1
|
Bahraoui S, Tejedor G, Mausset-Bonnefont AL, Autelitano F, Barthelaix A, Terraza-Aguirre C, Gisbert V, Arribat Y, Jorgensen C, Wei M, Djouad F. PLOD2, a key factor for MRL MSC metabolism and chondroprotective properties. Stem Cell Res Ther 2024; 15:70. [PMID: 38454524 PMCID: PMC10921602 DOI: 10.1186/s13287-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.
Collapse
Affiliation(s)
- Sarah Bahraoui
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Gautier Tejedor
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Anne-Laure Mausset-Bonnefont
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | | | - Audrey Barthelaix
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Vincent Gisbert
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Yoan Arribat
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - Mingxing Wei
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| |
Collapse
|
2
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
3
|
Sun J, Tan H, Liu H, Jin D, Yin M, Lin H, Qu X, Liu C. A reduced polydopamine nanoparticle-coupled sprayable PEG hydrogel adhesive with anti-infection activity for rapid wound sealing. Biomater Sci 2021; 8:6946-6956. [PMID: 32996923 DOI: 10.1039/d0bm01213k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is a growing demand to develop sprayable hydrogel adhesives with rapid-forming and antibacterial abilities to instantly seal open wounds and combat pathogen infection. Herein, we propose to design a polydopamine nanoparticle (PDA NP) coupled PEG hydrogel that can quickly solidify via an amidation reaction after spraying as well as tightly binding PDA NPs to deliver reactive oxygen species (ROS) and induce a photothermal effect for bactericidal activity, and provide a hydrophilic surface for antifouling activity. The molecular structure of the 4-arm-PEG-NHS precursor was regulated to increase its reactivity with 4-arm-PEG-NH2, which thus shortened the gelation time of the PEG adhesive to 1 s to allow a fast solidification after being sprayed. The PEG-NHS precursor also provided covalent binding with tissue and PDA NPs. The reduced PDA NPs have redox activity to convey electrons to oxygen to generate ROS (H2O2), thus endowing the hydrogel with ROS dependent antibacterial ability. Moreover, NIR irradiation can accelerate the ROS release because of the photothermal effect of PDA NPs. In vitro tests demonstrated that H2O2 and the NIR-photothermal effect synergistically induced a fast bacterial killing, and an in vivo anti-infection test also proved the effectiveness of PEG-PDA. The sprayable PEG-PDA hydrogel adhesive, with rapid-forming performance and a dual bactericidal mechanism, may be promising for sealing large-scale and acute wound sites or invisible bleeding sites, and protect them from pathogen infection.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Huan Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of material science and engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Sulfur Chemistry in Polymer and Materials Science. Macromol Rapid Commun 2018; 40:e1800650. [DOI: 10.1002/marc.201800650] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Hatice Mutlu
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ezgi Berfin Ceper
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Jingmei Yang
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
- Institute of Fundamental Science and Frontiers; University of Electronic Science and Technology of China; Chengdu 610054 China
| | - Wenyuan Dong
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| | - Mehmet Murat Ozmen
- Department of Bioengineering; Yildiz Technical University; Esenler 34220 Istanbul Turkey
| | - Patrick Theato
- Institute for Biological Interfaces III; Karlsruhe Institute of Technology; Herrmann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry; Karlsruhe Institute of Technology (KIT); Engesser Str. 18 D-76131 Karlsruhe Germany
| |
Collapse
|
6
|
Su J. Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels. Gels 2018; 4:E72. [PMID: 30674848 PMCID: PMC6209259 DOI: 10.3390/gels4030072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
Hydrogels are three-dimensional networks composed of hydrated polymer chains and have been a material of choice for many biomedical applications such as drug delivery, biosensing, and tissue engineering due to their unique biocompatibility, tunable physical characteristics, flexible methods of synthesis, and range of constituents. In many cases, methods for crosslinking polymer precursors to form hydrogels would benefit from being highly selective in order to avoid cross-reactivity with components of biological systems leading to adverse effects. Crosslinking reactions involving the thiol group (SH) offer unique opportunities to construct hydrogel materials of diverse properties under mild conditions. This article reviews and comments on thiol-mediated chemoselective and biocompatible strategies for crosslinking natural and synthetic macromolecules to form injectable hydrogels for applications in drug delivery and cell encapsulation.
