1
|
Zhang J, Liu X, Mu Q, Li R, Ji Y. Construction and Application of a Pepsin-Functionalized Covalent Organic Framework with Prominent Chiral Recognition Ability. Chemistry 2024:e202303827. [PMID: 38183168 DOI: 10.1002/chem.202303827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
The stable Pepsin@covalent organic framework (Pepsin@COF) were constructed base on matching COF pore diameter to pepsin dimension. It exhibits excellent chiral recognition capabilities (e. e. % up to 62.63 %) and potential for enantioseparation. Furthermore, a positive correlation between the immobilized enzyme activity and chiral recognition was revealed, offering insights for the design of biocatalytic nanosystems in chiral separation.
Collapse
Affiliation(s)
- Jiale Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Xue Liu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Qixuan Mu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Ruijun Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| | - Yibing Ji
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing, 210009, China
| |
Collapse
|
2
|
Qiu X, Hou X, Yang Y, Fang H, Cui F, Yang X. An in-line method for high-throughput screening of protein tyrosine phosphatase receptor type O inhibitors by capillary electrophoresis based on electrophoretically mediated microanalysis. J Chromatogr A 2024; 1713:464511. [PMID: 38007841 DOI: 10.1016/j.chroma.2023.464511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Protein tyrosine phosphatase receptor type O (PTPRO) plays an important role in inflammation-related pathways and has become an emerging drug target. In this study, we developed an in-line capillary electrophoresis (CE) method for the investigation of the enzymatic activity of PTPRO, which was based on electrophoretically mediated microanalysis (EMMA). After a thorough method validation of the optimized conditions, this protocol was successfully employed to determine the kinetics of PTPRO as well as the half-maximal inhibitory concentration (IC50) of two typical PTPRO inhibitors. The final results were consistent with the values obtained through classical ultraviolet-visible (UV-vis) spectrophotometry. Our new method exhibited improved accuracy and reduced consumption, avoiding the disadvantages of traditional methods. This work provides a new strategy for PTPRO enzyme kinetic studies as well as inhibitory activity determination through capillary electrophoresis for the first time.
Collapse
Affiliation(s)
- Xueting Qiu
- Department of Pharmaceutical Analysis and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China
| | - Yue Yang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China
| | - Fei Cui
- Department of Pharmaceutical Analysis and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China
| | - Xinying Yang
- Department of Pharmaceutical Analysis and Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
3
|
Siebert DA, Caon NB, Alberton MD, Vitali L, Parize AL, Micke GA. Immobilized acetylcholinesterase in magnetic nanoparticles for in-line inhibition studies using a capillary electrophoresis system. Anal Chim Acta 2023; 1275:341566. [PMID: 37524460 DOI: 10.1016/j.aca.2023.341566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Enzyme assays can be performed with the capillary electrophoresis technique (CE) in many approaches, such as the immobilized enzyme micro-reactor. Acetylcholinesterase is a promising enzyme to be used when pursuing such a method, as it has already been explored in the proposal of similar methods of miniaturizing enzyme assays. The present work proposes a novel enzyme micro-reactor, based on the anchorage of the enzyme on magnetic nanoparticles of MnFe2O4, with chitosan and glutaraldehyde as the cross-linker in the capillary by means of an arrange of neodymium magnets. The calculated Km of the enzyme evaluated by this method was 1.12 mmol L-1, comparable to other studies in the literature that utilizes immobilized enzymes. Also, IC50 for neostigmine was assessed in 3 different micro-reactors, with an average of 29.42 ± 3.88 μmol L-1. In terms of the micro-reactor stability, it was possible to perform at least 25 experiments with assembled micro-reactor. The method was applied to hydroalcoholic extracts of 7 plant species. Plinia cauliflora had the best result, with 42.31 ± 6.81% of enzyme inhibition in a concentration of 100 mg L-1.
Collapse
Affiliation(s)
- Diogo Alexandre Siebert
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Natália Bruzamarello Caon
- Laboratório de Estudo em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Michele Debiasi Alberton
- Laboratório de Pesquisa em Produtos Naturais, Universidade Regional de Blumenau, Rua São Paulo 2171, CEP 89030-000, Blumenau, SC, Brazil
| | - Luciano Vitali
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Alexandre Luis Parize
- Laboratório de Estudo em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Trindade, CEP 88040-900, Florianópolis, SC, Brazil
| | - Gustavo Amadeu Micke
- Laboratório de Eletroforese Capilar, Departamento de Química, Universidade Federal de Santa Catarina, Trindade, CEP 88040-900, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Yang L, Sun Y, Zhang L. Microreactor Technology: Identifying Focus Fields and Emerging Trends by Using CiteSpace II. Chempluschem 2023; 88:e202200349. [PMID: 36482287 DOI: 10.1002/cplu.202200349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Microreactors have gained widespread attention from academia and industrial researchers due to their exceptionally fast mass and heat transfer and flexible control. In this work, CiteSpace software was used to systematically analyze the relevant literature to gain a comprehensively understand on the research status of microreactors in various fields. The results show that the research depth and application scope of microreactors are continuing to expand. The top 10 most popular research fields are photochemistry, pharmaceutical intermediates, multistep flow synthesis, mass transfer, computational fluid dynamics, μ-TAS (micro total analysis system), nanoparticles, biocatalysis, hydrogen production, and solid-supported reagents. The evolution trends of current focus areas are examined, including photochemistry, mass transfer, biocatalysis and hydrogen production and their milestone literature is analyzed in detail. This article demonstrates the development of different fields of microreactors technology and highlights the unending opportunities and challenges offered by this fascinating technology.
