1
|
Anwar A, Ramis De Ayreflor Reyes S, John AA, Breiling E, O'Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic acid aptamers protect against lead (Pb(II)) toxicity. N Biotechnol 2024; 83:36-45. [PMID: 38925526 DOI: 10.1016/j.nbt.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced neurotoxicity, measured by behavioral assays, are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Abigail M O'Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| |
Collapse
|
2
|
Zhu J, Yin H, Wang Y, Wang L, Geng X, Deng Y. Conformational change-based fluorometric aptasensor for sensitive cadmium(II) detection in fruits and vegetables. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5826-5834. [PMID: 39143932 DOI: 10.1039/d4ay01333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cadmium (Cd2+) is a highly toxic heavy metal that can accumulate in the human body through contaminated food and water, posing great health risks. In this study, a label-free fluorescent aptasensor based on SYBR Green I (SGI) for the rapid and sensitive detection of Cd2+ in food samples was designed. The aptasensor utilizes a Cd2+-specific aptamer (Cd-(21)) and its complementary strand (CSCd-(21)) to form a double-stranded DNA (dsDNA) structure in the absence of Cd2+. SGI intercalates into the dsDNA, resulting in a strong fluorescence signal. In the presence of Cd2+, the aptamer undergoes a conformational change, preventing the formation of dsDNA and leading to a decrease in fluorescence intensity. Under optimized conditions, the aptasensor exhibited a linear response to Cd2+ concentrations ranging from 0.11 to 157.37 ng mL-1, with a limit of detection (LOD) of 0.07 ng mL-1. The aptasensor demonstrated high specificity and was successfully applied to detect Cd2+ in fruits and vegetables, with satisfactory recovery rates (95-111%). The proposed aptasensor provides a promising tool for the rapid and sensitive detection of Cd2+ in food.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Hao Yin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Yang Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Lumei Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Xueqing Geng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Yun Deng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| |
Collapse
|
3
|
Geiwitz M, Page OR, Marello T, Nichols ME, Kumar N, Hummel S, Belosevich V, Ma Q, van Opijnen T, Batten B, Meyer MM, Burch KS. Graphene Multiplexed Sensor for Point-of-Need Viral Wastewater-Based Epidemiology. ACS APPLIED BIO MATERIALS 2024; 7:4622-4632. [PMID: 38954405 DOI: 10.1021/acsabm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Wastewater-based epidemiology (WBE) can help mitigate the spread of respiratory infections through the early detection of viruses, pathogens, and other biomarkers in human waste. The need for sample collection, shipping, and testing facilities drives up the cost of WBE and hinders its use for rapid detection and isolation in environments with small populations and in low-resource settings. Given the ubiquitousness and regular outbreaks of respiratory syncytial virus, SARS-CoV-2, and various influenza strains, there is a rising need for a low-cost and easy-to-use biosensing platform to detect these viruses locally before outbreaks can occur and monitor their progression. To this end, we have developed an easy-to-use, cost-effective, multiplexed platform able to detect viral loads in wastewater with several orders of magnitude lower limit of detection than that of mass spectrometry. This is enabled by wafer-scale production and aptamers preattached with linker molecules, producing 44 chips at once. Each chip can simultaneously detect four target analytes using 20 transistors segregated into four sets of five for each analyte to allow for immediate statistical analysis. We show our platform's ability to rapidly detect three virus proteins (SARS-CoV-2, RSV, and Influenza A) and a population normalization molecule (caffeine) in wastewater. Going forward, turning these devices into hand-held systems would enable wastewater epidemiology in low-resource settings and be instrumental for rapid, local outbreak prevention.
Collapse
Affiliation(s)
- Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Owen Rivers Page
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tio Marello
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Marina E Nichols
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Narendra Kumar
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Stephen Hummel
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Vsevolod Belosevich
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Bruce Batten
- GRIP Molecular Technologies, Inc., 1000 Westgate Drive, Saint Paul, Minnesota 55114, United States
| | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
4
|
Qian SQ, Yuan M, Zuo XW, Cao H, Yu JS, Hao LL, Yang KL, Xu F. A novel strategy for enhancing the stability of aptamer conformations in heavy metal ion detection. Anal Chim Acta 2024; 1306:342577. [PMID: 38692784 DOI: 10.1016/j.aca.2024.342577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Detection methods based on aptamer probes have great potential and progress in the field of rapid detection of heavy metal ions. However, the unstable conformation of aptamers often results in poor sensitivity due to the dissociation of aptamer-target complex in real environments. RESULTS In this study, we developed a locking aptamer probe and combined it with AgInZnS quantum dots for the first time to detect cadmium ions. When cadmium ions are combined with the probe, the cadmium ions are fixed in the core-locking position, forming a stable cavity structure. The limit of detection (LOD) was achieved at a concentration of 6.9 nmol L-1, with a broad detection range from 10 nmol L-1 to 1000 μmol L-1, and good recovery rates (92.93%-102.8 %) were achieved in aquatic product testing. The locking aptamer probe with stable conformation effectively enhances the stability of the aptamer-target complex and remains good stability in four buffer environments as well as a 600 mmol L-1 salt solution; it also exhibits good stability at pH 6.5-7.5 and temperatures ranging from 25 °C to 35 °C. SIGNIFICANCE Overall, our study presented a general, simple, and cost-effective strategy for stabilizing aptamer conformations, and used for highly sensitive detection of cadmium ions.
Collapse
Affiliation(s)
- Shi Quan Qian
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Xian Wei Zuo
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, China
| | - Hui Cao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Song Yu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Li-Ling Hao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Kun Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Fei Xu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Yu H, Zhao Q. Sensitive electrochemical sensor for Cd 2+ with engineered short high-affinity aptamer undergoing large conformation change. Talanta 2024; 271:125642. [PMID: 38237283 DOI: 10.1016/j.talanta.2024.125642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 02/24/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic heavy metal ion that threatens the environment and human health. To achieve rapid and sensitive detection of Cd2+, here we developed a reagent-less aptamer electrochemical sensor by immobilizing an engineered high-affinity DNA aptamer with a redox tag of methylene blue (MB) on the gold electrode. After testing a series of engineered aptamer sequences, we employed an optimal and new 15-mer aptamer with a short 3-bp stem for sensor fabrication, which underwent large conformation change upon Cd2+ binding. This aptamer retained high affinity with a Kd about 360 nM, verified by isothermal titration calorimetry (ITC) analysis. In the presence of Cd2+, this aptamer folded into a stem-loop structure, drawing the MB into a close proximity to the electrode surface and generating enhanced current in square wave voltammetry (SWV). Under the optimized conditions, this aptamer sensor enabled us to sensitively detect Cd2+ in a wide concentration range from 0.5 nM to 4 μM, and the detection limit was 90 pM. The developed electrochemical aptasensor has the advantages in easy preparation, rapid response, high stability, high selectivity and easy regeneration and reuse, showing the potential for Cd2+ detection in broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
6
|
Anwar A, De Ayreflor Reyes SR, John AA, Breiling E, O’Connor AM, Reis S, Shim JH, Shah AA, Srinivasan J, Farny NG. Nucleic Acid Aptamers Protect Against Lead (Pb(II)) Toxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587288. [PMID: 38585880 PMCID: PMC10996642 DOI: 10.1101/2024.03.28.587288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Lead (Pb(II)) is a pervasive heavy metal toxin with many well-established negative effects on human health. Lead toxicity arises from cumulative, repeated environmental exposures. Thus, prophylactic strategies to protect against the bioaccumulation of lead could reduce lead-associated human pathologies. Here we show that DNA and RNA aptamers protect C. elegans from toxic phenotypes caused by lead. Reproductive toxicity, as measured by brood size assays, is prevented by co-feeding of animals with DNA or RNA aptamers. Similarly, lead-induced behavioral anomalies are also normalized by aptamer feeding. Further, cultured human HEK293 and primary murine osteoblasts are protected from lead toxicity by transfection with DNA aptamers. The osteogenic development, which is decreased by lead exposure, is maintained by prior transfection of lead-binding DNA aptamers. Aptamers may be an effective strategy for the protection of human health in the face of increasing environmental toxicants.
