1
|
Lin J, Chen S, Zhang C, Liao J, Chen Y, Deng S, Mao Z, Zhang T, Tian N, Song Y, Zeng T. Recent advances in microfluidic technology of arterial thrombosis investigations. Platelets 2024; 35:2316743. [PMID: 38390892 DOI: 10.1080/09537104.2024.2316743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Microfluidic technology has emerged as a powerful tool in studying arterial thrombosis, allowing researchers to construct artificial blood vessels and replicate the hemodynamics of blood flow. This technology has led to significant advancements in understanding thrombosis and platelet adhesion and aggregation. Microfluidic models have various types and functions, and by studying the fabrication methods and working principles of microfluidic chips, applicable methods can be selected according to specific needs. The rapid development of microfluidic integrated system and modular microfluidic system makes arterial thrombosis research more diversified and automated, but its standardization still needs to be solved urgently. One key advantage of microfluidic technology is the ability to precisely control fluid flow in microchannels and to analyze platelet behavior under different shear forces and flow rates. This allows researchers to study the physiological and pathological processes of blood flow, shedding light on the underlying mechanisms of arterial thrombosis. In conclusion, microfluidic technology has revolutionized the study of arterial thrombosis by enabling the construction of artificial blood vessels and accurately reproducing hemodynamics. In the future, microfluidics will place greater emphasis on versatility and automation, holding great promise for advancing antithrombotic therapeutic and prophylactic measures.
Collapse
Affiliation(s)
- Jingying Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Chengdu Shangjin Nanfu Hospital/Shangjin Branch of West China Hospital, Sichuan University, Chengdu, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuemei Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shanying Deng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhigang Mao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tonghao Zhang
- Department of Statistics, University of Virginia, Charlottesville, USA
| | - Na Tian
- Anesthesiology Department, Qingdao Eighth People's Hospital, Qingdao, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Peng D, Sun S, Zhao M, Zhan L, Wang X. Current Advances in Nanomaterials Affecting Functions and Morphology of Platelets. J Funct Biomater 2024; 15:188. [PMID: 39057309 PMCID: PMC11278457 DOI: 10.3390/jfb15070188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanomaterials have been extensively used in the biomedical field due to their unique physical and chemical properties. They promise wide applications in the diagnosis, prevention, and treatment of diseases. Nanodrugs are generally transported to target tissues or organs by coupling targeting molecules or enhanced permeability and retention effect (EPR) passively. As intravenous injection is the most common means of administration of nanomedicine, the transport process inevitably involves the interactions between nanoparticles (NPs) and blood cells. Platelets are known to not only play a critical role in normal coagulation by performing adhesion, aggregation, release, and contraction functions, but also be associated with pathological thrombosis, tumor metastasis, inflammation, and immune reactions, making it necessary to investigate the effects of NPs on platelet function during transport, particularly the way in which their physical and chemical properties determine their interaction with platelets and the underlying mechanisms by which they activate and induce platelet aggregation. However, such data are lacking. This review is intended to summarize the effects of NPs on platelet activation, aggregation, release, and apoptosis, as well as their effects on membrane proteins and morphology in order to shed light on such key issues as how to reduce their adverse reactions in the blood system, which should be taken into consideration in NP engineering.
Collapse
Affiliation(s)
| | | | | | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; (D.P.); (S.S.); (M.Z.)
| |
Collapse
|
3
|
Lovegrove JT, Kent B, Förster S, Garvey CJ, Stenzel MH. The flow of anisotropic nanoparticles in solution and in blood. EXPLORATION (BEIJING, CHINA) 2023; 3:20220075. [PMID: 38264690 PMCID: PMC10742203 DOI: 10.1002/exp.20220075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 01/25/2024]
Abstract
The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.
Collapse
Affiliation(s)
- Jordan Thomas Lovegrove
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | - Ben Kent
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | | | - Christopher J. Garvey
- Forschungsneutronenquelle Heinz Maier‐Leibnitz FRM II and Physik Department E13Technische Universität MünchenGarchingGermany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Stavrou M, Phung N, Grimm J, Andreou C. Organ-on-chip systems as a model for nanomedicine. NANOSCALE 2023; 15:9927-9940. [PMID: 37254663 PMCID: PMC10619891 DOI: 10.1039/d3nr01661g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomedicine is giving rise to increasing numbers of successful drugs, including cancer treatments, molecular imaging agents, and novel vaccine formulations. However, traditionally available model systems offer limited clinical translation and, compared to the number of preclinical studies, the approval rate of nanoparticles (NPs) for clinical use remains disappointingly low. A new paradigm of modeling biological systems on microfluidic chips has emerged in the last decade and is being gradually adopted by the nanomedicine community. These systems mimic tissues, organs, and diseases like cancer, on devices with small physical footprints and complex geometries. In this review, we report studies that used organ-on-chip approaches to study the interactions of NPs with biological systems. We present examples of NP toxicity studies, studies using biological NPs such as viruses, as well as modeling biological barriers and cancer on chip. Organ-on-chip systems present an exciting opportunity and can provide a renewed direction for the nanomedicine community.
