1
|
Choi KR, Honig ML, Bühlmann P. Ion-Selective Potentiometry with Plasma-Initiated Covalent Attachment of Sensing Membranes onto Inert Polymeric Substrates and Carbon Solid Contacts. Anal Chem 2024; 96:4702-4708. [PMID: 38451778 DOI: 10.1021/acs.analchem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The physical delamination of the sensing membrane from underlying electrode bodies and electron conductors limits sensor lifetimes and long-term monitoring with ion-selective electrodes (ISEs). To address this problem, we developed two plasma-initiated graft polymerization methods that attach ionophore-doped polymethacrylate sensing membranes covalently to high-surface-area carbons that serve as the conducting solid contact as well as to polypropylene, poly(ethylene-co-tetrafluoroethylene), and polyurethane as the inert polymeric electrode body materials. The first strategy consists of depositing the precursor solution for the preparation of the sensing membranes onto the platform substrates with the solid contact carbon, followed by exposure to an argon plasma, which results in surface-grafting of the in situ polymerized sensing membrane. Using the second strategy, the polymeric platform substrate is pretreated with argon plasma and subsequently exposed to ambient oxygen, forming hydroperoxide groups on the surface. Those functionalities are then used for the initiation of photoinitiated graft polymerization of the sensing membrane. Attenuated total reflection-Fourier transform infrared spectroscopy, water contact angle measurements, and delamination tests confirm the covalent attachment of the in situ polymerized sensing membranes onto the polymeric substrates. Using membrane precursor solutions comprising, in addition to decyl methacrylate and a cross-linker, also 2-(diisopropylamino)ethyl methacrylate as a covalently attachable H+ ionophore and tetrakis(pentafluorophenyl)borate as ionic sites, both plasma-based fabrication methods produced electrodes that responded to pH in a Nernstian fashion, with the high selectivity expected for ionophore-based ISEs.
Collapse
Affiliation(s)
- Kwangrok R Choi
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Madeline L Honig
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Tian H, Ma J, Li Y, Xiao X, Zhang M, Wang H, Zhu N, Hou C, Ulstrup J. Electrochemical sensing fibers for wearable health monitoring devices. Biosens Bioelectron 2024; 246:115890. [PMID: 38048721 DOI: 10.1016/j.bios.2023.115890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023]
Abstract
Real-time monitoring of health conditions is an emerging strong issue in health care, internet information, and other strongly evolving areas. Wearable electronics are versatile platforms for non-invasive sensing. Among a variety of wearable device principles, fiber electronics represent cutting-edge development of flexible electronics. Enabled by electrochemical sensing, fiber electronics have found a wide range of applications, providing new opportunities for real-time monitoring of health conditions by daily wearing, and electrochemical fiber sensors as explored in the present report are a promising emerging field. In consideration of the key challenges and corresponding solutions for electrochemical sensing fibers, we offer here a timely and comprehensive review. We discuss the principles and advantages of electrochemical sensing fibers and fabrics. Our review also highlights the importance of electrochemical sensing fibers in the fabrication of "smart" fabric designs, focusing on strategies to address key issues in fiber-based electrochemical sensors, and we provide an overview of smart clothing systems and their cutting-edge applications in therapeutic care. Our report offers a comprehensive overview of current developments in electrochemical sensing fibers to researchers in the fields of wearables, flexible electronics, and electrochemical sensing, stimulating forthcoming development of next-generation "smart" fabrics-based electrochemical sensing.
Collapse
Affiliation(s)
- Hang Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Junlin Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark.
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Gentic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, PR China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Nan Zhu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
3
|
Chipangura YE, Spindler BD, Bühlmann P, Stein A. Design Criteria for Nanostructured Carbon Materials as Solid Contacts for Ion-Selective Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309778. [PMID: 38105339 DOI: 10.1002/adma.202309778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The ability to miniaturize ion-selective sensors that enable microsensor arrays and wearable sensor patches for ion detection in environmental or biological samples requires all-solid-state sensors with solid contacts for transduction of an ion activity into an electrical signal. Nanostructured carbon materials function as effective solid contacts for this purpose. They can also contribute to improved potential signal stability, reducing the need for frequent sensor calibration. In this Perspective, the structural features of various carbon-based solid contacts described in the literature and their respective abilities to reduce potential drift during long-term, continuous measurements are compared. These carbon materials include nanoporous carbons with various architectures, carbon nanotubes, carbon black, graphene, and graphite-based solid contacts. The effects of accessibility of ionophores, ionic sites, and other components of an ion-selective membrane to the internal or external carbon surfaces are discussed, because this impacts double-layer capacitance and potential drift. The effects of carbon composition on water-layer formation are also considered, which is another contributor to potential drift during long-term measurements. Recommendations regarding the selection of solid contacts and considerations for their characterization and testing in solid-contact ion-selective electrodes are provided.
Collapse
Affiliation(s)
- Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Brian D Spindler
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55454, USA
| |
Collapse
|
4
|
Chen R, Amirghasemi F, Ma H, Ong V, Tran A, Mousavi MPS. Toward Personalized Treatment of Depression: An Affordable Citalopram Test based on a Solid-Contact Potentiometric Electrode for at-Home Monitoring of the Antidepressant Dosage. ACS Sens 2023; 8:3943-3951. [PMID: 37734027 PMCID: PMC11446579 DOI: 10.1021/acssensors.3c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Citalopram (CTLP) is one of the most common antidepressants prescribed worldwide. It has a narrow therapeutic window and can cause severe toxicity and mortality if the dosage exceeds the safe level. Reports indicated that at-home monitoring of citalopram dosage considerably benefits the patients, yet there are no devices capable of such measurement of citalopram in biofluids. This work presents an affordable citalopram test for at-home and point-of-care monitoring of citalopram levels in urine, ensuring a safe and effective drug compliance. Our platform consists of a citalopram-selective yarn-based electrode (CTLP-SYE) that uses polymeric sensing membranes to provide valuable information about drug concentration in urine. CTLP-SYE is noninvasive and has a response time of fewer than 10 s. The fabricated electrode showed near-Nernstian behavior with a 52.3 mV/decade slope in citalopram hydrobromide solutions ranging from 0.5 μM to 1.0 mM, with a detection limit of 0.2 μM. Results also indicated that neither interfering ions nor pH affects electrode performance. We showed that CTLP-SYE could accurately and reproducibly measure citalopram in human urine (RSD 2.0 to 3.2%, error <12%) at clinically relevant concentrations. This work paves the way for the personalized treatment of depression and accessible companion diagnostics to improve treatment efficacy and safety.