Collapse
Affiliation(s)
- Afreen Anwar
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | | | - Aijaz Ahmad John
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erik Breiling
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Abigail M. O’Connor
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Stephanie Reis
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Jae-Hyuck Shim
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ali Asghar Shah
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri (J&K), India
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Natalie G. Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
- Program in Neuroscience, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| |
Collapse
|
7
|
Liu P, He Y, Liu X, Gao X. Label-free fluorescence aptasensor for the detection of cadmium(II) ion based on the conformational switching of aptamer and thioflavine T. ANAL SCI 2024; 40:481-487. [PMID: 38182840 DOI: 10.1007/s44211-023-00488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/26/2023] [Indexed: 01/07/2024]
Abstract
A simple label-free Cd2+ fluorescent aptasensor was proposed using aptamer as a recognition element and thioflavine T (ThT) as a signal reporter. The presence of Cd(II) can induce the conformational switching of the aptamer probe, accompanied by a change in fluorescence intensity. According to the difference in fluorescence signals before and after the addition of Cd2+, a fluorescence sensor for Cd2+ assay was established. Under the better experimental conditions, the sensor displayed a good linear range from 2 to 50 nM and the excellent detection limit was 0.8 nM. The method demonstrated high sensitivity and good selectivity. The aptasensor could detect Cd2+ in simulated water samples with satisfactory results. The proposed method had obvious advantages that was without chemical modification of fluorescent groups and complicated target preconcentration. It provided a new analytical platform for the detection of heavy metal ion pollution in environmental and biomedical fields.
Collapse
Affiliation(s)
- Ping Liu
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, 726000, People's Republic of China.
- Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo University, Shangluo, 726000, People's Republic of China.
| | - Yu He
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, 726000, People's Republic of China
- Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo University, Shangluo, 726000, People's Republic of China
| | - Xiaoqin Liu
- Shaanxi Xi'an No. 89 Middle School, Xi'an, 710003, People's Republic of China
| | - Xia Gao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo, 726000, People's Republic of China
- Shaanxi Engineering Research Center for Mineral Resources Clean & Efficient Conversion and New Materials, Shangluo University, Shangluo, 726000, People's Republic of China
| |
Collapse
|
8
|
Jarczewska M, Sokal M, Olszewski M, Malinowska E. Studies on the Aptasensor Miniaturization for Electrochemical Detection of Lead Ions. BIOSENSORS 2024; 14:110. [PMID: 38392029 PMCID: PMC10886534 DOI: 10.3390/bios14020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Lead poses severe effects on living organisms, and since Pb2+ ions tend to accumulate in different organs, it is crucial to monitor Pb2+ concentration in samples such as water and soil. One of the approaches is the utilization of biosensors combined with aptamer-based layers for the electrochemical detection of lead ions. Herein, we present the studies of applying miniaturized screen-printed transducers as solid surfaces to fabricate aptamer layers. As the research is the direct continuation of our previous studies regarding the use of gold disk electrodes, the working parameters of elaborated aptasensors were defined, including the range of linear response (10-100 nM), selectivity as well as stability, regeneration, and feasibility of application for the analysis of real samples. This was achieved using voltammetric techniques including cyclic and square-wave voltammetry in the presence of methylene blue redox indicator.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marta Sokal
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Koszykowa 75, 00-664 Warsaw, Poland;
| | - Elzbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Center for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, 19 Poleczki, 02-822 Warsaw, Poland
| |
Collapse
|
9
|
Gignac F, Delaunay N, Pichon V. Novel oligonucleotide-based sorbent for the selective extraction of cadmium from serum samples. J Pharm Biomed Anal 2024; 237:115771. [PMID: 37832475 DOI: 10.1016/j.jpba.2023.115771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
The objective was to develop a sorbent functionalized with aptamers for the selective extraction of cadmium from biological samples. Two oligonucleotide sequences reported in literature as specific to cadmium were covalently grafted on activated Sepharose, with grafting yields of 45%. Once the supports packed in cartridges, a thorough study of the percolation conditions favoring Cd(II) retention was performed, demonstrating the importance of the nature of this medium. A high selectivity was reached when applying the optimal conditions as a recovery of 85% was obtained using the sorbent functionalized with one of the specific aptamers and only 1% on the control sorbent grafted with a scramble sequence. A high specificity was also obtained as recoveries for most of other ions were lower than 15%. The capacity of this oligosorbent estimated to 180 ng of Cd(II) for 30 mg of support was perfectly adapted to the trace analysis of Cd(II). The extraction procedure was then applied to a serum sample which was first subjected to acid precipitation. The initial concentration of cadmium in the serum was estimated to 1.83 µg/L using standard addition method and an extraction yield of 75 ± 1.6% was measured. Comparison of these results with those obtained without oligoextraction (recovery of 57%) showed a significant reduction of matrix effects in ICP-MS thanks to the use of the oligosorbent, underlining its interest for a more reliable quantification of Cd(II). This result was confirmed by performing the oligoextraction protocol on a certified serum.
Collapse
Affiliation(s)
- Fanny Gignac
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; Sorbonne Université, 4 place jussieu, Paris 75005, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences, and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, Paris 75005, France; Sorbonne Université, 4 place jussieu, Paris 75005, France.
| |
Collapse
|
10
|
Zhu J, Wang D, Yu H, Yin H, Wang L, Shen G, Geng X, Yang L, Fei Y, Deng Y. Advances in colorimetric aptasensors for heavy metal ion detection utilizing nanomaterials: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6320-6343. [PMID: 37965993 DOI: 10.1039/d3ay01815f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Heavy metal ion contamination poses significant environmental and health risks, necessitating rapid and efficient detection methods. In the last decade, colorimetric aptasensors have emerged as powerful tools for heavy metal ion detection, owing to their notable attributes such as high specificity, facile synthesis, adaptability to modifications, long-term stability, and heightened sensitivity. This comprehensive overview summarizes the key developments in this field over the past ten years. It discusses the principles, design strategies, and innovative techniques employed in colorimetric aptasensors using nanomaterials. Recent advancements in enhancing sensitivity, selectivity, and on-site applicability are highlighted. The review also presents application studies of successful heavy metal ion detection using colorimetric aptasensors, underlining their potential for environmental monitoring and health protection. Finally, future directions and challenges in the continued evolution of these aptasensors are outlined.
