1
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
2
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
3
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:bios12100905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Properties of a Novel Salmonella Phage L66 and Its Application Based on Electrochemical Sensor-Combined AuNPs to Detect Salmonella. Foods 2022; 11:foods11182836. [PMID: 36140964 PMCID: PMC9498146 DOI: 10.3390/foods11182836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/19/2022] Open
Abstract
Salmonella is widespread in nature and poses a significant threat to human health and safety. Phage is considered as a new tool for the control of food-borne pathogens. In this study, Salmonella phage L66 (phage L66) was isolated from sewage by using Salmonella Typhimurium ATCC 14028 as the host bacterium, and its basic properties were obtained by biological and bioinformatics analysis. Phage L66 had a broad host spectrum, with an optimal infection complex of 0.1 and an optimal adsorption rate of 90.06%. It also exhibited thermal stability between 30 °C~60 °C and pH stability pH from 3 to 12, and the average lysis amount was 46 PFU/cell. The genome sequence analysis showed that the genome length of phage L66 was 157,675 bp and the average GC content was 46.13%. It was predicted to contain 209 genes, 97 of which were annotated with known functions based on the evolutionary analysis, and phage L66 was attributed to the Kuttervirus genus. Subsequently, an electrochemical sensor using phage L66 as a recognition factor was developed and the working electrode GDE-AuNPs-MPA-Phage L66 was prepared by layer-by-layer assembly for the detection of Salmonella. The slope of the impedance was 0.9985 within the scope from 20 to 2 × 107 CFU/mL of bacterial concentration. The minimum detection limit of the method was 13 CFU/mL, and the average spiked recovery rate was 102.3% with a relative standard deviation of 5.16%. The specificity and stability of this sensor were excellent, and it can be applied for the rapid detection of Salmonella in various foods. It provides a phage-based electrochemical biosensor for the detection of pathogenic bacteria.
Collapse
|
5
|
Wang J, Li H, Li C, Ding Y, Wang Y, Zhu W, Wang J, Shao Y, Pan H, Wang X. EIS biosensor based on a novel Myoviridae bacteriophage SEP37 for rapid and specific detection of Salmonella in food matrixes. Food Res Int 2022; 158:111479. [DOI: 10.1016/j.foodres.2022.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/27/2022]
|
6
|
Abstract
Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.
Collapse
Affiliation(s)
- Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Liu H. Turning the Page: Advancing Detection Platforms for Sulfate Reducing Bacteria and their Perks. CHEM REC 2021; 22:e202100166. [PMID: 34415677 DOI: 10.1002/tcr.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Sulfate reducing bacteria (SRB) are blamed as main culprits in triggering huge corrosion damages by microbiologically influenced corrosion. They obtained their energy through enzymatic conversion of sulfates to sulfides which are highly corrosive. However, conventional SRB detection methods are complex, time-consuming and are not enough sensitive for reliable detection. The advanced biosensing technologies capable of overcoming the aforementioned drawbacks are in demand. So, nanomaterials being economical, environmental friendly and showing good electrocatalytic properties are promising candidates for electrochemical detection of SRB as compared with antibody based assays. Here, we summarize the recent advances in the detection of SRB using different techniques such as PCR, UV visible method, fluorometric method, immunosensors, electrochemical sensors and photoelectrochemical sensors. We also discuss the SRB detection based on determination of sulfide, typical metabolic product of SRB.