Collapse
Affiliation(s)
- Ruitong Chen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ava Tran
- Mork Family Department of Chemical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Youssef K, Ullah A, Rezai P, Hasan A, Amirfazli A. Recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds. Mater Today Bio 2023; 22:100764. [PMID: 37674780 PMCID: PMC10477692 DOI: 10.1016/j.mtbio.2023.100764] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/16/2023] [Accepted: 08/05/2023] [Indexed: 09/08/2023] Open
Abstract
Chronic wounds are among the major healthcare issues affecting millions of people worldwide with high rates of morbidity, losses of limbs and mortality. Microbial infection in wounds is a severe problem that can impede healing of chronic wounds. Accurate, timely and early detection of infections, and real time monitoring of various wound healing biomarkers related to infection can be significantly helpful in the treatment and care of chronic wounds. However, clinical methodologies of periodic assessment and care of wounds require physical visit to wound care clinics or hospitals and time-consuming frequent replacement of wound dressing patches, which also often adversely affect the healing process. Besides, frequent replacements of wound dressings are highly expensive, causing a huge amount of burden on the national health care systems. Smart bandages have emerged to provide in situ physiochemical surveillance in real time at the wound site. These bandages integrate smart sensors to detect the condition of wound infection based on various parameters, such as pH, temperature and oxygen level in the wound which reduces the frequency of changing the wound dressings and its associated complications. These devices can continually monitor the healing process, paving the way for tailored therapy and improved quality of patient's life. In this review, we present an overview of recent advances in biosensors for real time monitoring of pH, temperature, and oxygen in chronic wounds in order to assess infection status. We have elaborated the recent progress in quantitative monitoring of several biomarkers important for assessing wounds infection status and its detection using smart biosensors. The review shows that real-time monitoring of wound status by quantifying specific biomarkers, such as pH, temperature and tissue oxygenation to significantly aid the treatment and care of chronic infected wounds.
Collapse
Affiliation(s)
- Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
6
|
Khaleque MA, Hossain MI, Ali MR, Bacchu MS, Saad Aly MA, Khan MZH. Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Adv 2023; 13:22973-22997. [PMID: 37529357 PMCID: PMC10387826 DOI: 10.1039/d3ra03440b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, there has been a rapid increase in demand for wearable sensors, particularly these tracking the surroundings, fitness, and health of people. Thus, selective detection in human body fluid is a demand for a smart lifestyle by quick monitoring of electrolytes, drugs, toxins, metabolites and biomolecules, proteins, and the immune system. In this review, these parameters along with the main features of the latest and mostly cited research work on nanostructured wearable electrochemical and biosensors are surveyed. This study aims to help researchers and engineers choose the most suitable selective and sensitive sensor. Wearable sensors have broad and effective sensing platforms, such as contact lenses, Google Glass, skin-patch, mouth gourds, smartwatches, underwear, wristbands, and others. For increasing sensor reliability, additional advancements in electrochemical and biosensor precision, stability in uncontrolled environments, and reproducible sample conveyance are necessary. In addition, the optimistic future of wearable electrochemical sensors in fields, such as remote and customized healthcare and well-being is discussed. Overall, wearable electrochemical and biosensing technologies hold great promise for improving personal healthcare and monitoring performance with the potential to have a significant impact on daily lives. These technologies enable real-time body sensing and the communication of comprehensive physiological information.
Collapse
Affiliation(s)
- M A Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M I Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M R Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M S Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University Shenzhen Guangdong 518055 China
| | - M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| |
Collapse
|
7
|
Wang P, Liu H, Zhou S, Chen L, Yu S, Wei J. A Review of the Carbon-Based Solid Transducing Layer for Ion-Selective Electrodes. Molecules 2023; 28:5503. [PMID: 37513374 PMCID: PMC10384130 DOI: 10.3390/molecules28145503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.
Collapse
Affiliation(s)
- Peike Wang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haipeng Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Shiqiang Zhou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lina Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
8
|
Hua Y, Guan M, Xia L, Chen Y, Mai J, Zhao C, Liao C. Highly Stretchable and Robust Electrochemical Sensor Based on 3D Graphene Oxide-CNT Composite for Detecting Ammonium in Sweat. BIOSENSORS 2023; 13:409. [PMID: 36979621 PMCID: PMC10046566 DOI: 10.3390/bios13030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Wearable electrochemical sensors have attracted tremendous attention and have been experiencing rapid growth in recent years. Sweat, one of the most suitable biological fluids for non-invasive monitoring, contains various chemical elements relating abundant information about human health conditions. In this work, a new type of non-invasive and highly stretchable potentiometric sweat sensor was developed based on all-solid-state ion-selective electrode (ISE) coupled with poly(dimethylsiloxane; PDMS) and polyurethane (PU). This highly stretchable composite of PDMS-PU allows the sensor to be robust, with the PDMS providing a flexible backbone and the PU enhancing the adhesion between the electrodes and the substrate. In addition, graphene-carbon nanotube (CNT) network 3D nanomaterials were introduced to modify the ion selective membrane (ISM) in order to increase the charge transfer activity of the ISEs, which also could minimize the formation of water layers on the electrode surface, as such nanomaterials are highly hydrophobic. As a result, the sensor demonstrated a wide detection range of NH4+ from 10-6 M to 10-1 M with high stability and sensitivity-showing a high sensitivity of 59.6 ± 1.5 mV/log [NH4+] and an LOD lower than 10-6 M. Under a strain of 40%, the sensor still showed a sensitivity of 42.7 ± 3.1 mV/log [NH4+]. The proposed highly stretchable and robust electrochemical sweat sensor provides a new choice for wearable-device-based personal daily healthcare management beyond hospital-centric healthcare monitoring.
Collapse
Affiliation(s)
- Yunzhi Hua
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Mingxiang Guan
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Linzhong Xia
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yu Chen
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Junhao Mai
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Cong Zhao
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Gallegos‐Cerda SD, Chanona‐Pérez JJ, Hernández‐Varela JD, López MC. Development of a facile aerogel‐based ion‐selective electrode using cellulose and carbon nanotubes as transducer materials for potentiometric application. J Appl Polym Sci 2023. [DOI: 10.1002/app.53891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Affiliation(s)
- Susana Dianey Gallegos‐Cerda
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av. Wilfrido Massieu s/n Mexico City Mexico
| | - José Jorge Chanona‐Pérez
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av. Wilfrido Massieu s/n Mexico City Mexico
| | - Josué David Hernández‐Varela
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av. Wilfrido Massieu s/n Mexico City Mexico
| | - Maximiliano Campos López
- Departamento de Ingeniería Bioquímica Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Av. Wilfrido Massieu s/n Mexico City Mexico
| |
Collapse
|
10
|
Gao F, Liu C, Zhang L, Liu T, Wang Z, Song Z, Cai H, Fang Z, Chen J, Wang J, Han M, Wang J, Lin K, Wang R, Li M, Mei Q, Ma X, Liang S, Gou G, Xue N. Wearable and flexible electrochemical sensors for sweat analysis: a review. MICROSYSTEMS & NANOENGINEERING 2023; 9:1. [PMID: 36597511 PMCID: PMC9805458 DOI: 10.1038/s41378-022-00443-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 06/10/2023]
Abstract
Flexible wearable sweat sensors allow continuous, real-time, noninvasive detection of sweat analytes, provide insight into human physiology at the molecular level, and have received significant attention for their promising applications in personalized health monitoring. Electrochemical sensors are the best choice for wearable sweat sensors due to their high performance, low cost, miniaturization, and wide applicability. Recent developments in soft microfluidics, multiplexed biosensing, energy harvesting devices, and materials have advanced the compatibility of wearable electrochemical sweat-sensing platforms. In this review, we summarize the potential of sweat for medical detection and methods for sweat stimulation and collection. This paper provides an overview of the components of wearable sweat sensors and recent developments in materials and power supply technologies and highlights some typical sensing platforms for different types of analytes. Finally, the paper ends with a discussion of the challenges and a view of the prospective development of this exciting field.