Collapse
Affiliation(s)
- Jiangxiong Zhu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Danfeng Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hong Yu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Hao Yin
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Lumei Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Guoqing Shen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Xueqing Geng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
| | - Linnan Yang
- School of Big Data, Yunnan Agricultural University, Kunming 650201, China
| | - Yongcheng Fei
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| | - Yun Deng
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
- Yunnan Dali Research Institute of Shanghai Jiao Tong University, Yunnan 671000, China
- Eryuan County Inspection and Testing Institute, Yunnan 671299, China
| |
Collapse
|
11
|
Wu X, Yuan H, Zhao R, Wang P, Yuan M, Cao H, Ye T, Xu F. Mechanisms of ssDNA aptamer binding to Cd 2+ in aqueous solution: A molecular dynamics study. Int J Biol Macromol 2023; 251:126412. [PMID: 37598831 DOI: 10.1016/j.ijbiomac.2023.126412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ssDNA aptamers have been increasingly used to detect heavy metal ions as recognition elements due to their high affinity and specificity. However, the specific recognition and binding mechanisms between aptamers and most heavy metals were still unclear, which limits the development of aptamer-based detection methods. In this work, the interaction mechanisms of CD-2-1 aptamers with Cd2+ in aqueous solutions were investigated using molecular dynamic simulations. The most stable complex was found where Cd2+ binding at aptamer's stem-loop junction and preferred at the phosphate backbone or bases. Noteworthily, two binding modes of Cd2+ combining aptamer in aqueous solution were discovered: direct and indirect. In the former mode, Cd2+ directly coordinated O atoms of bases. For the latter, Cd2+ connected to bases with coordinated water molecules as bridges. Electrostatic interaction was found to be the main driving force, and differences of residues role between two binding modes were elucidated. Buffer molecules in aqueous solutions can stabilize aptamer-Cd2+ complex by hydrogen bonds. This study revealed the specific interaction mechanisms of aptamer with Cd2+ at an atomic level, which provided theoretical references for aptamer-based Cd2+ detection methods establishment as well as an efficient technical route of screening potential aptamers for heavy metal ions.
Collapse
Affiliation(s)
- Xiuxiu Wu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongen Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Zhao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pengsheng Wang
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tai Ye
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Xu
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai 200093, China..
| |
Collapse
|
12
|
Yu H, Zhao Q. Rapid sensitive fluorescence detection of cadmium (II) with pyrene excimer switching aptasensor. J Environ Sci (China) 2023; 133:1-7. [PMID: 37451780 DOI: 10.1016/j.jes.2022.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 07/18/2023]
Abstract
Heavy metal cadmium (II) contamination often occurs, causing great health risk to human due to high toxicity of cadmium (II). Rapid, sensitive and simple detection of cadmium (II) are of great importance in environmental monitoring. Taking advantage of aptamer in specific recognition, easy modification, and capability of binding-induced structure change, here we reported a simple fluorescent sensor with rapid and sensitive response for Cd2+ using aptamer pyrene excimer switch. The aptamer was labeled with dual pyrene molecules at two ends of the sequence. The binding of Cd2+ to this aptamer probe brought the pyrene labels into close proximity and enhanced formation of a pyrene excimer, which generated increased fluorescence at 485 nm. By measuring the fluorescence of pyrene excimer, we achieved detection of Cd2+ with this aptasensor. Under the optimum experimental conditions, the detection limit of Cd2+ reached nanomolar levels. This method was selective and allowed for the detection of Cd2+ in tap water. This fluorescence aptasensor is promising for rapid detection of Cd2+ in broad applications.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China.
| |
Collapse
|
13
|
Divyashree N, Revanasiddappa HD, Jayalakshmi B, Iqbal M, Amachawadi RG, Shivamallu C, Prasad Kollur S. ‘Turn-ON’ furfurylamine-based fluorescent sensor for Cd2+ ion detection and its application in real water samples. Polyhedron 2023; 238:116411. [DOI: 10.1016/j.poly.2023.116411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
14
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
15
|
Yang H, Xia L, Zheng J, Xie Z, Zhou J, Wu Y. Screening and identification of a DNA aptamer to construct the label-free fluorescent aptasensor for ultrasensitive and selective detection of clothianidin residue in agricultural products. Talanta 2023; 262:124712. [PMID: 37244242 DOI: 10.1016/j.talanta.2023.124712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Clothianidin pesticide not only pollutes the ecological environment, but also poses a potential threat to human health. Thus, it is of great importance to develop efficient and accurate methods to recognize and detect clothianidin residues in agricultural products. Aptamer has the advantages of easy modification, high affinity and good stability, which is particularly suitable as a recognition biomolecule for pesticide detection. However, the aptamer against clothianidin has not been reported. Herein, the aptamer (named CLO-1) had good selectivity and strong affinity (Kd = 40.66 ± 3.47 nM) to clothianidin pesticide, which was screened for the first time by Capture-SELEX strategy. The binding effect of CLO-1 aptamer to clothianidin was further studied by circular dichroism (CD) spectroscopy and molecular docking technique. Finally, the CLO-1 aptamer was used as the recognition molecule to construct a label-free fluorescent aptasensor using GeneGreen dye as sensing signal for the highly sensitive detection of clothianidin pesticide. The constructed fluorescent aptasensor had the limit of detection (LOD) as low as 5.527 μg L-1 for clothianidin, and displayed good selectivity against other competitive pesticides. The aptasensor was applied to detect the clothianidin spiked in tomatoes, pears and cabbages, and the recovery rate was good in the range of 81.99%-106.64%. This study provides a good application prospect for the recognition and detection of clothianidin.
Collapse
Affiliation(s)
- Hongqin Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Lian Xia
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Peng K, Liu X, Yuan H, Li M, Wu X, Wang Z, Hao L, Xu F. A novel fluorescent biosensor based on affinity-enhanced aptamer-peptide conjugate for sensitive detection of lead(II) in aquatic products. Anal Bioanal Chem 2023:10.1007/s00216-023-04735-2. [PMID: 37199793 DOI: 10.1007/s00216-023-04735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Lead contamination is a major concern in food safety and, as such, many lead detection methods have been developed, especially aptamer-based biosensors. However, the sensitivity and environmental tolerance of these sensors require improvement. A combination of different types of recognition elements is an effective way to improve the detection sensitivity and environmental tolerance of biosensors. Here, we provide a novel recognition element, an aptamer-peptide conjugate (APC), to achieve enhanced affinity of Pb2+. The APC was synthesized from Pb2+ aptamers and peptides through clicking chemistry. The binding performance and environmental tolerance of APC with Pb2+ was studied through isothermal titration calorimetry (ITC); the binding constant (Ka) was 1.76*106 M-1, indicating that the APC's affinity was increased by 62.96% and 802.56% compared with the aptamers and peptides, respectively. Besides, APC demonstrated better anti-interference (K+) than aptamer and peptide. Through the molecular dynamics (MD) simulation, we found that more binding sites and stronger binding energy between APC with Pb2+are the reasons for higher affinity between APC with Pb2+. Finally, a carboxyfluorescein (FAM)-labeled APC fluorescent probe was synthesized and a fluorescent detection method for Pb2+ was established. The limit of detection of the FAM-APC probe was calculated to be 12.45 nM. This detection method was also applied to the swimming crab and showed great potential in real food matrix detection.