Collapse
Affiliation(s)
- Lin Yang
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Yutao Sun
- School of Economics and Management, School of Intellectual Property, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| | - Lijing Zhang
- Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, P. R. China
| |
Collapse
|
5
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Zhou W, Wang M, Zhang A, Huang D, Guo H, Shen G. Directional screening and identification of potential cytotoxic components from Achnatherum inebrians by a combination of surface palsmon resonance and chromatography. CHINESE HERBAL MEDICINES 2022. [DOI: 10.1016/j.chmed.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Mine M, Mizuguchi H, Takayanagi T. Kinetic analyses of two-steps oxidation from l-tyrosine to l-dopaquinone with tyrosinase by capillary electrophoresis/dynamic frontal analysis. Anal Biochem 2022; 655:114856. [PMID: 35964734 DOI: 10.1016/j.ab.2022.114856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Tyrosinase catalyzes the oxidation of l-tyrosine in two stages to produce l-dopa and l-dopaquinone stepwise, and l-dopaquinone is subsequently converted to dopachrome. Most of the conventional analyses subjected only one-step reaction from l-tyrosine to l-dopa or from l-dopa to l-dopaquinone. In this study, kinetic analyses of two-steps oxidation of l-tyrosine with tyrosinase were made by capillary electrophoresis/dynamic frontal analysis (CE/DFA). When l-dopa was introduced into a capillary as a sample plug in a CE/DFA format, the enzymatic oxidation continuously occurred during the electrophoresis, and the product l-dopaquinone was subsequently converted to dopachrome which was detected as a plateau signal. A Michaelis-Menten constant of the second-step kinetic reaction, Km,Do, was determined as 0.45 ± 0.03 mmol L-1. In the analysis of the first-step kinetic reaction from l-tyrosine to l-dopa, l-dopa was not resolved by CE/DFA because both l-tyrosine and l-dopa are electrically neutral. The l-dopa formed and co-migrated at the l-tyrosine zone was calibrated beforehand with the final product of dopachrome detected as a plateau signal. Constantly formed l-dopa was successfully detected as a plateau signal of dopachrome, and a Michaelis-Menten constant of Km,Ty was also determined as 0.061 ± 0.009 mmol L-1 by the CE/DFA. CE/DFA is applicable to two-steps enzymatic reactions.
Collapse
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan.
| |
Collapse
|
8
|
Liu R, Yi G, Ji B, Liu X, Gui Y, Xia Z, Fu Q. Metal–Organic Frameworks-Based Immobilized Enzyme Microreactors Integrated with Capillary Electrochromatography for High-Efficiency Enzyme Assay. Anal Chem 2022; 94:6540-6547. [PMID: 35465669 DOI: 10.1021/acs.analchem.1c05586] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rui Liu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Gaoyi Yi
- Department of Clinical Pharmacy, Jintang Hospital, Sichuan University West China Hospital, Chengdu, Sichuan 610400, China
| | - Baian Ji
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiuqiong Liu
- Department of Clinical Pharmacy, Jintang Hospital, Sichuan University West China Hospital, Chengdu, Sichuan 610400, China
| | - Yuanqi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
9
|
Banni GAHD, Nehmé R. Capillary electrophoresis for enzyme-based studies: Applications to lipases and kinases. J Chromatogr A 2021; 1661:462687. [PMID: 34864234 DOI: 10.1016/j.chroma.2021.462687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
Capillary electrophoresis (CE) is a powerful technique continuously expanding into new application fields. One of these applications involves the study of enzymes, their catalytic activities and the alteration of this activity by specific ligands. In this review, two model enzymes, lipases and kinases, will be used since they differ substantially in their modes of action, reaction requirements and applications making them perfect subjects to demonstrate the advantages and limitations of CE-based enzymatic assays. Indeed, the ability to run CE in various operation modes and hyphenation to different detectors is essential for lipase-based studies. Additionally, the low sample consumption provided by CE promotes it as a promising technique to assay human and viral nucleoside kinases. Undeniably, these are rarely commercially available enzymes and must be frequently produced in the laboratory, a process which requires special sets of skills. CE-based lipase and kinase reactions can be performed outside the capillary (pre-capillary) where the reactants are mixed in a vial prior to their separation or, inside the capillary (in-capillary) where the reactants are mixed before the electrophoretic analysis. These enzyme-based applications of CE will be compared to those of liquid chromatography-based applications in terms of advantages and limitations. Binding assays based on affinity CE and the compelling microscale thermophoresis (MST) will be briefly presented as they allow a broad understanding of the molecular mechanism behind ligand binding and of the resulting modulation in activity.
Collapse
Affiliation(s)
- Ghassan Al Hamoui Dit Banni
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, Orléans 45067, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, Orléans 45067, France.
| |
Collapse
|
10
|
|
11
|
Xu M, Zhang H, Tang T, Zhou J, Zhou W, Tan S, He B. Potential and applications of capillary electrophoresis for analyzing traditional Chinese medicine: a critical review. Analyst 2021; 146:4724-4736. [PMID: 34269779 DOI: 10.1039/d1an00767j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capillary electrophoresis (CE) presents a promising possibility for analyzing traditional Chinese medicine (TCM) due to its low reagent consumption, high analysis speed, and enhanced efficiency. Herein we review the employment of CE for analyzing the effective components in TCM and identifying TCM via a fingerprint. Furthermore, we discuss the application of state-of-the-art capillary electrophoresis modes for screening enzyme inhibitors and investigating the interactions between TCM and plasma proteins. The review concludes with recommendations for future studies and improvements in this field of research. The general development trend identified in this review indicates that the application of CE has significantly improved TCM assay performance.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Tong Tang
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha 410219, China.