Collapse
Affiliation(s)
- Fupeng Gao
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Lichao Zhang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zheng Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zixuan Song
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Haoyuan Cai
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Junbo Wang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871 Beijing, China
| | - Jun Wang
- Beijing Shuimujiheng Biotechnology Company, 101102 Beijing, China
| | - Kai Lin
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Ruoyong Wang
- PLA Air Force Characteristic Medical Center, 100142 Beijing, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, 100029 Beijing, China
| | - Qian Mei
- CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences (CAS), 215163 Suzhou, China
| | - Xibo Ma
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, 100045 Beijing, China
| | - Guangyang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), 100190 Beijing, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, 100190 Beijing, China
| |
Collapse
|
11
|
Thakur D, Fatima T, Sharma P, Hasan MR, Malhotra N, Khanuja M, Shukla SK, Narang J. High-performance biosensing systems for diagnostics of Sexually transmitted disease – A strategic review. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Parween S, Asthana A, Nahar P. Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Tantawy MA, Elshabasy DA, Youssef NF, Amer SM. Stability indicating potentiometric method for the determination of palonosetron HCl using two different sensors. Sci Rep 2022; 12:12966. [PMID: 35902725 PMCID: PMC9334296 DOI: 10.1038/s41598-022-17349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
This paper presents a novel potentiometric approach for the determination of palonosetron HCl using two sensors; ionophore-free and ionophore-doped ones. The two sensors successfully determined the cited drug in the range of 1 × 10-5-1 × 10-2 M with respective Nernstian slopes of 54.9 ± 0.25 and 59.3 ± 0.16 mV/decade. Incorporating calix[8]arene as an ionophore resulted in a lower detection limit (LOD = 3.1 × 10-6 M) and enhanced selectivity when compared to the ionophore-free sensor (LOD = 7.9 × 10-6 M). This modification was also associated with faster response for the ionophore-doped sensor (response time = 20 s) compared to the ionophore-free one (response time = 30 s). The two sensors showed a stable response over a pH range of 3.0-8.0. They successfully determined palonosetron HCl in presence of its oxidative degradation products. They were also used for direct determination of the drug in commercially available parenteral solution without any interference from other dosage forms' additives.
Collapse
Affiliation(s)
- Mahmoud A Tantawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
- Chemistry Department, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt.
| | | | | | - Sawsan M Amer
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Tang Y, Zhong L, Wang W, He Y, Han T, Xu L, Mo X, Liu Z, Ma Y, Bao Y, Gan S, Niu L. Recent Advances in Wearable Potentiometric pH Sensors. MEMBRANES 2022; 12:504. [PMID: 35629830 PMCID: PMC9147059 DOI: 10.3390/membranes12050504] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/15/2023]
Abstract
Wearable sensors reflect the real-time physiological information and health status of individuals by continuously monitoring biochemical markers in biological fluids, including sweat, tears and saliva, and are a key technology to realize portable personalized medicine. Flexible electrochemical pH sensors can play a significant role in health since the pH level affects most biochemical reactions in the human body. pH indicators can be used for the diagnosis and treatment of diseases as well as the monitoring of biological processes. The performances and applications of wearable pH sensors depend significantly on the properties of the pH-sensitive materials used. At present, existing pH-sensitive materials are mainly based on polyaniline (PANI), hydrogen ionophores (HIs) and metal oxides (MOx). In this review, we will discuss the recent progress in wearable pH sensors based on these sensitive materials. Finally, a viewpoint for state-of-the-art wearable pH sensors and a discussion of their existing challenges are presented.
Collapse
Affiliation(s)
- Yitian Tang
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Wei Wang
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Ying He
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Tingting Han
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Longbin Xu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Xiaocheng Mo
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
- School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yingming Ma
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Yu Bao
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| | - Li Niu
- School of Civil Engineering, c/o Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.T.); (W.W.); (Y.H.); (T.H.); (L.X.); (X.M.); (Z.L.); (Y.M.); (Y.B.); (S.G.)
| |
Collapse
|
15
|
Sinha A, Dhanjai, Stavrakis AK, Stojanović GM. Textile-based electrochemical sensors and their applications. Talanta 2022; 244:123425. [PMID: 35397323 DOI: 10.1016/j.talanta.2022.123425] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Textile and their composite-based functional sensors are extensively acknowledged and preferred detection platforms in recent times. Developing suitable methodologies for fabricating textile sensors can be achieved either by integration of conductive fibers and yarns into textiles using technologies such as weaving, knitting and embroidery; or by functionalization of textile materials with conductive nanomaterials/inks using printing or coating methods. Textile materials are gaining enormous attention for fabricating soft lab-on-fabric devices due to their unique features such as high flexibility, wear and wash resistance, mechanical strength and promising sensing performances. Owing to these collective properties, textile-based electrochemical transducers are now showcasing rapid and accurate electrical measurements towards real time point-of-care diagnostics and environmental monitoring applications. The present review provides a brief overview of key progress made in the field of developing textile materials and their composites-based electrochemical sensors and biosensors in recent years where electrode configurations are specifically based on either natural or synthetic fabrics. Different ways to fabricate and functionalize textiles for their application in electrochemical analysis are briefly discussed. The review ends with a conclusive note focusing on the current challenges in the fabrication of textile-based stable electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Ankita Sinha
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia.
| | - Dhanjai
- BioSense Institute, Dr Zorana Đinđića 1, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Adrian K Stavrakis
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| |
Collapse
|
16
|
Tabasum H, Gill N, Mishra R, Lone S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv 2022; 12:8691-8707. [PMID: 35424805 PMCID: PMC8985157 DOI: 10.1039/d1ra07888g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
Electronic skins (e-skins) are soft (deformable and stretchable) state-of-the-art wearable devices that emulate the attributes of human skin and act as a Human-Machine Interface (HMI). Recent advances in e-skin for real-time detection of medical signals such as pulse, temperature, electromyogram (EMG), electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG), and other bioelectric signals laid down an intelligent foundation for early prediction and diagnosis of diseases with a motive of reducing the risk of the ailment reaching to the end stage. In particular, sweat testing has been employed in diverse applications ranging from medical diagnosis of diabetes, cystic fibrosis, tuberculosis, blood pressure, and autonomic neuropathy to evaluating fluid and electrolyte balance in athletes. Typically, sweat testing techniques are done by trained experts and require off-body measurements, which prevent individuals from de-coding health issues quickly and independently. With the onset of soft electronics, wearable sweat sensors overcome this disadvantage via in situ sweat measurements with real-time feedback, timely diagnosis, creating the potential for preventive care and treatment. Over the past few decades, wearable microfluidic-based e-skin sweat sensors have paved a new way, promising sensing interfaces that are highly compatible with arranging medical and electronic applications. The present review highlights the recent research carried out in the microfluidic-based wearable sweat sensors with a critical focus on real-time sensing of lactate, chloride, and glucose concentration; sweat rate, simultaneously with pH, and total sweat loss for preventive care, timely diagnosis, and point-of-care health and fitness monitoring.