Collapse
Affiliation(s)
- Kaimin Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China
| | - Xinna Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China
| | - Hongen Yuan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China
| | - Mengqiu Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China
| | - Xiuxiu Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liling Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China.
| | - Fei Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai Engineering Research Center for Food Rapid Detection, Shanghai, 200093, China.
| |
Collapse
|
17
|
Ma X, Suo T, Zhao F, Shang Z, Chen Y, Wang P, Li B. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II). Anal Bioanal Chem 2023; 415:2281-2289. [PMID: 36952025 DOI: 10.1007/s00216-023-04650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cadmium ion (Cd(II)) is a pernicious environmental pollutant that has been shown to contaminate agricultural lands, accumulate through the food chain, and seriously threaten human health. At present, Cd(II) monitoring is dependent on centralized instruments, necessitating the development of rapid and on-site detection platforms. Against this backdrop, the present study reports on the development of a fluorometric aptasensor designed to target Cd(II), which is achieved through the integration of strand displacement amplification (SDA) and CRISPR/Cas12a. In the absence of Cd(II), the aptamer initiates SDA, resulting in the generation of a profusion of ssDNA that activates Cas12a, leading to a substantial increase in fluorescence output. Conversely, the presence of Cd(II) curtails the SDA efficiency, culminating in a significant reduction in fluorescence output. The proposed approach has been demonstrated to enable the selective detection of Cd(II) at concentrations of 60 pM, with the performance of the aptasensor validated in real water and rice samples. The proposed platform based on aptamer-target interaction holds immense promise as a signal-amplified and precise method for the detection of Cd(II) and has the potential to transform current hazard detection practices in food samples.
Collapse
Affiliation(s)
- Xiaochen Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, CAS, Beijing, 100101, China
| | - Tiying Suo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
- Nanjing Jiangbei New Area Biopharmaceutical Public Platform Co., Ltd., Nanjing, 211899, China
| | - Furong Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Zhaoyang Shang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, 211166, China.
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Meng X, Wen K, Citartan M, Lin Q. A comparative study of aptamer isolation by conventional and microfluidic strategies. Analyst 2023; 148:787-798. [PMID: 36688616 PMCID: PMC10143297 DOI: 10.1039/d2an01767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aptamers are single-stranded oligonucleotide molecules that bind with high affinity and specificity to a wide range of target molecules. The method of systematic evolution of ligands by exponential enrichment (SELEX) plays an essential role in the isolation of aptamers from a randomized oligonucleotide library. To date, significant modifications and improvements of the SELEX process have been achieved, engendering various forms of SELEX from conventional SELEX to microfluidics-based full-chip SELEX. While full-chip SELEX is generally considered advantageous over conventional SELEX, there has not yet been a conclusive comparison between the methods. Herein, we present a comparative study of three SELEX strategies for aptamer isolation, including those using conventional agarose bead-based partitioning, microfluidic affinity selection, and fully integrated microfluidic affinity selection and PCR amplification. Using immunoglobulin E (IgE) as a model target molecule, we compare these strategies in terms of the time and cost for each step of the SELEX process including affinity selection, amplification, and oligonucleotide conditioning. Target-binding oligonucleotides in the enriched pools are sequenced and compared to assess the relative efficacy of the SELEX strategies. We show that the microfluidic strategies are more time- and cost-efficient than conventional SELEX.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Marimuthu Citartan
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA. .,Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
19
|
Lee SY, Jang DH, Kim H, Yun M. Removal and isolation of radioactive cobalt using DNA aptamers. RADIOCHIM ACTA 2023. [DOI: 10.1515/ract-2022-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
Electricity generation using nuclear power has various advantages, such as carbon reduction, but the treatment of nuclear waste is emerging as a big issue in many countries. The development of technology that can selectively remove radionuclides from liquid radioactive waste is one of the ways to reduce nuclear waste. Here, we assessed a new way of removing radioactive cobalt from a liquid using an aptamer. Aptamers specifically binding cobalt ions were selected through systematic evolution of ligands by exponential enrichment (SELEX). Their binding strength and stability of their complexes with cobalt were analyzed through surface plasmon resonance assay and 2D program Mfold, respectively. The optimal aptamer/bead conjugate conditions for binding cobalt were established using an FA-C1 aptamer with the strongest binding to cobalt. Under these conditions, more than 80% of radioactive cobalt was removed, and more than 99.95% of removed cobalt was recovered. These results proved that radioactive cobalt removal using this aptamer can effectively reduce liquid radioactive waste. This means that the aptamer/bead complex can be utilized to remove various radioactive metal ions.
Collapse
Affiliation(s)
- Sun Young Lee
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Dae Hyuk Jang
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Resource Upcycling and Discovery Research Institute, Sejong University , Seoul , South Korea
| | - Hyuncheol Kim
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| | - Miyong Yun
- Laboratory of Functional Aptamers, Department of Bioindustry and Bioresource Engineering , College of Life Sciences, Sejong University , Seoul , South Korea
- Environmental Radioactivity Assessment Team , Korea Atomic Energy Research Institute , Daejeon , South Korea
| |
Collapse
|
20
|
Shen Y, Gao X, Lu HJ, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Hong S, Yang Z, Mou Q, Luan Y, Zhang B, Pei R, Lu Y. Monitoring leaching of Cd 2+ from cadmium-based quantum dots by an Cd aptamer fluorescence sensor. Biosens Bioelectron 2023; 220:114880. [PMID: 36402100 PMCID: PMC10139768 DOI: 10.1016/j.bios.2022.114880] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Quantum Dots (QDs) have been demonstrated with outstanding optical properties and thus been widely used in many biological and biomedical studies. However, previous studies have shown that QDs can cause cell toxicity, mainly attributable to the leached Cd2+. Therefore, identifying the leaching kinetics is very important to understand QD biosafety and cytotoxicity. Toward this goal, instrumental analyses such as inductively coupled plasma mass spectrometry (ICP-MS) have been used, which are time-consuming, costly and do not provide real-time or spatial information. To overcome these limitations, we report herein a fast and cost-effective fluorescence sensor based a Cd2+-specific aptamer for real-time monitoring the rapid leaching kinetics of QDs in vitro and in living cells. The sensor shows high specificity towards Cd2+ and is able to measure the Cd2+ leached either from water-dispersed CdTe QDs or two-layered CdSe/CdS QDs. The sensor is then used to study the stability of these two types of QDs under conditions to mimic cellular pH and temperature and the results from the sensor are similar to those obtained from ICP-MS. Finally, the sensor is able to monitor the leaching of Cd2+ from QDs in HeLa cells. The fluorescence aptamer sensor described in this study may find many applications as a tool for understanding biosafety of numerous other Cd-based QDs, including leaching kinetics and toxicity mechanisms in living systems.
Collapse
Affiliation(s)
- Shanni Hong
- Department of Medical Imaging Technology, School of Medical Imaging, Fujian Medical University, Fuzhou, Fujian, 350122, PR China; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, PR China
| | - Zhenglin Yang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yunxia Luan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interfaces, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, PR China.