Collapse
Affiliation(s)
- Marios Stavrou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| | - Ngan Phung
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Jan Grimm
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, USA
| | - Chrysafis Andreou
- University of Cyprus, Department of Electrical and Computer Engineering, Nicosia, Cyprus.
| |
Collapse
|
5
|
Tan Y, Yu D, Feng J, You H, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Toxicity evaluation of silica nanoparticles for delivery applications. Drug Deliv Transl Res 2023:10.1007/s13346-023-01312-z. [PMID: 37024610 DOI: 10.1007/s13346-023-01312-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2023] [Indexed: 04/08/2023]
Abstract
Silica nanoparticles (SiNPs) are being explored as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics. To translate laboratory innovation into clinical application, their potential toxicity has been of great concern. This review attempts to comprehensively summarize the existing literature on the toxicity assessment of SiNPs. The current data suggest that the composition of SiNPs, their physicochemical properties, their administration route, their frequency and duration of administration, and the sex of animal models are related to their tissue and blood toxicity, immunotoxicity, and genotoxicity. However, the correlation between in vitro and in vivo toxicity has not been well established, mainly because both the in vitro and the in vivo-dosed quantities are unrealistic. This article also discusses important factors to consider in the toxicology of SiNPs and current approaches to reducing their toxicity. The aim is to give readers a better understanding of the toxicology of silica nanoparticles and to help identify key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Lenzuni M, Bonfadini S, Criante L, Zorzi F, Summa M, Bertorelli R, Suarato G, Athanassiou A. Dynamic investigation of zein-based degradable and hemocompatible coatings for drug-eluting stents: a microfluidic approach. LAB ON A CHIP 2023; 23:1576-1592. [PMID: 36688523 DOI: 10.1039/d3lc00012e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biodegradable stent coatings have shown great potential in terms of delivering drugs to a damaged vessel wall, and their release profiles are key elements governing the overall performance of drug-eluting stents (DESs). However, release and degradation kinetics are usually not tested under simulated physiological conditions or in dynamic environments, both essential aspects in the design of novel DESs. To bridge this gap, fused silica-based microfluidic systems, with either round or square channel cross-sections, were designed to mimic the microenvironment of a stented vessel. In particular, we fabricated and characterized microfluidic chips based on customizable channels, which were spray-coated with a naturally-derived, rutin-loaded zein solution, to perform a comprehensive study under flow conditions. Dynamic assays after 6 hours showed how the degradation of the zein matrix was affected by the cross-sectional conformation (∼69% vs. ∼61%, square and round channel, respectively) and the simulated blood fluid components (∼55%, round channel with a more viscous solution). The released amount of rutin was ∼81% vs. ∼77% and ∼78% vs. ∼74% from the square and round channels, using the less and more viscous blood-simulated fluids, respectively. Fitting the drug release data to Korsmeyer-Peppas and first-order mathematical models provided further insight into the mechanism of rutin release and coating behavior under flowing conditions. More importantly, whole blood tests with our newly developed microfluidic platforms confirmed the hemocompatibility of our zein-based coating. In detail, in-flow and static studies on the blood cell behavior showed a significant reduction of platelet adhesion (∼73%) and activation (∼93%) compared to the stainless-steel substrate, confirming the benefits of using such naturally-derived coatings to avoid clogging. Overall, our microfluidic designs can provide a key practical tool for assessing polymer degradation and drug release from degradable matrices under flowing conditions, thus aiding future studies on the development of hemocompatible, controlled-release coatings for DESs.
Collapse
Affiliation(s)
- Martina Lenzuni
- Smart Materials Group, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy.
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, via Opera Pia 13, Genoa, Italy
| | - Silvio Bonfadini
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
| | - Luigino Criante
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
| | - Filippo Zorzi
- Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, Milan, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | - Giulia Suarato
- Smart Materials Group, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy.