Collapse
Affiliation(s)
- Humairah Tabasum
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Nikita Gill
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Rahul Mishra
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| | - Saifullah Lone
- Department of Chemistry, National Institute of Technology (NIT) Srinagar J&K India 190006 +91-60005221589
- iDREAM (Interdisciplinary Division for Renewable Energy & Advanced Materials), NIT Srinagar India 190006
| |
Collapse
|
17
|
Elashery SE, Attia NF, Oh H. Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni (II) ions detection in biological and environmental samples. Anal Chim Acta 2022; 1197:339518. [DOI: 10.1016/j.aca.2022.339518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
18
|
Zafar H, Channa A, Jeoti V, Stojanović GM. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:638. [PMID: 35062598 PMCID: PMC8781973 DOI: 10.3390/s22020638] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023]
Abstract
The incidence of diabetes is increasing at an alarming rate, and regular glucose monitoring is critical in order to manage diabetes. Currently, glucose in the body is measured by an invasive method of blood sugar testing. Blood glucose (BG) monitoring devices measure the amount of sugar in a small sample of blood, usually drawn from pricking the fingertip, and placed on a disposable test strip. Therefore, there is a need for non-invasive continuous glucose monitoring, which is possible using a sweat sensor-based approach. As sweat sensors have garnered much interest in recent years, this study attempts to summarize recent developments in non-invasive continuous glucose monitoring using sweat sensors based on different approaches with an emphasis on the devices that can potentially be integrated into a wearable platform. Numerous research entities have been developing wearable sensors for continuous blood glucose monitoring, however, there are no commercially viable, non-invasive glucose monitors on the market at the moment. This review article provides the state-of-the-art in sweat glucose monitoring, particularly keeping in sight the prospect of its commercialization. The challenges relating to sweat collection, sweat sample degradation, person to person sweat amount variation, various detection methods, and their glucose detection sensitivity, and also the commercial viability are thoroughly covered.
Collapse
Affiliation(s)
- Hima Zafar
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| | - Asma Channa
- Computer Science Department, University Politehnica of Bucharest, 060042 Bucharest, Romania;
- DIIES Department, Mediterranea University of Reggio Calabria, 89100 Reggio Calabria, Italy
| | - Varun Jeoti
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| | - Goran M. Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia; (V.J.); (G.M.S.)
| |
Collapse
|
19
|
Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water. SENSORS 2021; 22:s22010105. [PMID: 35009645 PMCID: PMC8747752 DOI: 10.3390/s22010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.
Collapse
|
20
|
Choi KR, Chen XV, Hu J, Bühlmann P. Solid-Contact pH Sensor with Covalent Attachment of Ionophores and Ionic Sites to a Poly(decyl methacrylate) Matrix. Anal Chem 2021; 93:16899-16905. [PMID: 34878238 DOI: 10.1021/acs.analchem.1c03985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With a view to improving the sensor lifetime, solid-contact ion-selective electrodes (ISEs) were prepared with a plasticizer-free and cross-linked poly(decyl methacrylate) matrix, to which only the ionic sites, only the ionophore, or both the ionic sites and ionophore were covalently attached. In earlier work with covalently attached ionophores or ionic sites, it was difficult to discount the presence of ionophores or ionic site impurities that were not covalently attached to the polymer backbone because the reagents used to introduce the ionophore or ionic sites had high hydrophobicities. In this work, we deliberately chose readily available hydrophilic reagents for the introduction of covalently attached H+ ionophores with tertiary amino groups and covalently attached sulfonate groups as ionic sites. This simplified the synthesis and made it possible to thoroughly remove ionophores and ionic sites not covalently attached to the polymer backbone. Our results confirm the expectation that hydrophobic ISE membranes with both covalently attached ionophores and ionic sites have impractically long response times. In contrast, ISEs with either covalently attached H+ ionophores or covalently attached ionic sites responded to pH with quick Nernstian responses and high selectivity. Both conventional plasticized poly(vinyl chloride) (PVC)-based ISEs and the new poly(decyl methacrylate) membranes were exposed to 90 °C heat for 2 h, 10% ethanol for 1 day, or undiluted blood serum for 5 days. In all three cases, the poly(decyl methacrylate) ISEs exhibited properties superior to conventional PVC-based ISEs, confirming the advantages of the covalent attachment.
Collapse
Affiliation(s)
- Kwangrok R Choi
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis Minnesota 55455, United States
| | - Xin V Chen
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis Minnesota 55455, United States
| | - Jinbo Hu
- Emerson Automation Solutions, 6021 Innovation Blvd, Shakopee Minnesota 55379, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis Minnesota 55455, United States
| |
Collapse
|
21
|
Raza T, Qu L, Khokhar WA, Andrews B, Ali A, Tian M. Progress of Wearable and Flexible Electrochemical Biosensors With the Aid of Conductive Nanomaterials. Front Bioeng Biotechnol 2021; 9:761020. [PMID: 34881233 PMCID: PMC8645837 DOI: 10.3389/fbioe.2021.761020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Conductive nanomaterials have recently gained a lot of interest due to their excellent physical, chemical, and electrical properties, as well as their numerous nanoscale morphologies, which enable them to be fabricated into a wide range of modern chemical and biological sensors. This study focuses mainly on current applications based on conductive nanostructured materials. They are the key elements in preparing wearable electrochemical Biosensors, including electrochemical immunosensors and DNA biosensors. Conductive nanomaterials such as carbon (Carbon Nanotubes, Graphene), metals and conductive polymers, which provide a large effective surface area, fast electron transfer rate and high electrical conductivity, are summarized in detail. Conductive polymer nanocomposites in combination with carbon and metal nanoparticles have also been addressed to increase sensor performance. In conclusion, a section on current challenges and opportunities in this growing field is forecasted at the end.
Collapse
Affiliation(s)
- Tahir Raza
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | | | - Boakye Andrews
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| | | | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao, China
| |
Collapse
|
22
|
Glasco DL, Ho NHB, Mamaril AM, Bell JG. 3D Printed Ion-Selective Membranes and Their Translation into Point-of-Care Sensors. Anal Chem 2021; 93:15826-15831. [PMID: 34812620 DOI: 10.1021/acs.analchem.1c03762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This technical note describes a method for fabricating ion-selective membranes (ISMs) for use in potentiometric sensing by using 3D printing technology. Here, we demonstrate the versatility of this approach by fabricating ISMs and investigating their performance in both liquid-contact and solid-contact ion-selective electrode (ISE) configurations. Using 3D printed ISMs resulted in highly stable (drift of ∼17 μV/h) and highly reproducible (<1 mV deviation) measurements. Furthermore, we show the seamless translation of these membranes into reliable, carbon fiber- and paper-based potentiometric sensors for applications at the point-of-care. To highlight the modifiability of this approach, we fabricated sensors for bilirubin, an important biomarker of liver health; benzalkonium, a common preservative used in the pharmaceutical industry; and potassium, an important blood electrolyte. The ability to mass produce sensors using 3D printing is an attractive advantage over conventional methods, while also decreasing the time and cost associated with sensor fabrication.