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
23
|
Lam SY, Lau HL, Kwok CK. Capture-SELEX: Selection Strategy, Aptamer Identification, and Biosensing Application. BIOSENSORS 2022; 12:1142. [PMID: 36551109 PMCID: PMC9776347 DOI: 10.3390/bios12121142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/01/2023]
Abstract
Small-molecule contaminants, such as antibiotics, pesticides, and plasticizers, have emerged as one of the substances most detrimental to human health and the environment. Therefore, it is crucial to develop low-cost, user-friendly, and portable biosensors capable of rapidly detecting these contaminants. Antibodies have traditionally been used as biorecognition elements. However, aptamers have recently been applied as biorecognition elements in aptamer-based biosensors, also known as aptasensors. The systematic evolution of ligands by exponential enrichment (SELEX) is an in vitro technique used to generate aptamers that bind their targets with high affinity and specificity. Over the past decade, a modified SELEX method known as Capture-SELEX has been widely used to generate DNA or RNA aptamers that bind small molecules. In this review, we summarize the recent strategies used for Capture-SELEX, describe the methods commonly used for detecting and characterizing small-molecule-aptamer interactions, and discuss the development of aptamer-based biosensors for various applications. We also discuss the challenges of the Capture-SELEX platform and biosensor development and the possibilities for their future application.
Collapse
Affiliation(s)
- Sin Yu Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hill Lam Lau
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chun Kit Kwok
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
24
|
Jarczewska M, Szymczyk A, Zajda J, Olszewski M, Ziółkowski R, Malinowska E. Recent Achievements in Electrochemical and Optical Nucleic Acids Based Detection of Metal Ions. Molecules 2022; 27:7481. [PMID: 36364308 PMCID: PMC9657803 DOI: 10.3390/molecules27217481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2024] Open
Abstract
Recently nucleic acids gained considerable attention as selective receptors of metal ions. This is because of the possibility of adjusting their sequences in new aptamers selection, as well as the convenience of elaborating new detection mechanisms. Such a flexibility allows for easy utilization of newly emerging nanomaterials for the development of detection devices. This, in turn, can significantly increase, e.g., analytical signal intensity, both optical and electrochemical, and the same can allow for obtaining exceptionally low detection limits and fast biosensor responses. All these properties, together with low power consumption, make nucleic acids biosensors perfect candidates as detection elements of fully automatic portable microfluidic devices. This review provides current progress in nucleic acids application in monitoring environmentally and clinically important metal ions in the electrochemical or optical manner. In addition, several examples of such biosensor applications in portable microfluidic devices are shown.
Collapse
Affiliation(s)
- Marta Jarczewska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Szymczyk
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Doctoral School, Warsaw University of Technology, Plac Politechniki 1, 00-661 Warsaw, Poland
| | - Joanna Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University ofTechnology, Koszykowa 75, 00-664 Warsaw, Poland
| | - Robert Ziółkowski
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
| | - Elżbieta Malinowska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Stanisława Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| |
Collapse
|
25
|
Wang X, Liang Z, Chi X, Zhao M, Shi X, Ma Y. The construction and destruction of gold nanoparticle assembly at liquid-liquid interface for Cd2+ sensing. Anal Chim Acta 2022; 1234:340520. [DOI: 10.1016/j.aca.2022.340520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
26
|
Yu H, Zhao Q. A Sensitive Aptamer Fluorescence Anisotropy Sensor for Cd 2+ Using Affinity-Enhanced Aptamers with Phosphorothioate Modification. BIOSENSORS 2022; 12:887. [PMID: 36291024 PMCID: PMC9599812 DOI: 10.3390/bios12100887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Rapid and sensitive detection of heavy metal cadmium ions (Cd2+) is of great significance to food safety and environmental monitoring, as Cd2+ contamination and exposure cause serious health risk. In this study we demonstrated an aptamer-based fluorescence anisotropy (FA) sensor for Cd2+ with a single tetramethylrhodamine (TMR)-labeled 15-mer Cd2+ binding aptamer (CBA15), integrating the strengths of aptamers as affinity recognition elements for preparation, stability, and modification, and the advantages of FA for signaling in terms of sensitivity, simplicity, reproducibility, and high throughput. In this sensor, the Cd2+-binding-induced aptamer structure change provoked significant alteration of FA responses. To acquire better sensing performance, we further introduced single phosphorothioate (PS) modification of CBA15 at a specific phosphate backbone position, to enhance aptamer affinity by possible strong interaction between sulfur and Cd2+. The aptamer with PS modification at the third guanine (G) nucleotide (CBA15-G3S) had four times higher affinity than CBA15. Using as an aptamer probe CBA15-G3S with a TMR label at the 12th T, we achieved sensitive selective FA detection of Cd2+, with a detection limit of 6.1 nM Cd2+. This aptamer-based FA sensor works in a direct format for detection without need for labeling Cd2+, overcoming the limitations of traditional competitive immuno-FA assay using antibodies and fluorescently labeled Cd2+. This FA method enabled the detection of Cd2+ in real water samples, showing broad application potential.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
27
|
Recent developments in application of nucleic acid aptamer in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Xie X, Huang W, Shen G, Yu H, Wang L. Selection and colorimetric application of ssDNA aptamers against metamitron based on magnetic bead-SELEX. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3021-3032. [PMID: 35916160 DOI: 10.1039/d2ay00566b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metamitron (MTM) is a typical and widely used triazine herbicide in agricultural production. Its moderate toxicity and high residue in the environment have deleterious impacts on human health. The establishment of a rapid and efficient MTM detection method is of great significance. In this study, a magnetic-bead SELEX (systematic evolution of ligands by exponential enrichment) system was developed to select the MTM aptamers with high affinity and specificity. Through 10 rounds of screening, six candidate aptamers with the highest abundance were obtained by high-throughput sequencing. The homology, secondary structure, and affinity analyses were performed. The aptamer named MTM-6 was selected as the optimal aptamer with the dissociation constant (Kd) value of 16 nM. Then, a colorimetric detection method for MTM based on aptamer MTM-6 and the aggregation of gold nanoparticles (AuNPs) induced by NaCl was established with a linear range from 20 to 1000 nM (R = 0.9966) and a limit of detection (LOD) of 4.58 nM. The average recovery rate of MTM in the application of actual aqueous samples ranged from 95.40 to 107.83% with a relative standard deviation (RSD) from 1.11 to 3.48%. With considerable sensitivity and specificity, this colorimetric aptasensor is convenient and efficient, and shows bright application potential in MTM detection in aqueous samples.
Collapse
Affiliation(s)
- Xicheng Xie
- Shanghai Jiao Tong University, YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.
| | - Weiwen Huang
- Shanghai Jiao Tong University, YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.
| | - Guoqing Shen
- Shanghai Jiao Tong University, YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai 200240, China
| | - Hong Yu
- Shanghai Jiao Tong University, YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lumei Wang
- Shanghai Jiao Tong University, YunNan (Dali) Research Institute, Dali, Yunnan 671000, China.