- Translational Pharmacology, Istituto Italiano di Tecnologia, via Morego 30, Genoa, Italy
| | | |
Collapse
|
7
|
Liu S, Li Y, Shang L, Yin J, Qian Z, Chen C, Yang Y. Size-dependent neurotoxicity of micro- and nanoplastics in flowing condition based on an in vitro microfluidic study. CHEMOSPHERE 2022; 303:135280. [PMID: 35690177 DOI: 10.1016/j.chemosphere.2022.135280] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
With the widespread presence of plastic wastes, knowledge about the potential environmental risks and bioavailability of micro- or nanoplastics fragmented from large analogs is of utmost importance. As the particle size matters in mediating endocytic mechanism and particle internalization, we first studied the effects of polystyrene microparticles (PS-MPs, 1 μm) and polystyrene nanoparticles (PS-NPs, 100 nm) of two different sizes at varying concentrations of 5, 25 and 75 μg/mL on the mouse hippocampal neuronal HT22 cells. The in vitro study showed efficient cellular uptake of PS-MPs and PS-NPs of both sizes. The adverse effects of cellular metabolic activity as reflective of excess Reactive Oxygen Species (ROS) and cell cycle S phase arresting were observed especially at the greater concentration of smaller-sized PS particles, consequently leading to mild cytotoxicity. We further evaluated the dynamic particle-cell interaction with a continuous supply of PS particles using a microfluidic device. By recapitulating the in vivo mechanical microenvironments while allowing homogeneous distribution of PS particles, the dynamic exposure to PS particles of both sizes under flowing conditions resulted in much lesser viability of neural cells than the traditional static exposure. As the flowing dynamics may avoid the gravitational settling of particles and allow more efficient cellular uptake, the size distribution, together with the exposure configurations, contributed significantly to the determination of the PS particle cytotoxicity. The on-chip investigation and a better understanding of particle translocation mechanisms would offer very much to the risk assessment of PS particles on human health.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yuewu Li
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linwei Shang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jianhua Yin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yamin Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
8
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
9
|
Zadeh Mehrizi T, Amini Kafiabad S. Evaluation of the effects of nanoparticles on the therapeutic function of platelet: a review. J Pharm Pharmacol 2021; 74:179-190. [PMID: 34244798 DOI: 10.1093/jpp/rgab089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Nanotechnology and nanoparticles are used in different applications in disease monitoring and therapy in contact with blood. Nanoparticles showed different effects on blood components and reduced or improved the function of therapeutic platelet during the storage time. This review study was performed to evaluate the impacts of various sizes and charges of nanoparticles on platelet function and storage time. The present review contains the literature between 2010 and 2020. The data have been used from different sites such as PubMed, Wiley, ScienceDirect and online electronic journals. KEY FINDINGS From the literature survey, it has been demonstrated that among various properties, size and charge of nanoparticles were critical on the function of therapeutic platelet during the storage and inhibition of their aggregation. Overall, this study described that nanoparticles with smaller size and negative charge were more effective in increasing the survival time, inhibition of aggregation and improving the function of therapeutic platelet. SUMMARY Based on the current review, it can be confirmed that nanoparticles such as dendrimer, Au, Ag and iron oxide nanoparticles with smaller size and negative charge have significant advantages for improving the efficacy of platelets during the storage chain and inhibition of their aggregation.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Sedigheh Amini Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
10
|
Guo C, Liu Y, Li Y. Adverse effects of amorphous silica nanoparticles: Focus on human cardiovascular health. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124626. [PMID: 33296760 DOI: 10.1016/j.jhazmat.2020.124626] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Amorphous silica nanoparticle (SiNPs) has tremendous potential for a host of applications, while its mass production, broad application and environmental release inevitably increase the risk of human exposure. SiNPs could enter into the human body through different routes such as inhalation, ingestion, skin contact and even injection for medical applications. The cardiovascular system is gradually recognized as one of the primary sites for engineered NPs exerting adverse effects. Accumulating epidemiological or experimental evidence support the association between SiNPs exposure and adverse cardiovascular effects. However, this topic is still in its infancy, and the literature shows high inter-study variability and even contradictory results. New challenges still present in the safety evaluation of SiNPs, and its toxicological mechanisms are poorly understood. Here, scientific papers related to cardiovascular studies of SiNPs in vivo and in vitro were selected, and the updated particle-caused cardiovascular toxicity and potential mechanisms were summarized. Moreover, the understanding of how factors primarily including exposure dose, route of administration, particle size and surface properties, influence the interaction between SiNPs and cardiovascular system was discussed. In particular, the adverse outcome pathway (AOP) framework by which SiNPs cause deleterious effects in the cardiovascular system was described, aiming to provide useful information necessary for the regulatory decision and to guide a safer application of nanotechnology.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Patil G, Torris A, Suresha PR, Jadhav S, Badiger MV, Ghormade V. Design and synthesis of a new topical agent for halting blood loss rapidly: A multimodal chitosan-gelatin xerogel composite loaded with silica nanoparticles and calcium. Colloids Surf B Biointerfaces 2020; 198:111454. [PMID: 33246777 DOI: 10.1016/j.colsurfb.2020.111454] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 01/26/2023]
Abstract
Uncontrolled hemorrhage often causes death during traumatic injuries and halting exsanguination topically is a challenge. Here, an efficient multimodal topical hemostat was developed by (i) ionically crosslinking chitosan and gelatin with sodium tripolyphosphate for (ii) fabricating a robust, highly porous xerogel by lyophilization having 86.7 % porosity, by micro-CT and large pores ∼30 μm by SEM (iii) incorporating 0.5 mg synthesized silica nanoparticles (SiNPs, 120 nm size, -22 mV charge) and 2.5 mM calcium in xerogel composite that was confirmed by FTIR analysis with peaks at 3372, 986 and 788 cm-1, respectively. XPS analysis displayed the presence of SiNPs (Si2p peak for silicon) and calcium (Ca2p1, Ca2p3 transition peaks) in the composite. Interestingly, in silico percolation simulation for composite revealed interlinked 800 μm long-conduits predicting excellent absorption capacity and validated experimentally (640 % of composite dry weight). The composite achieved >16-fold improved blood clotting in vitro than commercial Celox and Gauze through multimodal interaction of its components with RBCs and platelets. The composite displayed good platelet activation and thrombin generation activities. It displayed high compressive strength (2.45 MPa) and withstood pressure during application. Moreover, xerogel composite showed high biocompatibility. In vivo application of xerogel composite to lethal femoral artery injury in rats achieved hemostasis (2.5 min) significantly faster than commercial Celox (3.3 min) and Gauze (4.6 min) and was easily removed from the wound. The gamma irradiated composite was stable till 1.5 yr. Therefore, the xerogel composite has potential for application as a rapid topical hemostatic agent.