| |
Collapse
|
12
|
Al Hamoui Dit Banni G, Nasreddine R, Fayad S, Cao-Ngoc P, Rossi JC, Leclercq L, Cottet H, Marchal A, Nehmé R. Screening for pancreatic lipase natural modulators by capillary electrophoresis hyphenated to spectrophotometric and conductometric dual detection. Analyst 2021; 146:1386-1401. [PMID: 33404014 DOI: 10.1039/d0an02234a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The search for novel pancreatic lipase (PL) inhibitors has gained increasing attention in recent years. For the first time, a dual detection capillary electrophoresis (CE)-based homogeneous lipase assay was developed employing both the offline and online reaction modes. The hydrolysis of 4-nitrophenyl butyrate (4-NPB) catalyzed by PL into 4-nitrophenol and butyrate was monitored by spectrophotometric and conductimetric detection, respectively. The assays presented several advantages such as economy in consumption (few tens of nanoliters for online assays to few tens of microliters for offline assays), no modification of lipase, rapidity (<10 min) and versatility. Tris/MOPS (10 mM, pH 6.6) was used as the background electrolyte and the incubation buffer for enzymatic reactions. We confirmed that in the conditions of the study (small substrate 4-NPB, 37 °C, pH 6.6), the PL was active even in the absence of dipalmitoylphosphatidylcholine (DPPC) vesicles, generally used to mimic the lipid-water interface. This was confirmed by the maximum velocity (Vmax) and the Michaelis-Menten constant (Km) values that were the same order of magnitude in the absence and presence of DPPC. The developed method was used to screen crude aqueous plant extracts and purified compounds. We were able to identify the promising PL inhibition of hawthorn leaf herbal infusions at 1 mg mL-1 (37%) and PL activation by fresh and dry hawthorn flowers (∼24%). Additionally, two triterpenoids purified from extracts of oakwood were identified for the first time as potent PL inhibitors demonstrating 51 and 58% inhibition at 1 mg mL-1, respectively.
Collapse
Affiliation(s)
- Ghassan Al Hamoui Dit Banni
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| | - Rouba Nasreddine
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| | - Syntia Fayad
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France. and Université de Bordeaux, ISVV, EA 5477, Unité de recherche Œnologie, USC 1366 INRA, F-33882, Villenave d'Ornon, France
| | - Phu Cao-Ngoc
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | | | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | - Axel Marchal
- Université de Bordeaux, ISVV, EA 5477, Unité de recherche Œnologie, USC 1366 INRA, F-33882, Villenave d'Ornon, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| |
Collapse
|
13
|
Zhang Y, Zhong HY, Nsanzamahoro S, Yao XJ, Wang WF, Yang JL. An online target and rapid screening method for α-glucosidase inhibitors based on capillary electrophoresis. Electrophoresis 2021; 42:1221-1228. [PMID: 33715179 DOI: 10.1002/elps.202000354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Screening enzymatic active compounds is one of the important fields in drug research. α-Glucosidase can hydrolyze carbohydrates to monosaccharides after meals and lead to the rise of blood glucose levels in human body. Thus, the inhibition of α-glucosidase activity is an effective approach for the diabetes treatment. In this work, we developed a new method to simultaneously screen multiple bioactive compounds within a single CE running. The affect factors on the method performance, including injection, mixing, incubation, separation and detection, were carefully analyzed and discussed. Under the optimum, the mixture consisting of two internal standards (DMSO and 4-nitrophenol) and five compounds (lyoniresinol, hydroxytyrosol, rutin, kaempferol, and quercetin) was simultaneously screened, and kaempferol and quercetin showed stronger activity and this conclusion was also supported by offline assay. Furthermore, molecular docking was employed for investigating its interaction mechanism. Eventually, the established method has been applied to screen potential α-glucosidase inhibitors from an extract of Lycium barbarum and the peak area of rutin, taxifolin, quercetin, and chlorogenic acid in L. barbarum samples changed before and after the enzymatic reaction, confirming that these four compounds had potential inhibitory activities, which was consistent with the literature data. The present work provides a promising method for the target and rapid discovery of bioactive compounds from a plant extract or mixture.
Collapse
Affiliation(s)
- Ying Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, Gansu, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hai-Yang Zhong
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Stanislas Nsanzamahoro
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, Gansu, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Jun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, Gansu, 730000, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
14
|
Mine M, Mizuguchi H, Takayanagi T. Kinetic analysis of the transphosphorylation with creatine kinase by pressure-assisted capillary electrophoresis/dynamic frontal analysis. Anal Bioanal Chem 2021; 413:1453-1460. [PMID: 33479817 DOI: 10.1007/s00216-020-03110-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
Kinetic reactions of the transphosphorylation with creatine kinase (CK) were individually investigated between creatine (Cr) and creatine phosphate (CrP) by pressure-assisted capillary electrophoresis/dynamic frontal analysis (pCE/DFA). The transphosphorylations are reversible between Cr and CrP, and reverse reactions inevitably accompany in general batch analyses. In pCE/DFA, the kinetic reaction proceeds in a separation capillary and the product is continuously resolved from the substrate zone. Therefore, the formation rate is kept constant at the substrate zone without the reverse reaction, and the product is detected as a plateau signal. This study demonstrates the direct and individual analyses of both the forward and the backward kinetic reactions with CK by pCE/DFA. A plateau signal was detected in the pCE/DFA with ADP or ATP as one of the products on either the forward or the backward reactions. The Michaelis-Menten constants of Km,ATP (from Cr to CrP) and Km,ADP (from CrP to Cr) were successfully determined through the plateau signal. Determined values of Km,ATP and Km,ADP by pCE/DFA were smaller than the ones obtained by the pre-capillary batch analyses. The results agree with the fact that the reverse reaction is excluded in the analysis of the kinetic reactions. The proposed pCE/DFA is useful on individual analyses of both forward and backward kinetic reactions without any interference from the reverse reaction.