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai 200240, China
| |
Collapse
|
29
|
Lan Y, He B, Tan CS, Ming D. Applications of Smartphone-Based Aptasensor for Diverse Targets Detection. BIOSENSORS 2022; 12:bios12070477. [PMID: 35884280 PMCID: PMC9312806 DOI: 10.3390/bios12070477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Aptamers are a particular class of functional recognition ligands with high specificity and affinity to their targets. As the candidate recognition layer of biosensors, aptamers can be used to sense biomolecules. Aptasensors, aptamer-based biosensors, have been demonstrated to be specific, sensitive, and cost-effective. Furthermore, smartphone-based devices have shown their advantages in binding to aptasensors for point-of-care testing (POCT), which offers an immediate or spontaneous responding time for biological testing. This review describes smartphone-based aptasensors to detect various targets such as metal ions, nucleic acids, proteins, and cells. Additionally, the focus is also on aptasensors-related technologies and configurations.
Collapse
Affiliation(s)
- Ying Lan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Baixun He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; (Y.L.); (B.H.)
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Correspondence: (C.S.T.); (D.M.)
| |
Collapse
|
30
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
31
|
Peng Y, Xu M, Guo Y, Yang H, Zhou Y. A novel signal amplification biosensor for detection of Cd 2+ based on asymmetric PCR. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120885. [PMID: 35051799 DOI: 10.1016/j.saa.2022.120885] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel signal amplification biosensor was utilized to detect Cd2+ based on asymmetric PCR. In the presence of Cd2+, it can bind with Cd2+-aptamer C1 which caused the complementary strand C2 to be released from double-stranded DNA C1-C2. Because the single-stranded C1 cannot be hydrolyzed by Exo III, it can be used as a template to take part in asymmetric PCR reaction. In the absence of Cd2+, the C1-C2 was digested by Exo III and no PCR template was left. During the experiment, an interesting phenomenon was found that the asymmetric PCR can obtain higher level of fluorescent signal than that of symmetric PCR. To the best of our knowledge, this is the first report of using asymmetric PCR to detect Cd2+. Through the asymmetric PCR amplification strategy, this biosensor had a low detection limit (19.93 nM) and a wide linear range (0-500 nM). Meanwhile, this biosensor showed a satisfactory selectivity and recovery rate.
Collapse
Affiliation(s)
- Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China
| | - Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou 550083, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China; College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei 434025, China.
| |
Collapse
|
32
|
Zhao X, Zhang X, Li Q, Song Y, Zhang J, Yang Y, Xia X, Han Q. Rapid determination of cadmium in Panax notoginseng using NCDs quantum carbon dots-aptamer fluorescence sensor. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Xu M, Peng Y, Yang H, Zhou Y. Highly sensitive biosensor based on aptamer and hybridization chain reaction for detection of cadmium ions. LUMINESCENCE 2022; 37:665-671. [PMID: 35146864 DOI: 10.1002/bio.4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 11/11/2022]
Abstract
In this work, a highly sensitive biosensor for detecting cadmium ions (Cd2+ ) was developed based on Cd2+ -specific DNA aptamer and hybridization chain reaction (HCR). The Cd2+ -aptamer (named S0) was used to recognize Cd2+ and trigger HCR reaction. Without Cd2+ , S0 initiated the HCR to form long nicked dsDNA structures to quench the fluorescence. Then, Cd2+ can bind with S0 to block HCR to recover fluorescence. This biosensor had high sensitivity with the detection limit of 0.36 nM and a linear range from 0 to 10 nM. Moreover, it showed a satisfactory selectivity and recovery rates.
Collapse
Affiliation(s)
- Mingming Xu
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| | - Yu Peng
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| | - Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, China
| |
Collapse
|
34
|
Xu H, Zhang S, Zhang T, Huang W, Dai Y, Zheng R, Wu G. An electrochemiluminescence biosensor for cadmium ion based on target-induced strand displacement amplification and magnetic Fe 3O 4-GO nanosheets. Talanta 2022; 237:122967. [PMID: 34736691 DOI: 10.1016/j.talanta.2021.122967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/08/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Taking advantage of an exquisite hairpin DNA for strand displacement amplification (SDA) and the magnetic Fe3O4-graphene oxide nanosheets (MGN) as the carrier, an immobilization-free ECL biosensor was constructed for ultra-trace detection of Cd2+. Firstly, the ECL probe Ru (phen)32+ easily diffuses in the solution and reaches the electrode surface to induce strong ECL signal. This is because the pre-designed hairpin DNA is constrained by MGN in the absence of Cd2+. The presence of Cd2+ releases cDNA by binding to its corresponding aptamer, leading to removal of hairpin DNA away from the surface of MGN. In this case, SDA amplification was evoked and generated numerous dsDNA which further trapped Ru (phen)32+ in its groove. It is difficult for the embedded ECL probe to touch the electrode surface to generate ECL signal. Therefore, the concentration of Cd2+ was monitored according to the attenuation of ECL signal. This method showed high sensitivity to Cd2+ with a detection limit of 1.1 × 10-4 ppb. Moreover, it not only avoids many condition optimizations required in the conventional SDA method, but also circumvent the modification and immobilization of DNA probe. This sensor is further applied in the detection of Cd2+ in the sample of traditional Chinese medicine.
Collapse
Affiliation(s)
- Huifeng Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
| | - Shiqi Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ting Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Weihua Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yuting Dai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Ruoxi Zheng
- Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China
| | - Guangwen Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China; Fujian Provincial Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, Fujian, China.
| |
Collapse
|
35
|
Acevedo AJ, Desai D, Zaman MH, Apiou-Sbirlea G. PharmaChk: a decade of research and development towards the first quantitative, field-based medicine quality screening instrument. Analyst 2022; 147:3805-3816. [DOI: 10.1039/d2an00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the scientific, engineering work over the first ten years of PharmaChk, the first quantitative, portable instrument for medicine quality screening, to illustrate what it takes for academic labs to translate observations into interventions.
Collapse
Affiliation(s)
- Andrew J. Acevedo
- Department of Dermatology, Harvard Medical School, Harvard University, 02115, Boston, MA, USA
- Mass General Research Institute, Massachusetts General Hospital, 02114, Boston, MA, USA
| | - Darash Desai
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| | - Gabriela Apiou-Sbirlea
- Department of Dermatology, Harvard Medical School, Harvard University, 02115, Boston, MA, USA
- Mass General Research Institute, Massachusetts General Hospital, 02114, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, 02114, Boston, MA, USA
| |
Collapse
|
36
|
Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water. SENSORS 2021; 22:s22010105. [PMID: 35009645 PMCID: PMC8747752 DOI: 10.3390/s22010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.
Collapse
|
37
|
Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, Zhang S, Gong Z, Shi L, Li X, Liao Q, Xiang B, Zhou M, Guo C, Li G, Zeng Z, Wu X, Xiong W. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. J Nanobiotechnology 2021; 19:403. [PMID: 34863202 PMCID: PMC8645109 DOI: 10.1186/s12951-021-01149-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
The cyclic signal amplification technology has been widely applied for the ultrasensitive detection of many important biomolecules, such as nucleic acids, proteins, enzymes, adenosine triphosphate (ATP), metal ions, exosome, etc. Due to their low content in the complex biological samples, traditional detection methods are insufficient to satisfy the requirements for monitoring those biomolecules. Therefore, effective and sensitive biosensors based on cyclic signal amplification technology are of great significance for the quick and simple diagnosis and treatment of diseases. Fluorescent biosensor based on cyclic signal amplification technology has become a research hotspot due to its simple operation, low cost, short time, high sensitivity and high specificity. This paper introduces several cyclic amplification methods, such as rolling circle amplification (RCA), strand displacement reactions (SDR) and enzyme-assisted amplification (EAA), and summarizes the research progress of using this technology in the detection of different biomolecules in recent years, in order to provide help for the research of more efficient and sensitive detection methods.