Collapse
Affiliation(s)
- Jing Su
- Department of Chemistry, Northeastern Illinois University, Chicago, IL 60625, USA.
| |
Collapse
|
7
|
Heber-Katz E, Messersmith P. Drug delivery and epimorphic salamander-type mouse regeneration: A full parts and labor plan. Adv Drug Deliv Rev 2018. [PMID: 29524586 DOI: 10.1016/j.addr.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The capacity to regenerate entire body parts, tissues, and organs had generally been thought to be lost in evolution with very few exceptions (e.g. the liver) surviving in mammals. The discovery of the MRL mouse and the elucidation of the underlying molecular pathway centering around hypoxia inducible factor, HIF-1α, has allowed a drug and materials approach to regeneration in mice and hopefully humans. The HIF-1α pathway is ancient and permitted the transition from unicellular to multicellular organisms. Furthermore, HIF-1α and its regulation by PHDs, important oxygen sensors in the cell, provides a perfect drug target. We review the historical background of regeneration biology, the discovery of the MRL mouse, and its underlying biology, and novel approaches to drugs, targets, and delivery systems (see Fig. 1).
Collapse
|
8
|
Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 2018; 127:167-184. [PMID: 29567395 PMCID: PMC6003852 DOI: 10.1016/j.addr.2018.03.007] [Citation(s) in RCA: 523] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Hydrogels have been utilized in regenerative applications for many decades because of their biocompatibility and similarity in structure to the native extracellular matrix. Initially, these materials were formed outside of the patient and implanted using invasive surgical techniques. However, advances in synthetic chemistry and materials science have now provided researchers with a library of techniques whereby hydrogel formation can occur in situ upon delivery through standard needles. This provides an avenue to minimally invasively deliver therapeutic payloads, fill complex tissue defects, and induce the regeneration of damaged portions of the body. In this review, we highlight these injectable therapeutic hydrogel biomaterials in the context of drug delivery and tissue regeneration for skin wound repair.
Collapse
Affiliation(s)
- Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Nicole J Darling
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, Bioengineering, and Dermatology, School of Medicine, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, United States.
| |
Collapse
|
9
|
Lopez-Perez PM, da Silva RMP, Strehin I, Kouwer PHJ, Leeuwenburgh SCG, Messersmith PB. Self-healing hydrogels formed by complexation between calcium ions and bisphosphonate-functionalized star-shaped polymers. Macromolecules 2017; 50:8698-8706. [PMID: 29403089 DOI: 10.1021/acs.macromol.7b01417] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Star-shaped poly(ethylene glycol) (PEG) chain termini were functionalized with alendronate to create transient networks with reversible crosslinks upon addition of calcium ions. The gelation ability of alendronate-functionalized PEG was greatly dependent on the number of arms and arm molecular weight. After mixing polymer and calcium solutions, the formed hydrogels could be cut and then brought back together without any visible interface. After 2 minutes of contact, their connection was strong enough to allow for stretching without tearing through the previous fracture surface. Oscillatory rheology showed that the hydrogels recovered between 70 and 100% of the original storage and loss modulus after rupture. Frequency sweep measurements revealed a liquid-like behavior at lower frequencies and solid-like at high frequencies. Shifting frequency curves obtained at different calcium and polymer concentrations, all data collapsed in a single common master curve. This time-concentration superposition reveals a common relaxation mechanism intrinsically connected to the calcium-bisphosphonate complexation equilibrium.