Collapse
Affiliation(s)
- Gokul Patil
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - P R Suresha
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Sachin Jadhav
- Nanobioscience, Agharkar Research Institute, Pune 411004 India
| | - Manohar V Badiger
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008 India
| | - Vandana Ghormade
- Nanobioscience, Agharkar Research Institute, Pune 411004 India; Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 India.
| |
Collapse
|
12
|
Ashammakhi N, Darabi MA, Çelebi-Saltik B, Tutar R, Hartel MC, Lee J, Hussein S, Goudie MJ, Cornelius MB, Dokmeci MR, Khademhosseini A. Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. SMALL METHODS 2020; 4:1900589. [PMID: 33043130 PMCID: PMC7546538 DOI: 10.1002/smtd.201900589] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 05/27/2023]
Abstract
Microphysiological systems, also known as organ-on-a-chip platforms, show promise for the development of new testing methods that can be more accurate than both conventional two-dimensional cultures and costly animal studies. The development of more intricate microphysiological systems can help to better mimic the human physiology and highlight the systemic effects of different drugs and materials. Nanomaterials are among a technologically important class of materials used for diagnostic, therapeutic, and monitoring purposes; all of which and can be tested using new organ-on-a-chip systems. In addition, the toxicity of nanomaterials which have entered the body from ambient air or diet can have deleterious effects on various body systems. This in turn can be studied in newly developed microphysiological systems. While organ-on-a-chip models can be useful, they cannot pick up secondary and systemic toxicity. Thus, the utilization of multi-organ-on-a-chip systems for advancing nanotechnology will largely be reflected in the future of drug development, toxicology studies and precision medicine. Various aspects of related studies, current challenges, and future perspectives are discussed in this paper.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Betül Çelebi-Saltik
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Sihhiye, Ankara, Turkey
| | - Rumeysa Tutar
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, Faculty of Engineering, Istanbul University Cerrahpasa, Avcilar-Istanbul, Turkey
| | - Martin C. Hartel
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Saber Hussein
- Wright State University, Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, Ohio, USA
| | - Marcus J. Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Mercedes Brianna Cornelius
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Chemistry, University of California, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Hannon G, Lysaght J, Liptrott NJ, Prina‐Mello A. Immunotoxicity Considerations for Next Generation Cancer Nanomedicines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900133. [PMID: 31592123 PMCID: PMC6774033 DOI: 10.1002/advs.201900133] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/02/2019] [Indexed: 05/12/2023]
Abstract
Although interest and funding in nanotechnology for oncological applications is thriving, translating these novel therapeutics through the earliest stages of preclinical assessment remains challenging. Upon intravenous administration, nanomaterials interact with constituents of the blood inducing a wide range of associated immunotoxic effects. The literature on the immunological interactions of nanomaterials is vast and complicated. A small change in a particular characteristic of a nanomaterial (e.g., size, shape, or charge) can have a significant effect on its immunological profile in vivo, and poor selection of specific assays for establishing these undesirable effects can overlook this issue until the latest stages of preclinical assessment. This work describes the current literature on unintentional immunological effects associated with promising cancer nanomaterials (liposomes, dendrimers, mesoporous silica, iron oxide, gold, and quantum dots) and puts focus on what is missing in current preclinical evaluations. Opportunities for avoiding or limiting immunotoxicity through efficient preclinical assessment are discussed, with an emphasis placed on current regulatory views and requirements. Careful consideration of these issues will ensure a more efficient preclinical assessment of cancer nanomedicines, enabling a smoother clinical translation with less failures in the future.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
| | - Joanne Lysaght
- Department of SurgeryTTMITrinity College DublinDublin 8Ireland
| | - Neill J. Liptrott
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineThe University of LiverpoolLiverpoolL69 3GFUK
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging GroupTrinity Translational Medicine Institute (TTMI)Trinity College DublinDublin 8Ireland
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM)TTMITrinity College DublinDublin 8Ireland
- Advanced Materials and Bioengineering Research (AMBER) CentreCRANN InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
14
|
Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019; 95:91-111. [PMID: 31004844 PMCID: PMC6710161 DOI: 10.1016/j.actbio.2019.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Biological systems continuously interact with the surrounding environment because they are dynamically evolving. The interaction is achieved through mechanical, electrical, chemical, biological, thermal, optical, or a synergistic combination of these cues. To provide a fundamental understanding of the interaction, recent efforts that integrate biological systems with the electronic-mechanical assemblies create unique opportunities for simultaneous monitoring and eliciting the responses to the biological system. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual. In this short review, we will provide a brief overview of the recent development on the integration of the biological systems with electronic-mechanical assemblies across multiple scales, with applications ranging from healthcare monitoring to therapeutic options such as drug delivery and rehabilitation therapies. STATEMENT OF SIGNIFICANCE: An overview of the recent progress on the integration of the biological system with both electronic and mechanical assemblies is discussed. The integration creates the unique opportunity to simultaneously monitor and elicit the responses to the biological system, which provides a fundamental understanding of the interaction between the biological system and the electronic-mechanical assemblies. Recent innovations in materials, fabrication processes, and device integration approaches have created the enablers to yield bio-integrated devices to interface with the biological system, ranging from cells and tissues to organs and living individual.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Departments of Electrical and Computer Engineering, Biomedical Engineering, and Medicine, The George Washington University, Washington DC 20052, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Engineering Science and Mechanics, and Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Alirezaie Alavijeh A, Barati M, Barati M, Abbasi Dehkordi H. The Potential of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer Based on Body Magnetic Field and Organ-on-the-Chip. Adv Pharm Bull 2019; 9:360-373. [PMID: 31592054 PMCID: PMC6773933 DOI: 10.15171/apb.2019.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is an abnormal cell growth which tends to proliferate in an uncontrolled way and, in some cases, leads to metastasis. If cancer is left untreated, it can immediately cause death. The use of magnetic nanoparticles (MNPs) as a drug delivery system will enable drugs to target tissues and cell types precisely. This study describes usual strategies and consideration for the synthesis of MNPs and incorporates payload drug on MNPs. They have advantages such as visual targeting and delivering which will be discussed in this review. In addition, we considered body magnetic field to make drug delivery process more effective and safer by the application of MNPs and tumor-on-chip.