Collapse
Affiliation(s)
- Dalton L Glasco
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Nguyen H B Ho
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Art Matthew Mamaril
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Jeffrey G Bell
- Department of Chemistry, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
23
|
Sharma R, Geranpayehvaghei M, Ejeian F, Razmjou A, Asadnia M. Recent advances in polymeric nanostructured ion selective membranes for biomedical applications. Talanta 2021; 235:122815. [PMID: 34517671 DOI: 10.1016/j.talanta.2021.122815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Nano structured ion-selective membranes (ISMs) are very attractive materials for a wide range of sensing and ion separation applications. The present review focuses on the design principles of various ISMs; nanostructured and ionophore/ion acceptor doped ISMs, and their use in biomedical engineering. Applications of ISMs in the biomedical field have been well-known for more than half a century in potentiometric analysis of biological fluids and pharmaceutical products. However, the emergence of nanotechnology and sophisticated sensing methods assisted in miniaturising ion-selective electrodes to needle-like sensors that can be designed in the form of implantable or wearable devices (smartwatch, tattoo, sweatband, fabric patch) for health monitoring. This article provides a critical review of recent advances in miniaturization, sensing and construction of new devices over last decade (2011-2021). The designing of tunable ISM with biomimetic artificial ion channels offered intensive opportunities and innovative clinical analysis applications, including precise biosensing, controlled drug delivery and early disease diagnosis. This paper will also address the future perspective on potential applications and challenges in the widespread use of ISM for clinical use. Finally, this review details some recommendations and future directions to improve the accuracy and robustness of ISMs for biomedical applications.
Collapse
Affiliation(s)
- Rajni Sharma
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Marzieh Geranpayehvaghei
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; Centre for Technology in Water and Wastewater, University of Technology Sydney, New South Wales, Australia; UNESCO Center for Membrane Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
24
|
Rovira M, Fernández-Sánchez C, Jiménez-Jorquera C. Hybrid Technologies Combining Solid-State Sensors and Paper/Fabric Fluidics for Wearable Analytical Devices. BIOSENSORS 2021; 11:303. [PMID: 34562893 PMCID: PMC8467283 DOI: 10.3390/bios11090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The development of diagnostic tools for measuring a wide spectrum of target analytes, from biomarkers to other biochemical parameters in biological fluids, has experienced a significant growth in the last decades, with a good number of such tools entering the market. Recently, a clear focus has been put on miniaturized wearable devices, which offer powerful capabilities for real-time and continuous analysis of biofluids, mainly sweat, and can be used in athletics, consumer wellness, military, and healthcare applications. Sweat is an attractive biofluid in which different biomarkers could be noninvasively measured to provide rapid information about the physical state of an individual. Wearable devices reported so far often provide discrete (single) measurements of the target analytes, most of them in the form of a yes/no qualitative response. However, quantitative biomarker analysis over certain periods of time is highly demanded for many applications such as the practice of sports or the precise control of the patient status in hospital settings. For this, a feasible combination of fluidic elements and sensor architectures has been sought. In this regard, this paper shows a concise overview of analytical tools based on the use of capillary-driven fluidics taking place on paper or fabric devices integrated with solid-state sensors fabricated by thick film technologies. The main advantages and limitations of the current technologies are pointed out together with the progress towards the development of functional devices. Those approaches reported in the last decade are examined in detail.
Collapse
Affiliation(s)
- Meritxell Rovira
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cecilia Jiménez-Jorquera
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| |
Collapse
|
25
|
Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zhao C, Li X, Wu Q, Liu X. A thread-based wearable sweat nanobiosensor. Biosens Bioelectron 2021; 188:113270. [PMID: 34074569 DOI: 10.1016/j.bios.2021.113270] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/03/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
Non-invasive wearable biosensors provide an efficient way of continuously quantifying a person's biochemical parameters, and are highly valuable for predicting human physiological status and flagging risks and illness. Commercial wearable sensors are available for tracking a user's physical activities, but few could monitor user's health conditions through sweat analysis. Electronic textile (e-textile) biosensors enable new applications in this scenario because of its high flexibility/wearability, low cost, high level of electronic integration, and unobtrusiveness. However, challenges in developing e-textile sweat biosensors remain in the production of textile-based biosensing materials, skin interfacing design, and embedded data acquisition/transmission. Here, we propose a novel wearable electrochemical sweat biosensor based on conductive threads decorated with zinc-oxide nanowires (ZnO NWs) and apply it to detecting lactate and sodium in perspiration during physical exercise. The sweat biosensor is fully integrated with signal readout and data communication circuits in a wearable headband and is capable of monitoring human sweat accurately and wirelessly. We achieved the detection of lactate and sodium in linear ranges of 0-25 mM and 0.1-100 mM and limits of detection of 3.61 mM and 0.16 mM, respectively, which cover the clinically-relevant ranges of lactate and sodium in human sweat. We demonstrated accurate lactate and sodium measurements in human sweat from a healthy volunteer, and the results are in good agreement with standard test results. We also conducted on-body measurements on the same human volunteer during exercise and confirmed the robustness of the signal readout during body movements and the excellent accuracy of the testing results.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Canada; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, China
| | - Qiyang Wu
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada; Department of Mechanical Engineering, McGill University, Canada
| | - Xinyu Liu
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
27
|
Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi H, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-Nooshabadi M, Asrami PN, Al-Othman A. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron 2021; 184:113252. [PMID: 33895688 DOI: 10.1016/j.bios.2021.113252] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Potentiometric-based biosensors have the potential to advance the detection of several biological compounds and help in early diagnosis of various diseases. They belong to the portable analytical class of biosensors for monitoring biomarkers in the human body. They contain ion-sensitive membranes sensors can be used to determine potassium, sodium, and chloride ions activity while being used as a biomarker to gauge human health. The potentiometric based ion-sensitive membrane systems can be coupled with various techniques to create a sensitive tool for the fast and early detection of cancer biomarkers and other critical biological compounds. This paper discusses the application of potentiometric-based biosensors and classifies them into four major categories: photoelectrochemical potentiometric biomarkers, potentiometric biosensors amplified with molecular imprinted polymer systems, wearable potentiometric biomarkers and light-addressable potentiometric biosensors. This review demonstrated the development of several innovative biosensor-based techniques that could potentially provide reliable tools to test biomarkers. Some challenges however remain, but these can be removed by coupling techniques to maximize the testing sensitivity.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Jalal Rouhi
- Faculty of Physics, University of Tabriz, Tabriz, 51566, Iran
| | - Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Shilpi Agarwal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vinod K Gupta
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775 Arica, Chile
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal.
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | | | | | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| |
Collapse
|
28
|
Affiliation(s)
- Jia-wen Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yuan-yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Gualandi I, Tessarolo M, Mariani F, Possanzini L, Scavetta E, Fraboni B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers (Basel) 2021; 13:894. [PMID: 33799437 PMCID: PMC8000821 DOI: 10.3390/polym13060894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/26/2023] Open
Abstract
Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic.