Collapse
Affiliation(s)
- Paula M Lopez-Perez
- Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.,Department of Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ricardo M P da Silva
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Iossif Strehin
- Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | | - Phillip B Messersmith
- Biomedical Engineering Department, Materials Science and Engineering Department, Chemical and Biological Engineering Department, Chemistry of Life Processes Institute, Institute for Bionanotechnology in Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.,Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Heber-Katz E. Oxygen, Metabolism, and Regeneration: Lessons from Mice. Trends Mol Med 2017; 23:1024-1036. [PMID: 28988849 DOI: 10.1016/j.molmed.2017.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/05/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
The discovery that the Murphy Roths Large (MRL) mouse strain is a fully competent, epimorphic tissue regenerator, proved that the machinery of regeneration was preserved through evolution from hydra, to salamanders, to mammals. Such concepts have allowed translation of the biology of amphibians, and their ability to regenerate, to a mammalian context. We identified the ancient hypoxia-inducible factor (HIF)-1α pathway, operating through prolyl hydroxylase domain proteins (PHDs), as a central player in mouse regeneration. Thus, the possibility of targeting PHDs or other HIF-1α modifiers to effectively recreate the amphibian regenerative state has emerged. We posit that these regenerative pathways are critical in mammals. Moreover, the current approved use of PHD inhibitors in the clinic should allow fast-track translation from mouse studies to drug-based regenerative therapy in humans.
Collapse
Affiliation(s)
- Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA.
| |
Collapse
|
11
|
Zheng JS, He Y, Zuo C, Cai XY, Tang S, Wang ZA, Zhang LH, Tian CL, Liu L. Robust Chemical Synthesis of Membrane Proteins through a General Method of Removable Backbone Modification. J Am Chem Soc 2016; 138:3553-61. [PMID: 26943264 DOI: 10.1021/jacs.6b00515] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical protein synthesis can provide access to proteins with post-translational modifications or site-specific labelings. Although this technology is finding increasing applications in the studies of water-soluble globular proteins, chemical synthesis of membrane proteins remains elusive. In this report, a general and robust removable backbone modification (RBM) method is developed for the chemical synthesis of membrane proteins. This method uses an activated O-to-N acyl transfer auxiliary to install in the Fmoc solid-phase peptide synthesis process a RBM group with switchable reactivity toward trifluoroacetic acid. The method can be applied to versatile membrane proteins because the RBM group can be placed at any primary amino acid. With RBM, the membrane proteins and their segments behave almost as if they were water-soluble peptides and can be easily handled in the process of ligation, purification, and mass characterizations. After the full-length protein is assembled, the RBM group can be readily removed by trifluoroacetic acid. The efficiency and usefulness of the new method has been demonstrated by the successful synthesis of a two-transmembrane-domain protein (HCV p7 ion channel) with site-specific isotopic labeling and a four-transmembrane-domain protein (multidrug resistance transporter EmrE). This method enables practical synthesis of small- to medium-sized membrane proteins or membrane protein domains for biochemical and biophysical studies.
Collapse
Affiliation(s)
- Ji-Shen Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Yao He
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chao Zuo
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Xiao-Ying Cai
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Shan Tang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Zhipeng A Wang
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Long-Hua Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Chang-Lin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China , Hefei 230031, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
12
|
Zhang Y, Strehin I, Bedelbaeva K, Gourevitch D, Clark L, Leferovich J, Messersmith PB, Heber-Katz E. Drug-induced regeneration in adult mice. Sci Transl Med 2016; 7:290ra92. [PMID: 26041709 DOI: 10.1126/scitranslmed.3010228] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whereas amphibians regenerate lost appendages spontaneously, mammals generally form scars over the injury site through the process of wound repair. The MRL mouse strain is an exception among mammals because it shows a spontaneous regenerative healing trait and so can be used to investigate proregenerative interventions in mammals. We report that hypoxia-inducible factor 1α (HIF-1α) is a central molecule in the process of regeneration in adult MRL mice. The degradation of HIF-1α protein, which occurs under normoxic conditions, is mediated by prolyl hydroxylases (PHDs). We used the drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), a PHD inhibitor, to stabilize constitutive expression of HIF-1α protein. A locally injectable hydrogel containing 1,4-DPCA was designed to achieve controlled delivery of the drug over 4 to 10 days. Subcutaneous injection of the 1,4-DPCA/hydrogel into Swiss Webster mice that do not show a regenerative phenotype increased stable expression of HIF-1α protein over 5 days, providing a functional measure of drug release in vivo. Multiple peripheral subcutaneous injections of the 1,4-DPCA/hydrogel over a 10-day period led to regenerative wound healing in Swiss Webster mice after ear hole punch injury. Increased expression of the HIF-1α protein may provide a starting point for future studies on regeneration in mammals.
