu J. Molecular Imprinting on Inorganic Nanozymes for Hundred-fold Enzyme Specificity. J Am Chem Soc 2017; 139:5412-5419. [DOI: 10.1021/jacs.7b00601] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zijie Zhang
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohan Zhang
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry,
Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Ashley J, Shahbazi MA, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives. Biosens Bioelectron 2017; 91:606-615. [PMID: 28103516 DOI: 10.1016/j.bios.2017.01.018] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/01/2022]
Abstract
Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given.
Collapse
Affiliation(s)
- Jon Ashley
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Krishna Kant
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Vinayaka Aaydha Chidambara
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Denmark
| | - Anders Wolff
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | - Dang Duong Bang
- Laboratory of Applied Micro and Nanotechnology (LAMINATE), National Food Institute, Technical University of Denmark (DTU-Food), Denmark
| | - Yi Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
12
|
Hassanzadeh M, Ghaemy M. An effective approach for the laboratory measurement and detection of creatinine by magnetic molecularly imprinted polymer nanoparticles. NEW J CHEM 2017. [DOI: 10.1039/c6nj03540j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetic MIP that exhibits high selectivity to capture creatinine with a binding capacity of 33.32 mg g−1was successfully synthesized.
Collapse
Affiliation(s)
- Marjan Hassanzadeh
- Polymer Chemistry Research Laboratory
- Department of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| | - Mousa Ghaemy
- Polymer Chemistry Research Laboratory
- Department of Chemistry
- University of Mazandaran
- Babolsar
- Iran
| |
Collapse
|
13
|
Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol 2016; 34:922-941. [DOI: 10.1016/j.tibtech.2016.05.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/21/2022]
|
14
|
Du C, Hu X, Guan P, Gao X, Song R, Li J, Qian L, Zhang N, Guo L. Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. J Mater Chem B 2016; 4:1510-1519. [DOI: 10.1039/c5tb02633d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-imprinted microspheres were prepared using raspberry-like microspheres for selectively recognizing IHH.
Collapse
Affiliation(s)
- Chunbao Du
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaoling Hu
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ping Guan
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xumian Gao
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Renyuan Song
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Ji Li
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Liwei Qian
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Nan Zhang
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Longxia Guo
- Department of Applied Chemistry
- Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
15
|
Liu Y, Gu Y, Li M, Wei Y. Protein imprinting over magnetic nanospheres via a surface grafted polymer for specific capture of hemoglobin. NEW J CHEM 2014. [DOI: 10.1039/c4nj01262c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Xu S, Lu H, Chen L, Wang X. Molecularly imprinted TiO2hybridized magnetic Fe3O4nanoparticles for selective photocatalytic degradation and removal of estrone. RSC Adv 2014. [DOI: 10.1039/c4ra06632d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Song X, Xu S, Chen L, Wei Y, Xiong H. Recent advances in molecularly imprinted polymers in food analysis. J Appl Polym Sci 2014. [DOI: 10.1002/app.40766] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xingliang Song
- School of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 China
| | - Shoufang Xu
- School of Chemistry and Chemical Engineering; Linyi University; Linyi 276005 China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences; Yantai 264003 China
| | - Yingqin Wei
- School of Chemistry and Pharmaceutical Engineering; Qilu University of Technology; Jinan 250353 China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| |
Collapse
|
18
|
Chen H, Kong J, Yuan D, Fu G. Synthesis of surface molecularly imprinted nanoparticles for recognition of lysozyme using a metal coordination monomer. Biosens Bioelectron 2014; 53:5-11. [DOI: 10.1016/j.bios.2013.09.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
|
19
|
Liu D, Yang Q, Jin S, Song Y, Gao J, Wang Y, Mi H. Core-shell molecularly imprinted polymer nanoparticles with assistant recognition polymer chains for effective recognition and enrichment of natural low-abundance protein. Acta Biomater 2014; 10:769-75. [PMID: 24140608 DOI: 10.1016/j.actbio.2013.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/22/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
Core-shell molecular imprinting of nanomaterials overcomes difficulties with template transfer and achieves higher binding capacities for macromolecular imprinting, which are more important to the imprinting of natural low-abundance proteins from cell extracts. In the present study, a novel strategy of preparing core-shell nanostructured molecularly imprinted polymers (MIPs) was developed that combined the core-shell approach with assistant recognition polymer chains (ARPCs). Vinyl-modified silica nanoparticles were used as support and ARPCs were used as additional functional monomers. Immunoglobulin heavy chain binding protein (BiP) from the endoplasmic reticulum (ER) was chosen as the model protein. The cloned template protein BiP was selectively assembled with ARPCs from their library, which contained numerous limited-length polymer chains with randomly distributed recognition and immobilization sites. The resulting complex was copolymerized onto the surface of vinyl-modified silica nanoparticles under low concentrations of the monomers. After template removal, core-shell-structured nanoparticles with a thin imprinted polymer layer were produced. The particles demonstrated considerably high adsorption capacity, fast adsorption kinetics and selective binding affinities toward the template BiP. Furthermore, the synthesized MIP nanoparticles successfully isolated cloned protein BiP from protein mixtures and highly enriched BiP from an ER extract containing thousands of kinds of proteins. The enrichment reached 115-fold and the binding capacity was 5.4 μg g(-1), which were higher than those achieved by using traditional MIP microspheres. The advantageous properties of MIP nanoparticles hold promise for further practical applications in biology, such as protein analysis and purification.
Collapse
|
20
|
Wei F, Wu Y, Xu G, Gao Y, Yang J, Liu L, Zhou P, Hu Q. Molecularly imprinted polymer based on CdTe@SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst 2014; 139:5785-92. [DOI: 10.1039/c4an00951g] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent sensor with recognition ability for norepinephrine was simply prepared and actually used to determine norepinephrine in rat plasma.
Collapse
Affiliation(s)
- Fangdi Wei
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Yanzi Wu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Guanhong Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Yankun Gao
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Jing Yang
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Liping Liu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Ping Zhou
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| | - Qin Hu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166, China
| |
Collapse
|