Collapse
Affiliation(s)
- Isacco Gualandi
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Federica Mariani
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Luca Possanzini
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Erika Scavetta
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| |
Collapse
|
30
|
Influence of solid electrolyte upon the repeatability and reproducibility of all-solid-state ion-selective electrodes with inorganic insertion material paste. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Melt Spinning of Highly Stretchable, Electrically Conductive Filament Yarns. Polymers (Basel) 2021; 13:polym13040590. [PMID: 33669330 PMCID: PMC7920307 DOI: 10.3390/polym13040590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Electrically conductive fibers are required for various applications in modern textile technology, e.g., the manufacturing of smart textiles and fiber composite systems with textile-based sensor and actuator systems. According to the state of the art, fine copper wires, carbon rovings, or metallized filament yarns, which offer very good electrical conductivity but low mechanical elongation capabilities, are primarily used for this purpose. However, for applications requiring highly flexible textile structures, as, for example, in the case of wearable smart textiles and fiber elastomer composites, the development of electrically conductive, elastic yarns is of great importance. Therefore, highly stretchable thermoplastic polyurethane (TPU) was compounded with electrically conductive carbon nanotubes (CNTs) and subsequently melt spun. The melt spinning technology had to be modified for the processing of highly viscous TPU–CNT compounds with fill levels of up to 6 wt.% CNT. The optimal configuration was achieved at a CNT content of 5 wt.%, providing an electrical resistance of 110 Ωcm and an elongation at break of 400%.
Collapse
|
32
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
33
|
Aldea A, Matei E, Leote RJ, Rau I, Enculescu I, Diculescu VC. Ionophore- Nafion™ modified gold-coated electrospun polymeric fibers electrodes for determination of electrolytes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Peng B, Zhao F, Ping J, Ying Y. Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002681. [PMID: 32893485 DOI: 10.1002/smll.202002681] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Wearable sensors have gained much attention due to their potential in personal health monitoring in a timely, cost-effective, easy-operating, and noninvasive way. In recent studies, nanomaterials have been employed in wearable sensors to improve the sensing performance in view of their excellent properties. Here, focus is mainly on the nanomaterial-enabled wearable sensors and their latest advances in personal health monitoring. Different kinds of nanomaterials used in wearable sensors, such as metal nanoparticles, carbon nanomaterials, metallic nanomaterials, hybrid nanocomposites, and bio-nanomaterials, are reviewed. Then, the progress of nanomaterial-based wearable sensors in personal health monitoring, including the detection of ions and molecules in body fluids and exhaled breath, physiological signals, and emotion parameters, is discussed. Furthermore, the future challenges and opportunities of nanomaterial-enabled wearable sensors are discussed.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fengnian Zhao
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
35
|
Possanzini L, Decataldo F, Mariani F, Gualandi I, Tessarolo M, Scavetta E, Fraboni B. Textile sensors platform for the selective and simultaneous detection of chloride ion and pH in sweat. Sci Rep 2020; 10:17180. [PMID: 33057081 PMCID: PMC7560666 DOI: 10.1038/s41598-020-74337-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
The development of wearable sensors, in particular fully-textile ones, is one of the most interesting open challenges in bioelectronics. Several and significant steps forward have been taken in the last decade in order to achieve a compact, lightweight, cost-effective, and easy to wear platform for healthcare and sport activities real-time monitoring. We have developed a fully textile, multi-thread biosensing platform that can detect different bioanalytes simultaneously without interference, and, as an example, we propose it for testing chloride ions (Cl-) concentration and pH level. The textile sensors are simple threads, based on natural and synthetic fibers, coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and properly functionalized with either a nano-composite material or a chemical sensitive dye to obtain Cl- and pH selective sensing functionality, respectively. The single-thread sensors show excellent sensitivity, reproducibility, selectivity, long term stability and the ability to work with small volumes of solution. The performance of the developed textile devices is demonstrated both in buffer solution and in artificial human perspiration to perform on-demand and point-of-care epidermal fluids analysis. The possibility to easily knit or sew the thread sensors into fabrics opens up a new vision for a textile wearable multi-sensing platform achievable in the near future.
Collapse
Affiliation(s)
- Luca Possanzini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.
| | - Francesco Decataldo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| |
Collapse
|
36
|
Xu J, Zhang Z, Gan S, Gao H, Kong H, Song Z, Ge X, Bao Y, Niu L. Highly Stretchable Fiber-Based Potentiometric Ion Sensors for Multichannel Real-Time Analysis of Human Sweat. ACS Sens 2020; 5:2834-2842. [PMID: 32854495 DOI: 10.1021/acssensors.0c00960] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wearable potentiometric ion sensors are attracting attention for real-time ion monitoring in biological fluids. One of the key challenges lies in keeping the analytical performances under a stretchable state. Herein, we report a highly stretchable fiber-based ion-selective electrode (ISE) prepared by coating an ion-selective membrane (ISM) on a stretchable gold fiber electrode. The fiber ISE ensures high stretchability up to 200% strain with only 2.1% increase in resistance of the fiber electrode. Owing to a strong attachment between the ISM and gold fiber electrode substrate, the ISE discloses favorable stability and potential repeatability. The Nernst slope of the ion response fluctuates from 59.2 to 57.4 mV/dec between 0 and 200% strain. Minor fluctuation of the intercept (E0) (±4.97 mV) also results. The ISE can endure 1000 cycles at the maximum stretch. Sodium, chloride, and pH fiber sensors were fabricated and integrated into a hairband for real-time analysis of human sweat. The result displays a high accuracy compared with ex situ analysis. The integrated sensors were calibrated before and just after on-body measurements, and they offer reliable results for sweat analysis.
Collapse
Affiliation(s)
- Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Zhen Zhang
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shiyu Gan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Han Gao
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Huijun Kong
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhongqian Song
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaoming Ge
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yu Bao
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| |
Collapse
|
37
|
Lyu Y, Gan S, Bao Y, Zhong L, Xu J, Wang W, Liu Z, Ma Y, Yang G, Niu L. Solid-Contact Ion-Selective Electrodes: Response Mechanisms, Transducer Materials and Wearable Sensors. MEMBRANES 2020; 10:membranes10060128. [PMID: 32585903 PMCID: PMC7345918 DOI: 10.3390/membranes10060128] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.
Collapse
Affiliation(s)
- Yan Lyu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Shiyu Gan
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- Correspondence: (S.G.); (L.N.)
| | - Yu Bao
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Lijie Zhong
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Wang
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Zhenbang Liu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Yingming Ma
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
| | - Guifu Yang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China;
| | - Li Niu
- School of Civil Engineering, c/o Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (Y.L.); (Y.B.); (L.Z.); (W.W.); (Z.L.); (Y.M.)