Collapse
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan
| | - Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjima-cho, Tokushima, 770-8506, Japan.
| |
Collapse
|
15
|
Mine M, Matsumoto N, Mizuguchi H, Takayanagi T. Kinetic analysis of an enzymatic hydrolysis of p-nitrophenyl acetate with carboxylesterase by pressure-assisted capillary electrophoresis/dynamic frontal analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5846-5851. [PMID: 33230513 DOI: 10.1039/d0ay01736a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An enzymatic hydrolysis of p-nitrophenyl acetate with carboxylesterase was analyzed by capillary electrophoresis/dynamic frontal analysis (CE/DFA). A plateau signal was expected with the anionic product of p-nitrophenol by the CE/DFA applying in-capillary reaction and the continuous CE resolution of the product from the substrate zone. However, the plateau height was not sufficient, and/or the plateau signal fluctuated and drifted. Therefore, a pressure assist was utilized in the CE/DFA to detect the product zone fast and to average the fluctuated plateau signal by mixing in a laminar flow. The plateau signal became relatively flat and its height was developed by the pressure-assisted capillary electrophoresis/dynamic frontal analysis (pCE/DFA). The plateau height was used for the Michaelis-Menten analysis, and a Michaelis-Menten constant was determined as KM = 0.83 mmol L-1. An enzyme inhibition was also examined with bis(p-nitrophenyl) phosphate by adding it in the separation buffer. The height of the plateau signal decreased by the inhibition, and a 50% inhibitory concentration was determined as IC50 = 0.79 μmol L-1. The values of KM and IC50 obtained in this study agreed well with the reported values. Since the proposed pCE/DFA includes electrophoretic migration of the substrate zone in a capillary, it is also noticed that the deactivation of the enzyme by ethanol on the preparation of the substrate solution can be avoided, as well as the exclusion of the inhibition by the product.
Collapse
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjimacho, Tokushima 770-8506, Japan
| | | | | | | |
Collapse
|
16
|
Designing of a stable and selective glucose biosensor by glucose oxidase immobilization on glassy carbon electrode sensitive to H2O2 via nanofiber interface. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-020-01502-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Huang S, Celá A, Adams E, Glatz Z, Van Schepdael A. Aldehyde oxidase assay by capillary electrophoresis: From off-line, online up to immobilized enzyme reactor. J Sep Sci 2020; 43:3565-3572. [PMID: 32627385 DOI: 10.1002/jssc.202000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
Capillary electrophoresis is a modern separation technique characterized by many benefits, which qualify it also for enzyme assays and the study of enzyme kinetics during drug development. Homogeneous or heterogeneous approaches can be followed for the enzymatic incubation. In this study, an immobilization procedure of aldehyde oxidase on magnetic particles was developed considering their integration with capillary electrophoresis. A number of magnetic nano/microparticle types were tested for this purpose, showing that aldehyde oxidase was most active when immobilized on bare silica magnetic nanoparticles. Primarily, the reusability of the enzyme immobilized on bare silica nanoparticles was tested. Three consecutive incubations with substrate could be performed, but the activity considerably dropped after the first incubation. One reason could be an enzyme detachment from the nanoparticles, but no release was detected neither at 4°C nor at 37°C during 5 h. The drop in enzymatic activity observed in consecutive incubations, could also be due to inactivation of the enzyme over time at given temperature. For the immobilized enzyme stored at 4°C, the activity decreased to 83% after 5 h, in contrast with a steep decrease at 37°C to 37%.
Collapse
Affiliation(s)
- Shengyun Huang
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Andrea Celá
- Faculty of Science, Department of Biochemistry, Masaryk University, Brno, Czech Republic
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Zdenĕk Glatz
- Faculty of Science, Department of Biochemistry, Masaryk University, Brno, Czech Republic
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Designing and investigation of photo-active gellan gum for the efficient immobilization of catalase by entrapment. Int J Biol Macromol 2020; 161:539-549. [PMID: 32544585 DOI: 10.1016/j.ijbiomac.2020.06.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
A photo-active gellan gum (Gel) derivative was developed by amide bond combination with trans-4-[p-(amino)styryl]pyridine (SP). The SP-Gel was cross-linked by UV curing via the intermolecular 2π + 2π cycloaddition of the inserted SP-CH=CH- moieties. The chemical structure of the obtained photo-crosslinkable biopolymer was investigated before and after the UV curing and the progress of the performed 2π + 2π cycloaddition-based cross-linking was detected via UV-visible light spectra. SP-Gel was evaluated as a polymeric matrix for the immobilization of catalase via entrapment technique. The synthesized biopolymer was mixed with the catalase and molded in the form of membranes that were UV cured to encapsulate the enzyme. The membranes were able to entrap 0.75 mg/cm2 with retained activity reached above 95%. The immobilized catalase displayed higher thermal stability and higher resistance toward the environmental pH disturbances compared to the free enzyme. Also, despite the observed lower catalase-H2O2 affinity upon the entrapment that was indicated from the performed kinetic studies, the reusability and storage stability experiments revealed the economic value of the entire process by preserving around 95% and 83% of the initial catalase activity after the fifth and tenth operation cycles, respectively.