Collapse
Affiliation(s)
- Yong Zhang
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Iossif Strehin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Khamilia Bedelbaeva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Dmitri Gourevitch
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Lise Clark
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - John Leferovich
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Phillip B Messersmith
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ellen Heber-Katz
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Rasale DB, Konda M, Biswas S, Das AK. Controlling Peptide Self-Assembly through a Native Chemical Ligation/Desulfurization Strategy. Chem Asian J 2016; 11:926-35. [DOI: 10.1002/asia.201501458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Dnyaneshwar B. Rasale
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 452020 India
| | - Maruthi Konda
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 452020 India
| | - Sagar Biswas
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 452020 India
| | - Apurba K. Das
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 452020 India
| |
Collapse
|
14
|
Boere KWM, Blokzijl MM, Visser J, Linssen JEA, Malda J, Hennink WE, Vermonden T. Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. J Mater Chem B 2015; 3:9067-9078. [PMID: 32263038 PMCID: PMC7116180 DOI: 10.1039/c5tb01645b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progress in biofabrication technologies is mainly hampered by the limited number of suitable hydrogels that can act as bioinks. Here, we present a new bioink for 3D-printing, capable of forming large, highly defined constructs. Hydrogel formulations consisted of a thermoresponsive polymer mixed with a poly(ethylene glycol) (PEG) or a hyaluronic acid (HA) cross-linker with a total polymer concentration of 11.3 and 9.1 wt% respectively. These polymer solutions were partially cross-linked before plotting by a chemoselective reaction called oxo-ester mediated native chemical ligation, yielding printable formulations. Deposition on a heated plate of 37 °C resulted in the stabilization of the construct due to the thermosensitive nature of the hydrogel. Subsequently, further chemical cross-linking of the hydrogel precursors proceeded after extrusion to form mechanically stable hydrogels that exhibited a storage modulus of 9 kPa after 3 hours. Flow and elastic properties of the polymer solutions and hydrogels were analyzed under similar conditions to those used during the 3D-printing process. These experiments showed the ability to extrude the hydrogels, as well as their rapid recovery after applied shear forces. Hydrogels were printed in grid-like structures, hollow cones and a model representing a femoral condyle, with a porosity of 48 ± 2%. Furthermore, an N-hydroxysuccinimide functionalized thermoplastic poly-ε-caprolactone (PCL) derivative was successfully synthesized and 3D-printed. We demonstrated that covalent grafting of the developed hydrogel to the thermoplastic reinforced network resulted in improved mechanical properties and yielded high construct integrity. Reinforced constructs also containing hyaluronic acid showed high cell viability of chondrocytes, underlining their potential for further use in regenerative medicine applications.