Collapse
Affiliation(s)
- Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.,Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ayesha Aziz
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Ghazala Ashraf
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
8
|
O'Connell L, Marcoux PR, Roupioz Y. Strategies for Surface Immobilization of Whole Bacteriophages: A Review. ACS Biomater Sci Eng 2021; 7:1987-2014. [PMID: 34038088 DOI: 10.1021/acsbiomaterials.1c00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriophage immobilization is a key unit operation in emerging biotechnologies, enabling new possibilities for biodetection of pathogenic microbes at low concentration, production of materials with novel antimicrobial properties, and fundamental research on bacteriophages themselves. Wild type bacteriophages exhibit extreme binding specificity for a single species, and often for a particular subspecies, of bacteria. Since their specificity originates in epitope recognition by capsid proteins, which can be altered by chemical or genetic modification, their binding specificity may also be redirected toward arbitrary substrates and/or a variety of analytes in addition to bacteria. The immobilization of bacteriophages on planar and particulate substrates is thus an area of active and increasing scientific interest. This review assembles the knowledge gained so far in the immobilization of whole phage particles, summarizing the main chemistries, and presenting the current state-of-the-art both for an audience well-versed in bioconjugation methods as well as for those who are new to the field.
Collapse
Affiliation(s)
- Larry O'Connell
- Université Grenoble Alpes, CEA, LETI, F38054 Grenoble, France.,Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| | | | - Yoann Roupioz
- Université Grenoble Alpes, CNRS, CEA, IRIG, SyMMES, 38000 Grenoble, France
| |
Collapse
|
9
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
10
|
Bacillus thuringiensis Cells Selectively Captured by Phages and Identified by Surface Enhanced Raman Spectroscopy Technique. MICROMACHINES 2021; 12:mi12020100. [PMID: 33498471 PMCID: PMC7909556 DOI: 10.3390/mi12020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/11/2022]
Abstract
In this work, the results on the detection and identification of Bacillus thuringiensis (Bt) cells by using surface-enhanced Raman spectroscopy (SERS) are presented. Bt has been chosen as a harmless surrogate of the pathogen Bacillus anthracis (Ba) responsible for the deadly Anthrax disease, because of their genetic similarities. Drops of 200 μL of Bt suspensions, with concentrations 102 CFU/mL, 104 CFU/mL, 106 CFU/mL, were deposited on a SERS chip and sampled after water evaporation. To minimize the contribution to the SERS data given by naturally occurring interferents present in a real scenario, the SERS chip was functionalized with specific phage receptors BtCS33, that bind Bt (or Ba) cells to the SERS surface and allow to rinse the chip removing unwanted contaminants. Different chemometric approaches were applied to the SERS data to classify spectra from Bt-contaminated and uncontaminated areas of the chip: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Data Driven Soft Independent Modeling of Class Analogy (DD-SIMCA). The first two was tested and trained by using data from both contaminated and un-contaminated chips, the last was trained by using data from un-contaminated chips only and tested with all the available data. All of them were able to correctly classify the SERS spectra with great accuracy, the last being suitable for an automated recognition procedure.
Collapse
|
11
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses 2020; 12:v12090944. [PMID: 32858938 PMCID: PMC7552063 DOI: 10.3390/v12090944] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome. Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of diagnostic assays, many of which outperform conventional culture-based and molecular detection methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria, most phage-inspired detection systems harness viral genome delivery and amplification: to this end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose activity is typically detected through enzymatic substrate conversion to indicate the presence of a viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of reporter protein production that enables highly sensitive detection. In this review, we highlight recent advances in infection-based detection methods, present guidelines for reporter phage construction, outline technical aspects of reporter phage engineering, and discuss some of the advantages and pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and engineering further substantiate the potential of these highly evolved nanomachines as rapid and inexpensive detection systems to replace or complement traditional diagnostic approaches.
Collapse
|
13
|
Xu J, Chau Y, Lee YK. Phage-based Electrochemical Sensors: A Review. MICROMACHINES 2019; 10:E855. [PMID: 31817610 PMCID: PMC6952932 DOI: 10.3390/mi10120855] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023]
Abstract
Phages based electrochemical sensors have received much attention due to their high specificity, sensitivity and simplicity. Phages or bacteriophages provide natural affinity to their host bacteria cells and can serve as the recognition element for electrochemical sensors. It can also act as a tool for bacteria infection and lysis followed by detection of the released cell contents, such as enzymes and ions. In addition, possible detection of the other desired targets, such as antibodies have been demonstrated with phage display techniques. In this paper, the recent development of phage-based electrochemical sensors has been reviewed in terms of the different immobilization protocols and electrochemical detection techniques.