- MOE Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
- Correspondence: (S.G.); (L.N.)
| |
Collapse
|
38
|
Anderson EL, Chopade SA, Spindler B, Stein A, Lodge TP, Hillmyer MA, Bühlmann P. Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Anal Chem 2020; 92:7621-7629. [PMID: 32351106 DOI: 10.1021/acs.analchem.0c00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous ion-selective and reference electrodes have been developed over the years. Following the need for point-of-care and wearable sensors, designs have transitioned recently from bulky devices with an aqueous inner filling solution to planarizable solid-contact electrodes. However, unless the polymeric sensing and reference membranes are held in place mechanically, delamination of these membranes from the underlying solid to which they adhere physically limits sensor lifetime. Even minor external mechanical stress or thermal expansion can result in membrane delamination and, thereby, device failure. To address this problem, we designed a sensing platform based on poly(ethylene terephthalate) substrates to which polyacrylate-based sensing and polymethacrylate-based reference membranes are attached covalently. Ion-selective membranes with covalently attached or freely dissolved ionophore- and ionic-liquid-doped reference membranes can be directly photopolymerized onto surface-functionalized poly(ethylene terephthalate), resulting in the formation of covalent bonds between the underlying substrate and the attached membranes. H+- and K+-selective electrodes thus prepared exhibit highly selective responses with the theoretically expected (Nernstian) response slope, and reference electrodes provide sample-independent reference potentials over a wide range of electrolyte concentrations. Even repeated mechanical stress does not result in the delamination of the sensing and reference membranes, leading to electrodes with much improved long-term performance. As demonstrated for poly(ethylene-co-cyclohexane-1,4-dimethanol terephthalate) (PETG), this approach may be expanded to a wide range of other polyester, polyamide, and polyurethane platform materials. Covalent attachment of sensing and reference membranes to an inert plastic platform material is a very promising approach to a problem that has plagued the field of ion-selective electrodes and field effect transistors for over 30 years.
Collapse
|
39
|
Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020; 10:8594-8617. [PMID: 35496561 PMCID: PMC9050124 DOI: 10.1039/d0ra00016g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particularly important as the pH levels influence most chemical and biological reactions in materials, life and environmental sciences. In this review, we discuss the most recent developments in wearable electrochemical potentiometric pH sensors, covering the key topics such as (i) suitability of potentiometric pH sensors in wearable systems; (ii) designs of flexible potentiometric pH sensors, which may vary with target applications; (iii) materials for various components of the sensor such as substrates, reference and sensitive electrode; (iv) applications of flexible potentiometric pH sensors, and (v) the challenges relating to flexible potentiometric pH sensors.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Saoirse Dervin
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| |
Collapse
|
40
|
Textile-based non-invasive lithium drug monitoring: A proof-of-concept study for wearable sensing. Biosens Bioelectron 2020; 150:111897. [DOI: 10.1016/j.bios.2019.111897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/21/2022]
|
41
|
Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902670. [PMID: 31403227 DOI: 10.1002/adma.201902670] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Smart systems are those that display autonomous or collaborative functionalities, and include the ability to sense multiple inputs, to respond with appropriate operations, and to control a given situation. In certain circumstances, it is also of great interest to retain flexible, stretchable, portable, wearable, and/or implantable attributes in smart electronic systems. Among the promising candidate smart materials, carbon nanotubes (CNTs) exhibit excellent electrical and mechanical properties, and structurally fabricated CNT-based fibers and yarns with coil and twist further introduce flexible and stretchable properties. A number of notable studies have demonstrated various functions of CNT yarns, including sensors, actuators, and energy storage. In particular, CNT yarns can operate as flexible electronic sensors and electrodes to monitor strain, temperature, ionic concentration, and the concentration of target biomolecules. Moreover, a twisted CNT yarn enables strong torsional actuation, and coiled CNT yarns generate large tensile strokes as an artificial muscle. Furthermore, the reversible actuation of CNT yarns can be used as an energy harvester and, when combined with a CNT supercapacitor, has promoted the next-generation of energy storage systems. Here, progressive advances of CNT yarns in electrical sensing, actuation, and energy storage are reported, and the future challenges in smart electronic systems considered.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sung Min Kim
- Department of Physical Education, Department of Active Aging Industry, Hanyang University, Seoul, 04763, South Korea
| | - Geoffrey M Spinks
- Australian Institute for Innovative Materials, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
42
|
Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 2020; 49:4405-4465. [DOI: 10.1039/c9cs00587k] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article presents a comprehensive overview of recent progress in the design and applications of solid-contact ion-selective electrodes (SC-ISEs).
Collapse
Affiliation(s)
- Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing
- School of Biosystems Engineering and Food Science
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
43
|
Baez JF, Compton M, Chahrati S, Cánovas R, Blondeau P, Andrade FJ. Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide. Anal Chim Acta 2019; 1097:204-213. [PMID: 31910961 DOI: 10.1016/j.aca.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.
Collapse
Affiliation(s)
- Jhonattan F Baez
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Matthew Compton
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Sylviane Chahrati
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Rocío Cánovas
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira I Virgili (URV), Campus Sescelades, C/. Marcel·lí Domingo 1, Tarragona, 43007, Spain.
| |
Collapse
|
44
|
Cánovas R, Padrell Sánchez S, Parrilla M, Cuartero M, Crespo GA. Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing. ACS Sens 2019; 4:2524-2535. [PMID: 31448593 DOI: 10.1021/acssensors.9b01322] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present the most complete study to date comprising in vitro cytotoxicity tests of ion-selective membranes (ISMs) in terms of cell viability, proliferation, and adhesion assays with human dermal fibroblasts. ISMs were prepared with different types of plasticizers and ionophores to be tested in combination with assays that focus on the medium-term and long-term leaching of compounds. Furthermore, the ISMs were prepared in different configurations considering (i) inner-filling solution-type electrodes, (ii) all-solid-state electrodes based on a conventional drop-cast of the membrane, (iii) peeling after the preparation of a wearable sensor, and (iv) detachment from a microneedle-based sensor, thus covering a wide range of membrane shapes. One of the aims of this study, other than the demonstration of the biocompatibility of various ISMs and materials tested herein, is to create an awareness in the scientific community surrounding the need to perform biocompatibility assays during the very first steps of any sensor development with an intended biomedical application. This will foster meeting the requirements for subsequent on-body application of the sensor and avoiding further problems during massive validations toward the final in vivo use and commercialization of such devices.
Collapse
Affiliation(s)
- Rocío Cánovas
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Sara Padrell Sánchez
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, SE-141 86 Stockholm, Sweden
| | - Marc Parrilla
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gastón A. Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| |
Collapse
|
45
|
Stekolshchikova AA, Radaev AV, Orlova OY, Nikolaev KG, Skorb EV. Thin and Flexible Ion Sensors Based on Polyelectrolyte Multilayers Assembled onto the Carbon Adhesive Tape. ACS OMEGA 2019; 4:15421-15427. [PMID: 31572842 PMCID: PMC6761682 DOI: 10.1021/acsomega.9b01464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
A novel flexible ion-selective sensor for potassium and sodium detection was proposed. Flexible ion-selective electrodes with pseudo-liquid internal solution on contrary to the system with a solid contact provided a more stable analytical signal. Such advantages were achieved because of polyelectrolyte (PEI/PSS) layers adsorption on the conduct substrate with a layer-by-layer technique. Such an approach demonstrated that ion-selective electrodes save sensitivity with Nernstian dependence: 56.2 ± 1.4 mV/dec a Na+ and 56.3 ± 1.9 mV/dec a K+ , as well as a fast time of response for potassium (5 s) and sodium (8 s) was shown. The sensing platform proposed demonstrates a better time of response and is close to the Nernstian value of sensitivity with a sensor low cost. The results proposed confirm a pseudo-liquid junction for the ion-selective electrode. Biocompatibility of an ion-selective sensing platform was demonstrated at potassium potentiometric measurements in Escherichia coli biofilms. Potassium levels in a biofilm were measured with potentiometry and showed agreement with the previous results.