Collapse
|
19
|
Mine M, Mizuguchi H, Takayanagi T. Inhibition Assay of Theophylline by Capillary Electrophoresis/Dynamic Frontal Analysis on the Hydrolysis of p-Nitrophenyl Phosphate with Alkaline Phosphatase. CHEM LETT 2020. [DOI: 10.1246/cl.200130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Masanori Mine
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijyousanjimacho, Tokushima 770-8506, Japan
| | - Hitoshi Mizuguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjimacho, Tokushima 770-8506, Japan
| | - Toshio Takayanagi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijyousanjimacho, Tokushima 770-8506, Japan
| |
Collapse
|
20
|
Wu ZY, Zhang H, Yang YY, Yang FQ. An online dual-enzyme co-immobilized microreactor based on capillary electrophoresis for enzyme kinetics assays and screening of dual-target inhibitors against thrombin and factor Xa. J Chromatogr A 2020; 1619:460948. [PMID: 32059867 DOI: 10.1016/j.chroma.2020.460948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/27/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
In this study, an online capillary electrophoresis (CE) based dual-enzyme (thrombin and factor Xa) co-immobilized microreactor (THR-FXa IMER) was constructed for studying enzyme kinetics and screening dual-target inhibitors against THR and FXa with the aid of the polydopamine/graphene oxide (PDA/GO) coating. Based on the developed THR-FXa IMER, the Michaelis-Menten constants (Km) of THR and FXa were calculated to be 187.26 and 48.80 μM, respectively. The inhibition constants (Ki) for two known inhibitors, argatroban and rivaroxaban, on THR and FXa were determined to be 14.73 and 0.41 nM, respectively. In addition, after 30 consecutive runs, the enzymes' activity was remained 98% of the initial immobilized activity for both THR and FXa, which shows that the constructed IMER has good stability and repeatability. Finally, the developed method was successfully applied to screen dual-target inhibitors against THR and FXa from 30 small molecular compounds. Among them, 10 compounds such as salvianolic acid C and epigallocatechin gallate (EGCG) have dual-enzyme inhibitory activity, and 2 compounds named saikosaponin A and oleuropein have single THR inhibitory activity, 5 compounds such as rosemary acid and salvianolic acid B have single FXa inhibitory activity. Finally, the molecular interactions between enzyme and potential inhibitors were further verified via the molecular docking, and a new compound with a theoretically good coagulation inhibition effect was designed by the scaffold hopping study. In summary, the developed THR-FXa IMER is a reliable method for screening THR and/or FXa inhibitors.
Collapse
Affiliation(s)
- Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
21
|
Zhang X, Li G, Wu D, Yu Y, Hu N, Wang H, Li X, Wu Y. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food Funct 2020; 11:66-82. [DOI: 10.1039/c9fo01590f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high incidence of diabetes mellitus has caused widespread concern around the world, and has quickly become one of the most prevalent and costly chronic diseases.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Guoliang Li
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- Key Laboratory of Life-Organic Analysis of Shandong Province
| | - Di Wu
- Yangtze Delta Region Institute of Tsinghua University
- China
| | - Yanxin Yu
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining 810001
- China
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research & Qinghai Provincial Key Laboratory of Tibetan Medicine Research
- Northwest Institute of Plateau Biology
- Chinese Academy of Sciences
- Xining 810001
- China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing 100048
- China
| | - Yongning Wu
- Key Laboratories of Chemical Safety and Health
- China National Center for Food Safety Risk Assessment
- Beijing 100050
- China
| |
Collapse
|
22
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Tang Y, Li W, Wang Y, Zhang Y, Ji Y. Rapid on‐line system for preliminary screening of lipase inhibitors from natural products by integrating capillary electrophoresis with immobilized enzyme microreactor. J Sep Sci 2020; 43:1003-1010. [DOI: 10.1002/jssc.201900523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yixia Tang
- Department of Analytical ChemistryChina Pharmaceutical University Nanjing P. R. China
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of Education Nanjing P. R. China
| | - Wang Li
- Department of Analytical ChemistryChina Pharmaceutical University Nanjing P. R. China
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of Education Nanjing P. R. China
| | - Yuying Wang
- Department of Analytical ChemistryChina Pharmaceutical University Nanjing P. R. China
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of Education Nanjing P. R. China
| | - Yuefen Zhang
- Department of Analytical ChemistryChina Pharmaceutical University Nanjing P. R. China
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of Education Nanjing P. R. China
| | - Yibing Ji
- Department of Analytical ChemistryChina Pharmaceutical University Nanjing P. R. China
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of Education Nanjing P. R. China
| |
Collapse
|
24
|
On-line immobilized trypsin microreactor for evaluating inhibitory activity of phenolic acids by capillary electrophoresis and molecular docking. Food Chem 2019; 310:125823. [PMID: 31757489 DOI: 10.1016/j.foodchem.2019.125823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Phenolic acids, which are important aromatic secondary metabolites, are widely distributed in plant foods. In this study, a simple, economical and fast on-line immobilized trypsin microreactor was developed for evaluating the inhibitory activity of phenolic acids by capillary electrophoresis. The Michaelis-Menten constant (Km) of immobilized trypsin was determined as 0.99 mM, and the half-maximal inhibitory concentration (IC50) and inhibition constant (Ki) of benzamidine were measured as 3.39 and 1.68 mM, respectively. Then, the developed strategy was applied to investigate the inhibitory activity of six phenolic acids on trypsin. The results showed that gallic acid, caffeic acid and ferulic acid had high inhibitory activity at concentration of 150 μM. Molecular docking results illustrated that gallic acid, caffeic acid and ferulic acid can interact indirectly with the catalytic and substrate-binding sites of trypsin. The developed strategy is an effective tool for evaluating inhibitory activity of phenolic acids on trypsin.