Collapse
Affiliation(s)
- Jingting Xu
- Bioengineering Program, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (J.X.); (Y.C.)
| | - Ying Chau
- Bioengineering Program, Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China; (J.X.); (Y.C.)
| | - Yi-kuen Lee
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
14
|
Sedki M, Chen X, Chen C, Ge X, Mulchandani A. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms. Biosens Bioelectron 2019; 148:111794. [PMID: 31678821 DOI: 10.1016/j.bios.2019.111794] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/01/2022]
Abstract
A highly sensitive and selective non-lytic M13 phage-based electrochemical impedance spectroscopy (EIS) cytosensor for early detection of coliforms is introduced for the first time. Gold nanoparticles were electrochemically deposited on the surface of glassy carbon electrode, and the M13 phage particles were immobilized on them using 3-mercaptopropionic acid linker and zero-length crosslinking chemistry (EDC/NHS). Next, the sensor surface was blocked to avoid non-specific binding. The M13-EIS cytosensor was tested for detection of F+ pili Escherichia coli species, using XL1-Blue and K12 strains, as examples of coliforms. The selectivity against non-host strains was demonstrated using Pseudomonas Chlororaphis. The binding of E. coli to the M13 phage on the cytosensor surface increased the charge transfer resistance, enabling detection of coliforms. The biosensor achieved a limit of detection (LOD) of 14 CFU/mL, the lowest reported to-date using EIS-phage sensors, and exhibited a high selectivity towards the tested coliforms. The SEM micrographs confirmed the successful capturing of E. coli on the M13-based EIS cytosensor. Moreover, the sensor showed almost the same sensitivity in the simulated river water samples as in phosphate buffer, reflecting its applicability to real samples. On the other hand, this sensor system exhibited high stability under harsh environmental conditions of pH (3.0-10.0) and temperature as high as 45 °C for up to two weeks. Overall, this sensor system has excellent potential for real field detection of fecal coliforms.
Collapse
Affiliation(s)
- Mohammed Sedki
- Department of Materials Science and Engineering, University of California, Riverside, CA, 92521, USA
| | - Xingyu Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
15
|
Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 2018; 118:204-216. [PMID: 30081260 DOI: 10.1016/j.bios.2018.07.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
In nature, different types of bacteria including pathogenic and beneficial ones exist in different habitats including environment, plants, animals, and humans. Among these, the pathogenic bacteria should be detected at earlier stages of infection; however, the conventional bacterial detection procedures are complex and time-consuming. In contrast, the advanced molecular approaches such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) have significantly reduced the detection time; nevertheless, such approaches are not acceptable to a large extent and are mostly laborious and expensive. Therefore, the development of fast, inexpensive, sensitive, and specific approaches for pathogen detection is essential for different applications in food industry, clinical diagnosis, biological defense and counter-terrorism. To this end, the novel sensing approaches involving bacteriophages as recognition elements are receiving immense consideration owing to their high degree of specificity, accuracy, and reduced assay times. Besides, the phages are easily produced and are tolerant to extreme pH, temperature, and organic solvents as compared to antibodies. To date, several phage-based assays and sensors have been developed involving different systems such as quartz crystal microbalance, magnetoelastic platform, surface plasmon resonance, and electrochemical methods. This review highlights different taxonomic species and genera of phages infecting eight common disease-causing bacterial genera. It further overviews the most recent advancements in phage-based sensing assays and sensors. Likewise, it elaborates various whole-phage and phage components-based assays. Overall, this review emphasizes the importance of electrochemical biosensors as simple, reliable, cost-effective, and accurate tools for bacterial detection.