Collapse
Affiliation(s)
- Kristel W. M. Boere
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Maarten M. Blokzijl
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Jetze Visser
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - J. Elder A. Linssen
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80163, 3508 TD Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
15
|
Nguyen QV, Huynh DP, Park JH, Lee DS. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Boere KWM, van den Dikkenberg J, Gao Y, Visser J, Hennink WE, Vermonden T. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior. Biomacromolecules 2015; 16:2840-51. [PMID: 26237583 DOI: 10.1021/acs.biomac.5b00802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristel W. M. Boere
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Joep van den Dikkenberg
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Yuan Gao
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Jetze Visser
- Department
of Orthopaedics, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
17
|
Zhang X, Sun P, Huangshan L, Hu BH, Messersmith PB. Improved method for synthesis of cysteine modified hyaluronic acid for in situ hydrogel formation. Chem Commun (Camb) 2015; 51:9662-5. [PMID: 25977950 PMCID: PMC4449282 DOI: 10.1039/c5cc02367j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed a new strategy for the functionalization of hyaluronic acid by chemical modification of its C-6 hydroxyl groups through an ether bond to obtain a cysteine-hyaluronic acid conjugate. This conjugate is suitable to prepare injectable and in situ formed hydrogels cross-linked by native chemical ligation and Michael addition under mild conditions.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Oceanography, Hainan University, Haikou, Hainan Province 570228, China
| | - Pengcheng Sun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Oceanography, Hainan University, Haikou, Hainan Province 570228, China
| | - Lingzi Huangshan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Oceanography, Hainan University, Haikou, Hainan Province 570228, China
| | - Bi-Huang Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Oceanography, Hainan University, Haikou, Hainan Province 570228, China
| | - Phillip B. Messersmith
- Departments of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, 94720-1760, USA
| |
Collapse
|
18
|
Rasale DB, Das AK. Chemical reactions directed Peptide self-assembly. Int J Mol Sci 2015; 16:10797-820. [PMID: 25984603 PMCID: PMC4463676 DOI: 10.3390/ijms160510797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/04/2015] [Indexed: 01/12/2023] Open
Abstract
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Collapse
Affiliation(s)
- Dnyaneshwar B Rasale
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India.
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore 452017, India.
| |
Collapse
|
19
|
Liu S, Dicker KT, Jia X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun (Camb) 2015; 51:5218-37. [PMID: 25572255 PMCID: PMC4359094 DOI: 10.1039/c4cc09568e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | | | | |
Collapse
|
20
|
Lin CC, Ki CS, Shih H. Thiol-norbornene photo-click hydrogels for tissue engineering applications. J Appl Polym Sci 2015; 132:41563. [PMID: 25558088 PMCID: PMC4280501 DOI: 10.1002/app.41563] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thiol-norbornene (thiol-ene) photo-click hydrogels have emerged as a diverse material system for tissue engineering applications. These hydrogels are cross-linked through light mediated orthogonal reactions between multi-functional norbornene-modified macromers (e.g., poly(ethylene glycol), hyaluronic acid, gelatin) and sulfhydryl-containing linkers (e.g., dithiothreitol, PEG-dithiol, bis-cysteine peptides) using low concentration of photoinitiator. The gelation of thiol-norbornene hydrogels can be initiated by long-wave UV light or visible light without additional co-initiator or co-monomer. The cross-linking and degradation behaviors of thiol-norbornene hydrogels are controlled through material selections, whereas the biophysical and biochemical properties of the gels are easily and independently tuned owing to the orthogonal reactivity between norbornene and thiol moieties. Uniquely, the cross-linking of step-growth thiol-norbornene hydrogels is not oxygen-inhibited, therefore the gelation is much faster and highly cytocompatible compared with chain-growth polymerized hydrogels using similar gelation conditions. These hydrogels have been prepared as tunable substrates for 2D cell culture, as microgels or bulk gels for affinity-based or protease-sensitive drug delivery, and as scaffolds for 3D cell culture. Reports from different laboratories have demonstrated the broad utility of thiol-norbornene hydrogels in tissue engineering and regenerative medicine applications, including valvular and vascular tissue engineering, liver and pancreas-related tissue engineering, neural regeneration, musculoskeletal (bone and cartilage) tissue regeneration, stem cell culture and differentiation, as well as cancer cell biology. This article provides an up-to-date overview on thiol-norbornene hydrogel cross-linking and degradation mechanisms, tunable material properties, as well as the use of thiol-norbornene hydrogels in drug delivery and tissue engineering applications.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN. 47907, USA