Collapse
Affiliation(s)
- Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.,Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Shkembi X, Skouridou V, Svobodova M, Leonardo S, Bashammakh AS, Alyoubi AO, Campàs M, O Sullivan CK. Hybrid Antibody-Aptamer Assay for Detection of Tetrodotoxin in Pufferfish. Anal Chem 2021; 93:14810-14819. [PMID: 34697940 PMCID: PMC8581965 DOI: 10.1021/acs.analchem.1c03671] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The marine toxin
tetrodotoxin (TTX) poses a great risk to public
health safety due to its severe paralytic effects after ingestion.
Seafood poisoning caused by the consumption of contaminated marine
species like pufferfish due to its expansion to nonendemic areas has
increased the need for fast and reliable detection of the toxin to
effectively implement prevention strategies. Liquid chromatography-mass
spectrometry is considered the most accurate method, although competitive
immunoassays have also been reported. In this work, we sought to develop
an aptamer-based assay for the rapid, sensitive, and cost-effective
detection of TTX in pufferfish. Using capture-SELEX combined with
next-generation sequencing, aptamers were identified, and their binding
properties were evaluated. Finally, a highly sensitive and user-friendly
hybrid antibody–aptamer sandwich assay was developed with superior
performance compared to several assays reported in the literature
and commercial immunoassay kits. The assay was successfully applied
to the quantification of TTX in pufferfish extracts, and the results
obtained correlated very well with a competitive magnetic bead-based
immunoassay performed in parallel for comparison. This is one of the
very few works reported in the literature of such hybrid assays for
small-molecule analytes whose compatibility with field samples is
also demonstrated.
Collapse
Affiliation(s)
- Xhensila Shkembi
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Marketa Svobodova
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O Sullivan
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain.,Institució Catalana de Recerca I Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
39
|
Yang Y, Tang Y, Wang C, Liu B, Wu Y. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food. Anal Chim Acta 2021; 1179:338837. [PMID: 34535250 DOI: 10.1016/j.aca.2021.338837] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Pyrethroid pesticides residues will not only pollute the environment, but also cause high toxicity to the human body. It is significant to establish an efficient and accurate method for pyrethroid detection in food. Considering that the common biomolecules like antibody is complicated and easy to inactivate, it is urgent to find a new type of biomolecule to specifically recognize pyrethroid pesticides. This study proposed the Capture-SELEX strategy to firstly select λ-cyhalothrin aptamer by immobilizing random ssDNA library. High-throughput sequencing was performed on the enriched ssDNA library through multiple Capture-SELEX rounds. Comprehensively inspecting structural similarity and homology, six sequences were chosen from five families for further analysis. The results showed that the aptamer (named LCT-1) could specifically recognize λ-cyhalothrin with the strongest affinity (Kd = 50.64 ± 4.33 nmol L-1). Molecular docking results revealed that the binding sites between λ-cyhalothrin and LCT-1 aptamer are mainly related to the bases A-5, C-6, C-28, A-29, C-30, G-31 and G-32. The LCT-1 aptamer was truncated to a shorter sequence (named as LCT-1-39) by removing other irrelevant bases, and its Kd value was determined as (10.27 ± 1.33) nmol·L-1 by Microscale Thermophoresis (MST). Both LCT-1 and LCT-1-39 aptamers were employed as recognition molecules to establish the colorimetric aptasensors for λ-cyhalothrin detection, which displayed good repeatability and reproducibility. The detection limit of the aptasensors were individually calculated as 0.0197 μg ml-1 and 0.0186 μg ml-1, and their recovery rate of λ-cyhalothrin in pear and cucumber samples was in the range of 82.93-95.50%. This article provides a promising application for the detection of λ-cyhalothrin.
Collapse
Affiliation(s)
- Yuxia Yang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Bangyan Liu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China; Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, 644000, China.
| |
Collapse
|
40
|
Kim DM, Go MJ, Lee J, Na D, Yoo SM. Recent Advances in Micro/Nanomaterial-Based Aptamer Selection Strategies. Molecules 2021; 26:5187. [PMID: 34500620 PMCID: PMC8434002 DOI: 10.3390/molecules26175187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Aptamers are artificial nucleic acid ligands that have been employed in various fundamental studies and applications, such as biological analyses, disease diagnostics, targeted therapeutics, and environmental pollutant detection. This review focuses on the recent advances in aptamer discovery strategies that have been used to detect various chemicals and biomolecules. Recent examples of the strategies discussed here are based on the classification of these micro/nanomaterial-mediated systematic evolution of ligands by exponential enrichment (SELEX) platforms into three categories: bead-mediated, carbon-based nanomaterial-mediated, and other nanoparticle-mediated strategies. In addition to describing the advantages and limitations of the aforementioned strategies, this review discusses potential strategies to develop high-performance aptamers.
Collapse
Affiliation(s)
- Dong-Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Myeong-June Go
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (M.-J.G.); (J.L.)
| |
Collapse
|
41
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
42
|
Kumar A, Sardhalia V, Sahoo PR, Kumar A, Kumar S. Structure analysis and evaluation of two probes for the colorimetric detection of Hg2+ and turn-on fluorescence-based detection of Cd2+ ions in an aqueous solution. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Screening and application of a broad-spectrum aptamer for acyclic guanosine analogues. Anal Bioanal Chem 2021; 413:4855-4863. [PMID: 34110440 DOI: 10.1007/s00216-021-03446-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Acyclic guanosine analogues, a class of widely used antiviral drugs, can cause chronic toxicity and virus resistance. Therefore, it is essential to establish rapid and accurate methods to detect acyclic guanosine analogues. In this study, five acyclic guanosine analogues (acyclovir, famciclovir, ganciclovir, penciclovir, and valaciclovir) were used as positive targets to obtain broad-spectrum aptamers through Capture-SELEX technology. Real-time quantitative PCR (Q-PCR) was used to monitor the aptamer SELEX process. After the sixteen rounds of selection against mixed targets, sequences were obtained by high-throughput sequencing (HTS). Furthermore, a broad-spectrum aptamer, named CIV6, was found as the higher performance aptamer that was suitable for five acyclic guanosine analogues by graphene oxide (GO) polarization and fluorescence assay. Finally, the aptamer CIV6 was used to construct GO fluorescence assay to detect five acyclic guanosine analogues. The limits of detection (LOD) of acyclovir, famciclovir, ganciclovir, penciclovir, and valaciclovir were 0.48 ng·mL-1, 0.53 ng·mL-1, 0.50 ng·mL-1, 0.56 ng·mL-1, and 0.38 ng·mL-1, respectively.