Collapse
Affiliation(s)
- Umer Farooq
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiaoli Yang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shenqi Wang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
16
|
Hoyos-Nogués M, Gil FJ, Mas-Moruno C. Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules 2018; 23:molecules23071683. [PMID: 29996565 PMCID: PMC6100210 DOI: 10.3390/molecules23071683] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections represent a serious threat in modern medicine. In particular, biofilm treatment in clinical settings is challenging, as biofilms are very resistant to conventional antibiotic therapy and may spread infecting other tissues. To address this problem, biosensing technologies are emerging as a powerful solution to detect and identify bacterial pathogens at the very early stages of the infection, thus allowing rapid and effective treatments before biofilms are formed. Biosensors typically consist of two main parts, a biorecognition moiety that interacts with the target (i.e., bacteria) and a platform that transduces such interaction into a measurable signal. This review will focus on the development of impedimetric biosensors using antimicrobial peptides (AMPs) as biorecognition elements. AMPs belong to the innate immune system of living organisms and are very effective in interacting with bacterial membranes. They offer unique advantages compared to other classical bioreceptor molecules such as enzymes or antibodies. Moreover, impedance-based sensors allow the development of label-free, rapid, sensitive, specific and cost-effective sensing platforms. In summary, AMPs and impedimetric transducers combine excellent properties to produce robust biosensors for the early detection of bacterial infections.
Collapse
Affiliation(s)
- Mireia Hoyos-Nogués
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - F J Gil
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain.
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| |
Collapse
|
17
|
Verma M, Kaur N, Singh N. Naphthalimide-Based DNA-Coupled Hybrid Assembly for Sensing Dipicolinic Acid: A Biomarker for Bacillus anthracis Spores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6591-6600. [PMID: 29787278 DOI: 10.1021/acs.langmuir.8b00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We have designed and synthesized a novel, water-soluble naphthalimide-histidine receptor (1) with excellent fluorescent properties. Functioning of the synthesized receptor was performed through developing their DNA-receptor hybrid assembly (DRHA), which has shown significant changes in the emission profile upon interactions with dipicolinic acid (DPA), a biomarker for Bacillus anthracis spores. DRHA showed fluorescence enhancement upon binding with DPA with the characteristic of internal charge transfer. It is notable that this assembly exhibited a significant limit of detection (12 nM) toward DPA. The mechanism of sensing was fully defined using ethidium bromide (EtBr) interaction studies as well as Fourier transform infrared spectroscopic analysis, which describes the binding mode of DRHA with DPA. This assembly selectively interacts with DPA over other anions, common cellular cations, and aromatic acids in aqueous media.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar , Punjab , India
| | - Navneet Kaur
- Department of Chemistry , Panjab University , Chandigarh 160014 , India
| | - Narinder Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar , Punjab , India
| |
Collapse
|
18
|
Donmez M, Oktem HA, Yilmaz MD. Ratiometric fluorescence detection of an anthrax biomarker with Eu3+-chelated chitosan biopolymers. Carbohydr Polym 2018; 180:226-230. [DOI: 10.1016/j.carbpol.2017.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023]
|
19
|
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 2017; 23:448-455. [PMID: 29158194 DOI: 10.1016/j.drudis.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
20
|