Collapse
Affiliation(s)
- Ali Alirezaie Alavijeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Mohammad Barati
- Department of Applied Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hussein Abbasi Dehkordi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
16
|
Zhu D, Long Q, Xu Y, Xing J. Evaluating Nanoparticles in Preclinical Research Using Microfluidic Systems. MICROMACHINES 2019; 10:mi10060414. [PMID: 31234335 PMCID: PMC6631852 DOI: 10.3390/mi10060414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) have found a wide range of applications in clinical therapeutic and diagnostic fields. However, currently most NPs are still in the preclinical evaluation phase with few approved for clinical use. Microfluidic systems can simulate dynamic fluid flows, chemical gradients, partitioning of multi-organs as well as local microenvironment controls, offering an efficient and cost-effective opportunity to fast screen NPs in physiologically relevant conditions. Here, in this review, we are focusing on summarizing key microfluidic platforms promising to mimic in vivo situations and test the performance of fabricated nanoparticles. Firstly, we summarize the key evaluation parameters of NPs which can affect their delivery efficacy, followed by highlighting the importance of microfluidic-based NP evaluation. Next, we will summarize main microfluidic systems effective in evaluating NP haemocompatibility, transport, uptake and toxicity, targeted accumulation and general efficacy respectively, and discuss the future directions for NP evaluation in microfluidic systems. The combination of nanoparticles and microfluidic technologies could greatly facilitate the development of drug delivery strategies and provide novel treatments and diagnostic techniques for clinically challenging diseases.
Collapse
Affiliation(s)
- Derui Zhu
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Qifu Long
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Yuzhen Xu
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| | - Jiangwa Xing
- Research Center of Basic Medical Sciences, Medical College, Qinghai University, Xining 810016, China.
| |
Collapse
|
17
|
He Z, Ranganathan N, Li P. Evaluating nanomedicine with microfluidics. NANOTECHNOLOGY 2018; 29:492001. [PMID: 30215611 DOI: 10.1088/1361-6528/aae18a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomedicines are engineered nanoscale structures that have an extensive range of application in the diagnosis and therapy of many diseases. Despite the rapid progress in and tremendous potential of nanomedicines, their clinical translational process is still slow, owing to the difficulty in understanding, evaluating, and predicting their behavior in complex living organisms. Microfluidic techniques offer a promising way to resolve these challenges. Carefully designed microfluidic chips enable in vivo microenvironment simulation and high-throughput analysis, thus providing robust platforms for nanomedicine evaluation. Here, we summarize the recent developments and achievements in microfluidic methods for nanomedicine evaluation, categorized into four sections based on their target systems: single cell, multicellular system, organ, and organism levels. Finally, we provide our perspectives on the challenges and future directions of microfluidics-based nanomedicine evaluation.
Collapse
Affiliation(s)
- Ziyi He
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, United States of America
| | | | | |
Collapse
|
18
|
Ahn J, Ko J, Lee S, Yu J, Kim Y, Jeon NL. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev 2018; 128:29-53. [PMID: 29626551 DOI: 10.1016/j.addr.2018.04.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023]
Abstract
Microfluidic technologies employ nano and microscale fabrication techniques to develop highly controllable and reproducible fluidic microenvironments. Utilizing microfluidics, lead compounds can be produced with the controlled physicochemical properties, characterized in a high-throughput fashion, and evaluated in in vitro biomimetic models of human organs; organ-on-a-chip. As a step forward from conventional in vitro culture methods, microfluidics shows promise in effective preclinical testing of nanoparticle-based drug delivery. This review presents a curated selection of state-of-the-art microfluidic platforms focusing on the fabrication, characterization, and assessment of nanoparticles for drug delivery applications. We also discuss the current challenges and future prospects of nanoparticle drug delivery development using microfluidics.