Collapse
|
25
|
Zhang C, Woolfork AG, Suh K, Ovbude S, Bi C, Elzoeiry M, Hage DS. Clinical and pharmaceutical applications of affinity ligands in capillary electrophoresis: A review. J Pharm Biomed Anal 2019; 177:112882. [PMID: 31542417 DOI: 10.1016/j.jpba.2019.112882] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023]
Abstract
Affinity capillary electrophoresis (ACE) is a separation technique that combines a biologically-related binding agent with the separating power and efficiency of capillary electrophoresis. This review will examine several classes of binding agents that have been used in ACE and applications that have been described for the resulting methods in clinical or pharmaceutical analysis. Binding agents that will be considered are antibodies, aptamers, lectins, serum proteins, carbohydrates, and enzymes. This review will also describe the various formats in which each type of binding agent has been used in CE, including both homogeneous and heterogeneous methods. Specific areas of applications that will be considered are CE-based immunoassays, glycoprotein/glycan separations, chiral separations, and biointeraction studies. The general principles and formats of ACE for each of these applications will be examined, along with the potential advantages or limitations of these methods.
Collapse
Affiliation(s)
- Chenhua Zhang
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Cong Bi
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - Marawan Elzoeiry
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588-0304, USA.
| |
Collapse
|
26
|
Liu X, Azhar I, Khan H, Qu Q, Tian M, Yang L. Capillary electrophoresis-immobilized enzyme microreactors for acetylcholinesterase assay with surface modification by highly-homogeneous microporous layer. J Chromatogr A 2019; 1609:460454. [PMID: 31443966 DOI: 10.1016/j.chroma.2019.460454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
Abstract
We propose a new capillary electrophoresis (CE)-based open-tubular immobilized enzyme microreactor (OT-IMER) and its application in acetylcholinesterase (AChE) assays. The IMER is fabricated at the capillary inlet (reactor length of ∼1 cm) with the inner surface modified by a micropore-structured layer (thickness of ∼220 nm, pore size of ∼15-20 nm). The use of IMER accomplishes the enzymatic reaction and separation/detection of the products in the same capillary within 3 min. The feasibility of the proposed method is evaluated via online analysis of the activity and inhibition of AChE enzymes. Such method exhibits good reproducibility with relative standard deviation (RSD) of less than 4% for 20 runs, and the enzyme remains over 82% of the initial activity after usage of 7 days. The IMERs are successfully applied to detect the organophosphorus pesticide, paraoxon, in three types of vegetable juice samples with a limit of detection of as low as 61 ng mL-1. Results show that the spiked samples are in the range of 89.6-105.9% with RSD less than 2.7%, thereby indicating its satisfactory level of accurate and reliable analysis of real samples by using the proposed method. Our study indicates that, with combination of advantages of both porous-layer capillary and CE OT-IMER, the proposed method is capable to enhance enzymatic reactions and to achieve rapid analysis with simple instrumentation and operation, thus would pave the way for extensive application of CE-based IMERs in a variety of bioanalysis.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Irfan Azhar
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Habib Khan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China
| | - Qishu Qu
- Key Laboratory of Functional Molecule Design and Interface Process, School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Miaomiao Tian
- Institute of Chemical and Industrial Bioengineering, Jilin Engineering Normal University, Changchun, Jilin Province, 130052, China.
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province, 130024, China.
| |
Collapse
|
27
|
Recent advances in the fabrication and application of nanomaterial-based enzymatic microsystems in chemical and biological sciences. Anal Chim Acta 2019; 1067:31-47. [DOI: 10.1016/j.aca.2019.02.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 11/24/2022]
|
28
|
Capillary electrophoresis with dual detection UV/C 4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta 2019; 1085:117-125. [PMID: 31522725 DOI: 10.1016/j.aca.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022]
Abstract
Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few μL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.
Collapse
|
29
|
Zhang H, Wu ZY, Yang YY, Yang FQ, Li SP. Recent applications of immobilized biomaterials in herbal analysis. J Chromatogr A 2019; 1603:216-230. [PMID: 31277949 DOI: 10.1016/j.chroma.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Immobilization of biomaterials developed rapidly due to the great promise in improving their stability, activity and even selectivity. In this review, the immobilization strategies of biomaterials, including physical adsorption, encapsulation, covalent attachment, cross-linking and affinity linkage, were briefly introduced. Then, the major emphasis was focused on the reported various types of immobilized biomaterials, including proteins, enzymes, cell membrane and artificial membrane, living cells, carbohydrates and bacteria, used in the herbal analysis for bioactive compound screening, drug-target interaction evaluation and chiral separation. In addition, a series of carrier materials applied in biomaterials immobilization, such as magnetic nanoparticles, metal-organic frameworks, silica capillary column, cellulose filter paper, cell membrane chromatography, immobilized artificial membrane chromatography and hollow fiber, were also discussed. Perspectives on further applications of immobilized biomaterials in herbal analysis were finally presented.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China.