Kolton CB, Podnecky NL, Shadomy SV, Gee JE, Hoffmaster AR. Bacillus anthracis gamma phage lysis among soil bacteria: an update on test specificity. BMC Res Notes 2017; 10:598. [PMID: 29145870 PMCID: PMC5691394 DOI: 10.1186/s13104-017-2919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus anthracis, which causes anthrax in humans and animals, is enzootic in parts of the U.S. state of Texas where cases are typically reported in animals annually. The gamma phage lysis assay is a common diagnostic method for identification of B. anthracis and is based on the bacterium's susceptibility to lysis. This test has been shown to be 97% specific for B. anthracis, as a small number of strains of other Bacillus spp. are known to be susceptible. In this study, we evaluated the performance of a combination of B. anthracis diagnostic assays on 700 aerobic, spore-forming isolates recovered from soil collected in Texas. These assays include phenotypic descriptions, gamma phage susceptibility, and real-time polymerase chain reaction specific for B. anthracis. Gamma phage-susceptible isolates were also tested using cell wall and capsule direct fluorescent-antibody assays specific for B. anthracis. Gamma phage-susceptible isolates that were ruled out as B. anthracis were identified by 16S rRNA gene sequencing. FINDINGS We identified 29 gamma phage-susceptible isolates. One was confirmed as B. anthracis, while the other 28 isolates were ruled out for B. anthracis by the other diagnostic tests. Using 16S rRNA gene sequencing results, we identified these isolates as members of the B. cereus group, Bacillus sp. (not within B. cereus group), Lysinibacillus spp., and Solibacillus silvestris. Based on these results, we report a specificity of 96% for gamma phage lysis as a diagnostic test for B. anthracis, and identified susceptible isolates outside the Bacillus genus. CONCLUSIONS In this study we found gamma phage susceptibility to be consistent with previously reported results. However, we identified non-B. anthracis environmental isolates (including isolates from genera other than Bacillus) that are susceptible to gamma phage lysis. To date, susceptibility to gamma phage lysis has not been reported in genera other than Bacillus. Though these isolates are not of clinical origin, description of unexpected positives is important, especially as new diagnostic assays for B. anthracis are being developed based on gamma phage lysis or gamma phage proteins.
Collapse
Affiliation(s)
- Cari B Kolton
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.
| | - Nicole L Podnecky
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.,Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Tromsø, Hansine Hansens veg 18, Tromsø, Norway
| | - Sean V Shadomy
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA.,One Health Office, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30333, USA.,Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153, Rome, Italy
| | - Jay E Gee
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| | - Alex R Hoffmaster
- Centers for Disease Control and Prevention, U.S. Department of Health and Human Services, Atlanta, GA, USA
| |
Collapse
|
21
|
Zhou Y, Marar A, Kner P, Ramasamy RP. Charge-Directed Immobilization of Bacteriophage on Nanostructured Electrode for Whole-Cell Electrochemical Biosensors. Anal Chem 2017; 89:5734-5741. [PMID: 28485143 DOI: 10.1021/acs.analchem.6b03751] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A new type of carbon nanotube (CNT)-based impedimetric biosensing method has been developed for rapid and selective detection of live bacterial cells. A proof-of-concept study was conducted using T2 bacteriophage-based biosensors for electrochemical detection of Escherichia coli B. The T2 bacteriophage (virus) served as the biorecognition element, which was immobilized on polyethylenimine (PEI)-functionalized carbon nanotube transducer on glassy carbon electrode. Charge-directed, orientated immobilization of bacteriophage particles on carbon nanotubes was achieved through covalent linkage of phage capsid onto the carbon nanotubes. The presence of the immobilized phage on carbon nanotube-modified electrode was confirmed by fluorescence microscopy. Electrochemical impedance spectroscopy (EIS) was used to monitor the changes in the interfacial impedance due to the binding of E. coli B to T2 phage on the CNT-modified electrode. The detection was highly selective toward the B strain of E. coli as no signal was observed for the nonhost K strain of E. coli. The present achievable detection limit of the biosensor is 103 CFU/mL.