Collapse
|
19
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
20
|
Jung SY, Yeom E. Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: Effects of tile size on the detection of platelet adhesion in a correlation map. BIOMICROFLUIDICS 2017; 11:024119. [PMID: 28798854 PMCID: PMC5533492 DOI: 10.1063/1.4982605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Platelet aggregation affects the surrounding blood flow and usually occurs where a blood vessel is narrowed as a result of atherosclerosis. The relationship between blood flow and platelet aggregation is not yet fully understood. This study proposes a microfluidic method to measure the velocity and platelet aggregation simultaneously by combining the micro-particle image velocimetry technique and a correlation mapping method. The blood flow and platelet adhesion procedure in a stenotic micro-channel with 90% severity were observed for a relatively long period of 4 min. In order to investigate the effect of tile size on the detection of platelet adhesion, 2D correlation coefficients were evaluated with binary images obtained by manual labeling and the correlation mapping method with different sizes of the square tile ranging from 3 to 50 pixels. The maximum 2D correlation coefficient occurred with the optimum tile size of 5 × 5 pixels. Since the blood flow and platelet aggregation are mutually influenced by each other, blood flow and platelet adhesion were continuously varied. When there was no platelet adhesion (t = 0 min), typical blood flow is observed. The blood flow passes through the whole channel smoothly, and jet-like flow occurs in the post-stenosis region. However, the flow pattern changes when platelet adhesion starts at the stenosis apex and after the stenosis. These adhesions induce narrow high velocity regions to become wider over a range of area from upstream to downstream of the stenosis. Separated jet-like flows with two high velocity regions are also created. The changes in flow patterns may alter the patterns of platelet adhesion. As the area of the plate adhesion increases, the platelets plug the micro-channel and there is only a small amount of blood flow, finally. The microfluidic method could provide new insights for better understanding of the interactions between platelet aggregation and blood flow in various physiological conditions.
Collapse
Affiliation(s)
- Sung Yong Jung
- Department of Mechanical Engineering, Chosun University, Gwangju, South Korea
| | - Eunseop Yeom
- School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
21
|
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 2016; 21:1399-1411. [PMID: 27422270 DOI: 10.1016/j.drudis.2016.07.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications. Importantly, these systems have the potential to dramatically impact biomedical applications in the areas of drug development, drug and toxicology screening, disease modeling, and the emerging area of personalized precision medicine.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Urology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
22
|
Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med 2016; 1:63-81. [PMID: 29313007 PMCID: PMC5689508 DOI: 10.1002/btm2.10013] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/22/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
The implementation of microfluidic devices within life sciences has furthered the possibilities of both academic and industrial applications such as rapid genome sequencing, predictive drug studies, and single cell manipulation. In contrast to the preferred two‐dimensional cell‐based screening, three‐dimensional (3D) systems have more in vivo relevance as well as ability to perform as a predictive tool for the success or failure of a drug screening campaign. 3D cell culture has shown an adaptive response to the recent advancements in microfluidic technologies which has allowed better control over spheroid sizes and subsequent drug screening studies. In this review, we highlight the most significant developments in the field of microfluidic 3D culture over the past half‐decade with a special focus on their benefits and challenges down the lane. With the newer technologies emerging, implementation of microfluidic 3D culture systems into the drug discovery pipeline is right around the bend.
Collapse
Affiliation(s)
- Nilesh Gupta
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | - Jeffrey R Liu
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Deepak E Solomon
- Neofluidics LLC, Research and Development Wing San Diego CA 92121
| | | | - Vivek Gupta
- School of Pharmacy Keck Graduate Institute Claremont CA 91711
| |
Collapse
|
23
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
24
|
Nguyen TH, Palankar R, Bui VC, Medvedev N, Greinacher A, Delcea M. Rupture Forces among Human Blood Platelets at different Degrees of Activation. Sci Rep 2016; 6:25402. [PMID: 27146004 PMCID: PMC4857101 DOI: 10.1038/srep25402] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
Little is known about mechanics underlying the interaction among platelets during activation and aggregation. Although the strength of a blood thrombus has likely major biological importance, no previous study has measured directly the adhesion forces of single platelet-platelet interaction at different activation states. Here, we filled this void first, by minimizing surface mediated platelet-activation and second, by generating a strong adhesion force between a single platelet and an AFM cantilever, preventing early platelet detachment. We applied our setup to measure rupture forces between two platelets using different platelet activation states, and blockade of platelet receptors. The rupture force was found to increase proportionally to the degree of platelet activation, but reduced with blockade of specific platelet receptors. Quantification of single platelet-platelet interaction provides major perspectives for testing and improving biocompatibility of new materials; quantifying the effect of drugs on platelet function; and assessing the mechanical characteristics of acquired/inherited platelet defects.