| | - Chang Seok Ki
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202, USA
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul. 151-742 Republic of Korea
| | - Han Shih
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN. 47907, USA
| |
Collapse
|
21
|
Lowe SB, Tan VTG, Soeriyadi AH, Davis TP, Gooding JJ. Synthesis and High-Throughput Processing of Polymeric Hydrogels for 3D Cell Culture. Bioconjug Chem 2014; 25:1581-601. [DOI: 10.1021/bc500310v] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - J. Justin Gooding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, VIC 3052, Australia
| |
Collapse
|
22
|
Hydrogels in a historical perspective: From simple networks to smart materials. J Control Release 2014; 190:254-73. [DOI: 10.1016/j.jconrel.2014.03.052] [Citation(s) in RCA: 555] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/19/2014] [Accepted: 03/29/2014] [Indexed: 12/23/2022]
|
23
|
Boere KWM, Soliman BG, Rijkers DTS, Hennink WE, Vermonden T. Thermoresponsive Injectable Hydrogels Cross-Linked by Native Chemical Ligation. Macromolecules 2014. [DOI: 10.1021/ma5000927] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kristel W. M. Boere
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Bram G. Soliman
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Dirk T. S. Rijkers
- Medicinal Chemistry & Chemical Biology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department
of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS),
Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
24
|
Ghobril C, Charoen K, Rodriguez EK, Nazarian A, Grinstaff MW. A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable sealant system for wound closure. Angew Chem Int Ed Engl 2013; 52:14070-4. [PMID: 24282150 PMCID: PMC4000691 DOI: 10.1002/anie.201308007] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Indexed: 11/09/2022]
Abstract
A dissolvable dendritic thioester hydrogel based on thiol-thioester exchange for wound closure is reported. The hydrogel sealant adheres strongly to tissues, closes an ex vivo vein puncture, and withstands high pressures placed on a wound. The hydrogel sealant can be completely washed off upon exposure to thiolates based on thiol-thioester exchange and allow gradual wound re-exposure during definitive surgical care.
Collapse
Affiliation(s)
- Cynthia Ghobril
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| | - Kristie Charoen
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| | | | - Ara Nazarian
- Beth Israël Deaconess Medical Center, 330 Brookline Avenue, Boston, MA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, 590 Commonwealth avenue, Boston, MA
| |
Collapse
|
25
|
Ghobril C, Charoen K, Rodriguez EK, Nazarian A, Grinstaff MW. A Dendritic Thioester Hydrogel Based on Thiol-Thioester Exchange as a Dissolvable Sealant System for Wound Closure. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Jung JP, Sprangers AJ, Byce JR, Su J, Squirrell JM, Messersmith PB, Eliceiri KW, Ogle BM. ECM-incorporated hydrogels cross-linked via native chemical ligation to engineer stem cell microenvironments. Biomacromolecules 2013; 14:3102-11. [PMID: 23875943 PMCID: PMC3880157 DOI: 10.1021/bm400728e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Limiting the precise study of the biochemical impact of whole molecule extracellular matrix (ECM) proteins on stem cell differentiation is the lack of 3D in vitro models that can accommodate many different types of ECM. Here we sought to generate such a system while maintaining consistent mechanical properties and supporting stem cell survival. To this end, we used native chemical ligation to cross-link poly(ethylene glycol) macromonomers under mild conditions while entrapping ECM proteins (termed ECM composites) and stem cells. Sufficiently low concentrations of ECM were used to maintain constant storage moduli and pore size. Viability of stem cells in composites was maintained over multiple weeks. ECM of composites encompassed stem cells and directed the formation of distinct structures dependent on ECM type. Thus, we introduce a powerful approach to study the biochemical impact of multiple ECM proteins (either alone or in combination) on stem cell behavior.
Collapse
Affiliation(s)
- Jangwook P. Jung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Anthony J. Sprangers
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - John R. Byce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| | - Jayne M. Squirrell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Phillip B. Messersmith
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
- Material Sciences Program, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|