Collapse
Affiliation(s)
- Yan Zhou
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Abhijit Marar
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Peter Kner
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering; ‡Department of Chemistry; and §School of Electrical and Computer Engineering, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
22
|
Janczuk M, Richter Ł, Hoser G, Kawiak J, Łoś M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Bacteriophage-Based Bioconjugates as a Flow Cytometry Probe for Fast Bacteria Detection. Bioconjug Chem 2016; 28:419-425. [DOI: 10.1021/acs.bioconjchem.6b00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Janczuk
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Łukasz Richter
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Grażyna Hoser
- Laboratory
of Flow Cytometry, Medical Center of Postgraduate Education, Marymoncka
99/103, 01-813 Warsaw, Poland
| | - Jerzy Kawiak
- Department
of Biomedical Systems and Technologies, Nalecz Institute of Biocybernetics
and Biomedical Engineering, Polish Academy of Sciences, Trojdena
4, 02-109 Warsaw, Poland
| | - Marcin Łoś
- Department
of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
- Phage Consultants, Partyzantów
10/18, 80-254 Gdansk, Poland
| | | | - Jan Paczesny
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Hołyst
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Janczuk M, Niedziółka-Jönsson J, Szot-Karpińska K. Bacteriophages in electrochemistry: A review. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bhardwaj N, Bhardwaj SK, Mehta J, Mohanta GC, Deep A. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae). Anal Biochem 2016; 505:18-25. [DOI: 10.1016/j.ab.2016.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
|
25
|
Sharma MK, Narayanan J, Upadhyay S, Goel AK. Electrochemical immunosensor based on bismuth nanocomposite film and cadmium ions functionalized titanium phosphates for the detection of anthrax protective antigen toxin. Biosens Bioelectron 2015; 74:299-304. [DOI: 10.1016/j.bios.2015.06.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
26
|
Peltomaa R, López-Perolio I, Benito-Peña E, Barderas R, Moreno-Bondi MC. Application of bacteriophages in sensor development. Anal Bioanal Chem 2015; 408:1805-28. [DOI: 10.1007/s00216-015-9087-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022]
|
27
|
Shabani A, Marquette CA, Mandeville R, Lawrence MF. Modern Probe-Assisted Methods for the Specific Detection of Bacteria. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.82011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Hosseinidoust Z, Olsson AL, Tufenkji N. Going viral: Designing bioactive surfaces with bacteriophage. Colloids Surf B Biointerfaces 2014; 124:2-16. [DOI: 10.1016/j.colsurfb.2014.05.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
|
29
|
Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B, Borysowski J, Górski A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:735413. [PMID: 25247187 PMCID: PMC4163355 DOI: 10.1155/2014/735413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 07/25/2014] [Indexed: 12/14/2022]
Abstract
Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Marlena Kłak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland
| |
Collapse
|
30
|
Wu L, Luan T, Yang X, Wang S, Zheng Y, Huang T, Zhu S, Yan X. Trace Detection of Specific Viable Bacteria Using Tetracysteine-Tagged Bacteriophages. Anal Chem 2013; 86:907-12. [DOI: 10.1021/ac403572z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lina Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tian Luan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaoting Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shuo Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Zheng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tianxun Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shaobin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiaomei Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
31
|
Abstract
Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.
Collapse
Affiliation(s)
- Jong-Wook Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Jangwon Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology, Seoul, Korea
| | - Mintai P Hwang
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, University of Science and Technology, Seoul, Korea
| |
Collapse
|
32
|
Li Q, Sun K, Chang K, Yu J, Chiu DT, Wu C, Qin W. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots. Anal Chem 2013; 85:9087-91. [PMID: 23964730 DOI: 10.1021/ac4016616] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a ratiometric fluorescent sensor based on semiconducting polymer dots chelated with terbium ions to detect bacterial spores in aqueous solution. Fluorescent polyfluorene (PFO) dots serve as a scaffold to coordinate with lanthanide ions that can be sensitized by calcium dipicolinate (CaDPA), an important biomarker of bacterial spores. The absorption band of PFO dots extends to deep UV region, allowing both the reference and the sensitizer can be excited with a single wavelength (~275 nm). The fluorescence of PFO remains constant as a reference, while the Tb(3+) ions exhibit enhanced luminescence upon binding with DPA. The sharp fluorescence peaks of β-phase PFO dots and the narrow-band emissions of Tb(3+) ions enable ratiometric and sensitive CaDPA detection with a linear response over nanomolar concentration and a detection limit of ~0.2 nM. The Pdots based sensor also show excellent selectivity to CaDPA over other aromatic ligands. Our results indicate that the Tb(3+) chelated Pdots sensor is promising for sensitive and rapid detection of bacterial spores.
Collapse
Affiliation(s)
- Qiong Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun, Jilin 130012, China
| | | | | | | | | | | | | |
Collapse
|