Collapse
Affiliation(s)
- Thi-Huong Nguyen
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489 Greifswald, Germany.,Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Raghavendra Palankar
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489 Greifswald, Germany.,Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Van-Chien Bui
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489 Greifswald, Germany.,Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nikolay Medvedev
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489 Greifswald, Germany
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Mihaela Delcea
- Nanostructure Group, ZIK HIKE - Center for Innovation Competence, Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, 17489 Greifswald, Germany.,Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
25
|
Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity. Sci Rep 2016; 6:24994. [PMID: 27118101 PMCID: PMC4846989 DOI: 10.1038/srep24994] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Platelet functions, including adhesion, activation, and aggregation have an influence on thrombosis and the progression of atherosclerosis. In the present study, a new microfluidic-based method is proposed to estimate platelet adhesion and blood viscosity simultaneously. Blood sample flows into an H-shaped microfluidic device with a peristaltic pump. Since platelet aggregation may be initiated by the compression of rotors inside the peristaltic pump, platelet aggregates may adhere to the H-shaped channel. Through correlation mapping, which visualizes decorrelation of the streaming blood flow, the area of adhered platelets (APlatelet) can be estimated without labeling platelets. The platelet function is estimated by determining the representative index IA·T based on APlatelet and contact time. Blood viscosity is measured by monitoring the flow conditions in the one side channel of the H-shaped device. Based on the relation between interfacial width (W) and pressure ratio of sample flows to the reference, blood sample viscosity (μ) can be estimated by measuring W. Biophysical parameters (IA·T, μ) are compared for normal and diabetic rats using an ex vivo extracorporeal model. This microfluidic-based method can be used for evaluating variations in the platelet adhesion and blood viscosity of animal models with cardiovascular diseases under ex vivo conditions.
Collapse
|
26
|
Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, Shafaei Pishabad Z, Aslani A, Bozorgomid M, Ghosh D, Beyzavi A, Vaseghi A, Aref AR, Haghani L, Bahrami S, Hamblin MR. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 2016; 45:1457-501. [PMID: 26776487 PMCID: PMC4775468 DOI: 10.1039/c5cs00798d] [Citation(s) in RCA: 882] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Parham Sahandi Zangabad
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Reza Rahighi
- Department of Research and Development, Sharif Ultrahigh Nanotechnologists (SUN) Company, P.O. Box: 13488-96394, Tehran, Iran and Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box: 14857-33111, Tehran, Iran
| | - S Masoud Moosavi Basri
- Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran and Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - H Mirshekari
- Department of Biotechnology, University of Kerala, Trivandrum, India
| | - M Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - Z Shafaei Pishabad
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - A Aslani
- Department of Materials Science and Engineering, Sharif University of Technology, 11365-9466, Tehran, Iran
| | - M Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - D Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - A Beyzavi
- School of Mechanical Engineering, Boston University, Boston, MA, USA
| | - A Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - A R Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA
| | - L Haghani
- School of Medicine, International Campus of Tehran University of Medical Science, Tehran, Iran
| | - S Bahrami
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA. and Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Wang Z, Samanipour R, Kim K. Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering. BIOSYSTEMS & BIOROBOTICS 2016. [DOI: 10.1007/978-3-319-21813-7_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Fröhlich E. Action of Nanoparticles on Platelet Activation and Plasmatic Coagulation. Curr Med Chem 2016; 23:408-30. [PMID: 26063498 PMCID: PMC5403968 DOI: 10.2174/0929867323666160106151428] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022]
Abstract
Nanomaterials can get into the blood circulation after injection or by release from implants but also by permeation of the epithelium after oral, respiratory or dermal exposure. Once in the blood, they can affect hemostasis, which is usually not intended. This review addresses effects of biological particles and engineered nanomaterials on hemostasis. The role of platelets and coagulation in normal clotting and the interaction with the immune system are described. Methods to identify effects of nanomaterials on clotting and results from in vitro and in vivo studies are summarized and the role of particle size and surface properties discussed. The literature overview showed that mainly pro-coagulative effects of nanomaterials have been described. In vitro studies suggested stronger effects of smaller than of larger NPs on coagulation and a greater importance of material than of surface charge. For instance, carbon nanotubes, polystyrene particles, and dendrimers inferred with clotting independent from their surface charge. Coating of particles with polyethylene glycol was able to prevent interaction with clotting by some particles, while it had no effect on others and the more recently developed bio-inspired surfaces might help to design coatings for more biocompatible particles. The mainly pro-coagulative action of nanoparticles could present a particular risk for individuals affected by common diseases such as diabetes, cancer, and cardiovascular diseases. Under standardized conditions, in vitro assays using human blood appear to be a suitable tool to study mechanisms of interference with hemostasis and to optimize hemocompatibility of nanomaterials.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University Graz, Stiftingtalstr 24, 8010 Graz, Austria.
| |
Collapse
|
29
|
Yang L, Okamura Y, Kimura H. Surface modification on polydimethylsiloxane-based microchannels with fragmented poly(l-lactic acid) nanosheets. BIOMICROFLUIDICS 2015; 9:064108. [PMID: 26634016 PMCID: PMC4654732 DOI: 10.1063/1.4936350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 11/11/2015] [Indexed: 05/08/2023]
Abstract
Surface modification is a critical issue in various applications of polydimethylsiloxane (PDMS)-based microfluidic devices. Here, we describe a novel method through which PDMS-based microchannels were successfully modified with fragmented poly(l-lactic acid) (PLLA) nanosheets through a simple patchwork technique that exploited the high level of adhesiveness of PLLA nanosheets. Compared with other surface modification methods, our method required neither complicated chemical modifications nor the use of organic solvents that tend to cause PDMS swelling. The experimental results indicated that the modified PDMS exhibited excellent capacity for preventing the adhesion and activation of platelets. This simple yet efficient method can be used to fabricate the special PDMS microfluidic devices for biological, medical, and even hematological purposes.