| |
Collapse
|
30
|
Surface modification with highly-homogeneous porous silica layer for enzyme immobilization in capillary enzyme microreactors. Talanta 2019; 197:539-547. [DOI: 10.1016/j.talanta.2019.01.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
|
31
|
Ramana P, Adams E, Augustijns P, Van Schepdael A. Immobilizing sulfotransferase 1A1 on magnetic microparticles and their evaluation using capillary electrophoresis. Electrophoresis 2019; 40:2271-2276. [PMID: 30882918 DOI: 10.1002/elps.201900016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022]
Abstract
Sulfotransferases are categorized as phase II metabolic enzymes. Human sulfotransferase 1A1 (SULT1A1) is involved in the sulfonation of xenobiotics with aid from the cofactor 3'-phosphoadenosine-5'-phosphosulfate that acts as a sulfonate donor. In this study, we have attempted to immobilize SULT1A1 on magnetic microparticles (MMs). Different functionalized MMs were used to immobilize SULT1A1 and their enzyme activity was compared to the control (enzyme in solution). Paracetamol was used as model substrate. Separation of paracetamol and paracetamol sulfate by CE-UV was optimized and validated. MMs with epoxy based immobilization of SULT1A1 showed better enzyme activity. Hence, they were tested for repeated usage to allow their implementation for the development of a CE immobilized micro enzyme reactor.
Collapse
Affiliation(s)
- Pranov Ramana
- KU Leuven-University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Leuven, Belgium
| | - Erwin Adams
- KU Leuven-University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven-University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Drug delivery and disposition, Leuven, Belgium
| | - Ann Van Schepdael
- KU Leuven-University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Leuven, Belgium
| |
Collapse
|
32
|
Wu ZY, Zhang H, Li QQ, Yang FQ, Li DQ. Capillary electrophoresis-based online immobilized enzyme reactor for beta-glucosidase kinetics assays and inhibitors screening. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:67-73. [PMID: 30780013 DOI: 10.1016/j.jchromb.2019.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 12/14/2022]
Abstract
A capillary electrophoresis (CE)-based beta-glucosidase (beta-Glu) immobilized enzyme microreactor (IMER) was constructed for enzyme kinetics study and inhibitor screening with the aid of polydopamine coating. The enzyme kinetic and inhibition studies of beta-Glu were comprehensively evaluated using p-nitrophenyl beta-d-glucopyranoside as a model substrate and castanospermine as a model inhibitor. The Michaelis-Menten constant value of the immobilized beta-Glu in the developed IMER was calculated to be 2.79 mmol/L. The half-maximal inhibitory concentration and inhibition constant of castanospermine were 13.22 μg/mL and 1.54 μg/mL, respectively. In addition, after 50 consecutive runs, the IMER activity was remained at 89.5% of the initial immobilized beta-Glu activity, which showed that the constructed IMER has good stability and repeatability. Finally, the developed method was successfully applied to screen beta-Glu inhibitors from twelve flavonoids. Four flavonoids include genistein, baicalein, epicatechin gallate and epigallocatechin gallate had significant inhibitory effect on beta-Glu, and their binding mode with enzyme was further verified via the molecular docking analysis. In summary, the developed CE based beta-Glu-IMER is a reliable method for screening beta-Glu inhibitors from natural products.
Collapse
Affiliation(s)
- Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qiao-Qiao Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - De-Qiang Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
| |
Collapse
|
33
|
Immobilized Enzyme Reactors: an Overview of Applications in Drug Discovery from 2008 to 2018. Chromatographia 2018. [DOI: 10.1007/s10337-018-3663-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Takei T, Sakoguchi S, Yoshida M. Efficient mixing of microliter droplets as micro-bioreactors using paramagnetic microparticles manipulated by external magnetic field. J Biosci Bioeng 2018; 126:649-652. [DOI: 10.1016/j.jbiosc.2018.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022]
|
35
|
Hu X, Yang J, Chen C, Khan H, Guo Y, Yang L. Capillary electrophoresis-integrated immobilized enzyme microreactor utilizing single-step in-situ penicillinase-mediated alginate hydrogelation: Application for enzyme assays of penicillinase. Talanta 2018; 189:377-382. [DOI: 10.1016/j.talanta.2018.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 07/10/2018] [Indexed: 11/29/2022]
|
36
|
Li QQ, Yang FQ, Wang YZ, Wu ZY, Xia ZN, Chen H. Evaluation of thrombin inhibitory activity of catechins by online capillary electrophoresis-based immobilized enzyme microreactor and molecular docking. Talanta 2018; 185:16-22. [DOI: 10.1016/j.talanta.2018.03.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 01/09/2023]
|
37
|
Wu N, Wang S, Yang Y, Song J, Su P, Yang Y. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor. Int J Biol Macromol 2018; 113:38-44. [DOI: 10.1016/j.ijbiomac.2018.02.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 01/12/2023]
|
38
|
Raza R, Bai Y, Liu H. Development of a fast CE method for high throughput screening of ecto-5′-nucleotidase inhibitors. Electrophoresis 2018; 39:2612-2618. [DOI: 10.1002/elps.201800105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
39
|
Cheng M, Chen Z. Recent advances in screening of enzymes inhibitors based on capillary electrophoresis. J Pharm Anal 2018; 8:226-233. [PMID: 30140486 PMCID: PMC6104152 DOI: 10.1016/j.jpha.2018.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/31/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
Capillary electrophoresis with many advantages plays an important role in pharmaceutical analysis and drug screening. This review gives an overview on the recent advances in the developments and applications of capillary electrophoresis in the field of enzyme inhibitor screening. The period covers 2013 to 2017. Both the pre-capillary enzyme assays and in-capillary enzyme assays which include electrophoretically mediated microanalysis (EMMA) and immobilized enzyme microreactor (IMER) are summarized in this article.