Collapse
|
44
|
Guo W, Zhang C, Ma T, Liu X, Chen Z, Li S, Deng Y. Advances in aptamer screening and aptasensors' detection of heavy metal ions. J Nanobiotechnology 2021; 19:166. [PMID: 34074287 PMCID: PMC8171055 DOI: 10.1186/s12951-021-00914-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Heavy metal pollution has become more and more serious with industrial development and resource exploitation. Because heavy metal ions are difficult to be biodegraded, they accumulate in the human body and cause serious threat to human health. However, the conventional methods to detect heavy metal ions are more strictly to the requirements by detection equipment, sample pretreatment, experimental environment, etc. Aptasensor has the advantages of strong specificity, high sensitivity and simple preparation to detect small molecules, which provides a new direction platform in the detection of heavy metal ions. This paper reviews the selection of aptamers as target for heavy metal ions since the 21th century and aptasensors application for detection of heavy metal ions that were reported in the past five years. Firstly, the selection methods for aptamers with high specificity and high affinity are introduced. Construction methods and research progress on sensor based aptamers as recognition element are also introduced systematically. Finally, the challenges and future opportunities of aptasensors in detecting heavy metal ions are discussed.
Collapse
Affiliation(s)
- Wenfei Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Tingting Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| |
Collapse
|
45
|
Wang G, Wu M, Chu LT, Chen TH. Portable microfluidic device with thermometer-like display for real-time visual quantitation of Cadmium(II) contamination in drinking water. Anal Chim Acta 2021; 1160:338444. [PMID: 33894969 DOI: 10.1016/j.aca.2021.338444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd2+) is a toxic metal ion widely existing in water, soil and food. Conventional water quality control heavily relies on expensive, bulky and sophisticated instrument such as spectrometry, which is time-consuming and incompatible with on-site, real-time detection. Here, a portable microfluidic device with thermometer-like visual readouts is developed for real-time quantitation of cadmium (II) contamination in drinking water. We use Cd2+-dependent DNAzyme (Cd16), which is cleaved when Cd2+ is present, creating a single strand DNA which triggers catalytic hairpin assembly (CHA) with two hairpins H1 and H2 as the building blocks. Plenty of H1H2 complex, the product after the Cd2+-mediated CHA, are generated, which can connect magnetic microparticles (MMPs) and polystyrene microparticles (PMPs), forming "MMPs-H1H2-PMPs" sandwich structure. To provide visual readout to quantitate the particle connection, the particle solution is loaded into a portable microfluidic chip. A magnetic separator first removes MMPs and the connected PMPs, while free PMPs can continue flowing until accumulating into a bar at the particle dam. Shown as a thermometer-like display, the accumulating length is inversely proportional to the concentration of Cd2+, enabling quantitative detection of Cd2+ by the naked eye. The proposed device exhibits a limit of detection of 11.3 nM of Cd2+, selectivity >200-fold against other metal ions, high tolerance to the interferents present in drinking water and high recovery rate in tap water. With high analytical performance without any sample preparation step, this portable device is highly promising in real-time monitoring in urban drinking water at sites.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
46
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. A Facile Aptasensor for Instantaneous Determination of Cadmium Ions Based on Fluorescence Amplification Effect of MOPS on FAM-Labeled Aptamer. BIOSENSORS-BASEL 2021; 11:bios11050133. [PMID: 33922514 PMCID: PMC8145427 DOI: 10.3390/bios11050133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Analytical performance and efficiency are two pivotal issues for developing an on-site and real-time aptasensor for cadmium (Cd2+) determination. However, suffering from redundant preparations, fabrications, and incubation, most of them fail to well satisfy the requirements. In this work, we found that fluorescence intensity of 6-carboxyfluorescein(FAM)-labeled aptamer (FAM-aptamer) could be remarkably amplified by 3-(N-morpholino)propane sulfonic acid (MOPS), then fell proportionally as Cd2+ concentration introduced. Importantly, the fluorescence variation occurred immediately after addition of Cd2+, and would keep stable for at least 60 min. Based on the discovery, a facile and ultra-efficient aptasensor for Cd2+ determination was successfully developed. The sensing mechanism was confirmed by fluorescence pattern, circular dichroism (CD) and intermolecular interaction related to pKa. Under the optimal conditions, Cd2+ could be determined rapidly from 5 to 4000 ng mL-1. The detection limit (1.92 ng mL-1) was also lower than the concentration limit for drinking water set by WHO and EPA (3 and 5 ng mL-1, respectively). More than a widely used buffer, MOPS was firstly revealed to have fluorescence amplification effect on FAM-aptamer upon a given context. Despite being sensitive to pH, this simple, high-performance and ultra-efficient aptasensor would be practical for on-site and real-time monitoring of Cd2+.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-21-34205762
| |
Collapse
|
47
|
A phosphorescence resonance energy transfer-based "off-on" long afterglow aptasensor for cadmium detection in food samples. Talanta 2021; 232:122409. [PMID: 34074399 DOI: 10.1016/j.talanta.2021.122409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Cadmium contamination is a severe food safety risk for human health. Herein, a long afterglow "off-on" phosphorescent aptasensor was developed based on phosphorescence resonance energy transfer (PRET) for the detection of Cd2+ in complex samples which minimizes the interference of background fluorescence. In this scheme, initially the phosphorescence of Cd2+-binding aptamer conjugated long afterglow nanoparticles (Zn2GeO4:Mn) was quenched by black hole quencher 1 (BHQ1) modified complementary DNA. Upon encountering of Cd2+, the aptamer interacted with Cd2+ and the complementary DNA with BHQ1 was released, leading to phosphorescence recovery. The content of Cd2+ could be quantified by the intensity of phosphorescence recovery with 100 μs gate time (which eliminated the sample autofluorescence) with a linear relationship between 0.5 and 50 μg L-1 and a limit of detection (LOD) of 0.35 μg L-1. This method was successfully demonstrated for Cd2+ detection in drinking water and yesso scallop samples. The "off-on" phosphorescent aptasensor based on PRET of long afterglow nanomaterials could be an effective tool for Cd2+ detection in food samples.
Collapse
|
48
|
Lyu C, Khan IM, Wang Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021; 229:122274. [PMID: 33838776 DOI: 10.1016/j.talanta.2021.122274] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
The emerging aptamer, developed through the systematic evolution of ligands by exponential enrichment (SELEX) process, has revolutionized and facilitated the discoveries in basic research. Among all SELEX technology, Capture-SELEX is a variant of the in vitro selection process, which is suitable for isolating aptamers against small molecules. Capture-SELEX library was developed to enable the immobilization of the oligonucleotides instead of the target molecules during the aptamer selection process. The review provides an update on the recent-advances in this new screening method with particular emphasis on key points of capture protocol and its applications. The limitations and the prospects of the Capture-SELEX are also discussed. We hope that present review will inspire more researchers to understand the selection problems from the perspective of Capture-SELEX. Moreover, it will open new pave to improve the efficiency and success of screening to meet the growing demand for aptasensor discovery in small molecules.
Collapse
Affiliation(s)
- Chen Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China; Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province, China.
| |
Collapse
|
49
|
Mukherjee S, Bhattacharyya S, Ghosh K, Pal S, Halder A, Naseri M, Mohammadniaei M, Sarkar S, Ghosh A, Sun Y, Bhattacharyya N. Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Lee CS, Yu SH, Kim TH. A “turn-on” electrochemical aptasensor for ultrasensitive detection of Cd2+ using duplexed aptamer switch on electrochemically reduced graphene oxide electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|