Collapse
Affiliation(s)
- Lu Yang
- Micro/Nano Technology Center, Tokai University , 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | |
Collapse
|
30
|
Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014; 190:82-93. [PMID: 24818770 DOI: 10.1016/j.jconrel.2014.05.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/03/2023]
Abstract
Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.
Collapse
Affiliation(s)
- Nupura S Bhise
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - João Ribas
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; Biocant - Biotechnology Innovation Center, 3060-197 Cantanhede, Portugal
| | - Vijayan Manoharan
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Alessandro Polini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Solange Massa
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Mehmet R Dokmeci
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
31
|
Kim D, Wu X, Young AT, Haynes CL. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Acc Chem Res 2014; 47:1165-73. [PMID: 24555566 PMCID: PMC3993883 DOI: 10.1021/ar4002608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The human body is a complex network of molecules,
organelles, cells,
tissues, and organs: an uncountable number of interactions and transformations
interconnect all the system’s components. In addition to these
biochemical components, biophysical components, such as pressure,
flow, and morphology, and the location of all of these interactions
play an important role in the human body. Technical difficulties have
frequently limited researchers from observing cellular biology as
it occurs within the human body, but some state-of-the-art analytical
techniques have revealed distinct cellular behaviors that occur only
in the context of the interactions. These types of findings have inspired
bioanalytical chemists to provide new tools to better understand these
cellular behaviors and interactions. What blocks us from understanding
critical biological interactions
in the human body? Conventional approaches are often too naïve
to provide realistic data and in vivo whole animal studies give complex
results that may or may not be relevant for humans. Microfluidics
offers an opportunity to bridge these two extremes: while these studies
will not model the complexity of the in vivo human system, they can
control the complexity so researchers can examine critical factors
of interest carefully and quantitatively. In addition, the use of
human cells, such as cells isolated from donated blood, captures human-relevant
data and limits the use of animals in research. In addition, researchers
can adapt these systems easily and cost-effectively to a variety of
high-end signal transduction mechanisms, facilitating high-throughput
studies that are also spatially, temporally, or chemically resolved.
These strengths should allow microfluidic platforms to reveal critical
parameters in the human body and provide insights that will help with
the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations
within the last 5 years that focus on modeling both biophysical and
biochemical interactions in cellular communication, such as flow and
cell–cell networks. We also describe more advanced systems
that mimic higher level biological networks, such as organ on-a-chip
and animal on-a-chip models. Since the first papers in the early 1990s,
interest in the bioanalytical use of microfluidics has grown significantly.
Advances in micro-/nanofabrication technology have allowed researchers
to produce miniaturized, biocompatible assay platforms suitable for
microfluidic studies in biochemistry and chemical biology. Well-designed
microfluidic platforms can achieve quick, in vitro analyses on pico-
and femtoliter volume samples that are temporally, spatially, and
chemically resolved. In addition, controlled cell culture techniques
using a microfluidic platform have produced biomimetic systems that
allow researchers to replicate and monitor physiological interactions.
Pioneering work has successfully created cell–fluid, cell–cell,
cell–tissue, tissue–tissue, even organ-like level interfaces.
Researchers have monitored cellular behaviors in these biomimetic
microfluidic environments, producing validated model systems to understand
human pathophysiology and to support the development of new therapeutics.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Ashlyn T. Young
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
32
|
Sardan M, Yildirim A, Mumcuoglu D, Tekinay AB, Guler MO. Noncovalent functionalization of mesoporous silica nanoparticles with amphiphilic peptides. J Mater Chem B 2014; 2:2168-2174. [PMID: 32261500 DOI: 10.1039/c4tb00037d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The surface of mesoporous silica nanoparticles (MSNs) has been modified for enhancing their cellular uptake, cell targeting, bioimaging, and controlled drug release. For this purpose, covalent anchorage on the silica surface was predominantly exploited with a wide range of bioactive molecules. Here, we describe a facile self-assembly method to prepare a hybrid peptide silica system composed of octyl-modified mesoporous silica nanoparticles (MSNs) and peptide amphiphiles (PAs). The hydrophobic organosilane surface of mesoporous silica was coated with amphiphilic peptide molecules. The peptide functionalized particles exhibited good cyto-compatibility with vascular smooth muscle and vascular endothelial cells. The peptide coating also improved the cellular uptake of particles up to 6.3 fold, which is promising for the development of highly efficient MSN based theranostic agents.
Collapse
Affiliation(s)
- Melis Sardan
- National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey.
| | | | | | | | | |
Collapse
|