Collapse
Affiliation(s)
| | - Anton V. Radaev
- Chromas
Core Facility, St. Petersburg University, Research Park 2/5, Oranienbaum Highway, St. Petersburg 198504, Russian Federation
| | - Olga Yu. Orlova
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| | | | - Ekaterina V. Skorb
- ITMO
University, Lomonosova str. 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
46
|
Legner C, Kalwa U, Patel V, Chesmore A, Pandey S. Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. SENSORS AND ACTUATORS A-PHYSICAL 2019. [DOI: 10.1016/j.sna.2019.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Mahmud MS, Fang H, Carreiro S, Wang H, Boyer EW. Wearables technology for drug abuse detection: A survey of recent advancement. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.smhl.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Parrilla M, Guinovart T, Ferré J, Blondeau P, Andrade FJ. A Wearable Paper-Based Sweat Sensor for Human Perspiration Monitoring. Adv Healthc Mater 2019; 8:e1900342. [PMID: 31293084 DOI: 10.1002/adhm.201900342] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2019] [Indexed: 11/10/2022]
Abstract
The fabrication and performance of a wearable paper-based chemiresistor for monitoring perspiration dynamics (sweat rate and sweat loss) are detailed. A novel approach is introduced to measure the amount of aqueous solution in the order of microliters delivered to the sensor by monitoring a linear change in resistance along a conducting paper. The wearable sensor is based on a single-walled carbon nanotubes and surfactant (sodium dodecylbenzenesulfonate) nanocomposite integrated within cellulose fibers of a conventional filter paper. The analytical performance and the sensing mechanism are presented. Monitoring sweat loss in the human body while exercising is demonstrated using the integration of a wireless reader and a user-friendly interface. By addressing the barriers of cost, simplicity, and the truly in situ demanding measurements, this unique wearable sensor is expected to serve in the future in many different applications involving the on-body detection of biofluids, such as a monitoring tool of dehydration levels for athletes as well as a tool for enhancing the sport performance by providing an accurate recovery of the hydration status in daily exercises.
Collapse
Affiliation(s)
- Marc Parrilla
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Tomàs Guinovart
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Jordi Ferré
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
- Kamleon Ventures SL Av. Països Catalans 18 43007 Tarragona Spain
| | - Pascal Blondeau
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| | - Francisco J. Andrade
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili (URV) C/Marcel·l. Domingo 1 43007 Tarragona Spain
| |
Collapse
|
49
|
Diculescu VC, Beregoi M, Evanghelidis A, Negrea RF, Apostol NG, Enculescu I. Palladium/palladium oxide coated electrospun fibers for wearable sweat pH-sensors. Sci Rep 2019; 9:8902. [PMID: 31222160 PMCID: PMC6586619 DOI: 10.1038/s41598-019-45399-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023] Open
Abstract
The work describes the development of a flexible, hydrogel embedded pH-sensor that can be integrated in inexpensive wearable and non-invasive devices at epidermal level for electrochemical quantification of H+ ions in sweat. Such a device can be useful for swift, real time diagnosis and for monitoring specific conditions. The sensors’ working electrodes are flexible poly(methyl methacrylate) electrospun fibers coated with a thin gold layer and electrochemically functionalized with nanostructured palladium/palladium oxide. The response to H+ ions is investigated by cyclic voltammetry and electrochemical impedance spectroscopy while open circuit potential measurements show a sensitivity of aprox. −59 mV per pH unit. The modification of the sensing interface upon basic and acid treatment is characterized by scanning and transmission electron microscopy and the chemical composition by X-ray photoelectron spectroscopy. In order to demonstrate the functionality of the pH-sensor at epidermal level, as a wearable device, the palladium/palladium oxide working electrode and silver/silver chloride reference electrode are embedded within a pad of polyacrylamide hydrogel and measurements in artificial sweat over a broad pH range were performed. Sensitivity up to −28 mV/pH unit, response time below 30 s, temperature dependence of approx. 1 mV/°C as well as the minimum volume to which the sensor responses of 250 nanoliters were obtained for this device. The proposed configuration represents a viable alternative making use of low-cost and fast fabrication processes and materials.
Collapse
Affiliation(s)
- Victor C Diculescu
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania.
| | - Mihaela Beregoi
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania
| | - Alexandru Evanghelidis
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania.,University of Bucharest, Faculty of Physics, 405 Atomistilor Street, 077125, Magurele, Romania
| | - Raluca F Negrea
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania
| | - Nicoleta G Apostol
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics Bucharest, Magurele, 077125, Romania.
| |
Collapse
|
50
|
Meng L, Turner APF, Mak WC. Soft and flexible material-based affinity sensors. Biotechnol Adv 2019; 39:107398. [PMID: 31071431 DOI: 10.1016/j.biotechadv.2019.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 01/11/2023]
Abstract
Recent advances in biosensors and point-of-care (PoC) devices are poised to change and expand the delivery of diagnostics from conventional lateral-flow assays and test strips that dominate the market currently, to newly emerging wearable and implantable devices that can provide continuous monitoring. Soft and flexible materials are playing a key role in propelling these trends towards real-time and remote health monitoring. Affinity biosensors have the capability to provide for diagnosis and monitoring of cancerous, cardiovascular, infectious and genetic diseases by the detection of biomarkers using affinity interactions. This review tracks the evolution of affinity sensors from conventional lateral-flow test strips to wearable/implantable devices enabled by soft and flexible materials. Initially, we highlight conventional affinity sensors exploiting membrane and paper materials which have been so successfully applied in point-of-care tests, such as lateral-flow immunoassay strips and emerging microfluidic paper-based devices. We then turn our attention to the multifarious polymer designs that provide both the base materials for sensor designs, such as PDMS, and more advanced functionalised materials that are capable of both recognition and transduction, such as conducting and molecularly imprinted polymers. The subsequent content discusses wearable soft and flexible material-based affinity sensors, classified as flexible and skin-mountable, textile materials-based and contact lens-based affinity sensors. In the final sections, we explore the possibilities for implantable/injectable soft and flexible material-based affinity sensors, including hydrogels, microencapsulated sensors and optical fibers. This area is truly a work in progress and we trust that this review will help pull together the many technological streams that are contributing to the field.
Collapse
Affiliation(s)
- Lingyin Meng
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | | | - Wing Cheung Mak
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|