Collapse
|
40
|
Liu DM, Chen J, Shi YP. Advances on methods and easy separated support materials for enzymes immobilization. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.03.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Monier M, Youssef I, Abdel-Latif D. Synthesis of photo-responsive chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Yang J, Hu X, Xu J, Liu X, Yang L. Single-Step In Situ Acetylcholinesterase-Mediated Alginate Hydrogelation for Enzyme Encapsulation in CE. Anal Chem 2018; 90:4071-4078. [DOI: 10.1021/acs.analchem.7b05353] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiqing Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Xiaotong Hu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Jia Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Xin Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, People’s Republic of China
| |
Collapse
|
43
|
Liu DM, Chen J, Shi YP. α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol 2017; 105:308-316. [DOI: 10.1016/j.ijbiomac.2017.07.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022]
|
44
|
Ma H, Bai Y, Li J, Chang YX. Screening bioactive compounds from natural product and its preparations using capillary electrophoresis. Electrophoresis 2017; 39:260-274. [DOI: 10.1002/elps.201700239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Huifen Ma
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Yun Bai
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| | - Jin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
| | - Yan-xu Chang
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin University of Traditional Chinese Medicine; Tianjin P. R. China
- Key Laboratory of Formula of Traditional Chinese Medicine (Tianjin University of Traditional Chinese Medicine); Ministry of Education; Tianjin P. R. China
| |
Collapse
|
45
|
Huang S, Paul P, Ramana P, Adams E, Augustijns P, Van Schepdael A. Advances in Capillary Electrophoretically Mediated Microanalysis for On-line Enzymatic and Derivatization Reactions. Electrophoresis 2017; 39:97-110. [DOI: 10.1002/elps.201700262] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Shengyun Huang
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis; Leuven Belgium
| | - Prasanta Paul
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis; Leuven Belgium
| | - Pranov Ramana
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis; Leuven Belgium
| | - Erwin Adams
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis; Leuven Belgium
| | - Patrick Augustijns
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Drug delivery and disposition; Leuven Belgium
| | - Ann Van Schepdael
- KU Leuven - University of Leuven; Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis; Leuven Belgium
| |
Collapse
|
46
|
Danish A, Lee SY, Müller CE. Quantification of green fluorescent protein-(GFP-) tagged membrane proteins by capillary gel electrophoresis. Analyst 2017; 142:3648-3655. [PMID: 28858361 DOI: 10.1039/c7an00981j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A fast and robust procedure for the quantification of GFP-tagged membrane proteins in cell homogenates was developed employing capillary gel electrophoresis coupled to laser-induced fluorescence detection (CGE-LIF). The new method was found to be highly sensitive and applicable to structurally diverse membrane proteins including synaptic vesicle protein 2A (SV2A), adenosine A2A receptor (A2AAR), and connexin 43 (Cx43). Quantification of SV2A and A2AAR using radioligand binding assays confirmed the results obtained with CGE-LIF. The CGE-LIF method showed significantly higher sensitivity as compared to fluorimetric measurement in a microplate. Importantly, CGE-LIF involves separation of the target proteins and their degradation products prior to quantification and thereby ensures specificity. We anticipate broad applicability of the method for any fluorophore-tagged protein.
Collapse
Affiliation(s)
- Azeem Danish
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| |
Collapse
|
47
|
Cheng M, Chen Z. Screening of tyrosinase inhibitors by capillary electrophoresis with immobilized enzyme microreactor and molecular docking. Electrophoresis 2016; 38:486-493. [PMID: 27862041 DOI: 10.1002/elps.201600367] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022]
Abstract
A new method for screening tyrosinase inhibitors from traditional Chinese medicines (TCMs) was successfully developed by capillary electrophoresis with reliable online immobilized enzyme microreactor (IMER). In addition, molecular docking study has been used for supporting inhibition interaction between enzyme and inhibitors. The IMER of tyrosinase was constructed at the outlet of the capillary by using glutaraldehyde as cross-linker. The parameters including enzyme reaction, separation of the substrate and product, and the performance of immobilized tyrosinase were investigated systematically. Because of using short-end injection procedure, the product and substrate were effectively separated within 2 min. The immobilized tyrosinase could remain 80% active for 30 days at 4°C. The Michaelis-Menten constant of tyrosinase was determined as 1.78 mM. Kojic acid, a known tyrosinase inhibitor, was used as a model compound for the validation of the inhibitors screening method. The half-maximal inhibitory concentration of kojic acid was 5.55 μM. The method was successfully applied for screening tyrosinase inhibitors from 15 compounds of TCM. Four compounds including quercetin, kaempferol, bavachinin, and bakuchiol were found having inhibitory potentials. The results obtained in this work were supported by molecular docking study.
Collapse
Affiliation(s)
- Mengxia Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R., China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R., China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R., China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R., China
| |
Collapse
|
48
|
Pokrzywnicka M, Kamiński J, Michalec M, Koncki R, Tymecki Ł. A multicommutated tester of bioreactors for flow analysis. Talanta 2016; 160:233-240. [DOI: 10.1016/j.talanta.2016.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 01/09/2023]
|
49
|
Enzyme and inhibition assay of urease by continuous monitoring of the ammonium formation based on capillary electrophoresis. Electrophoresis 2016; 37:2692-2698. [DOI: 10.1002/elps.201600162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 06/24/2016] [Accepted: 07/13/2016] [Indexed: 01/14/2023]
|
50
|
Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles. Appl Biochem Biotechnol 2016; 180:558-575. [DOI: 10.1007/s12010-016-2116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/05/2016] [Indexed: 01/20/2023]
|