1
|
Jamal M, Sharif F, Shozab Mehdi M, Fakhar-e-Alam M, Asif M, Mustafa W, Bashir M, Rafiq S, Bustam MA, Saif-ur-Rehman, Dahlous KA, Shibl MF, Al-Qahtani NH. Development of Biocompatible Electrospun PHBV-PLLA Polymeric Bilayer Composite Membranes for Skin Tissue Engineering Applications. Molecules 2024; 29:2049. [PMID: 38731542 PMCID: PMC11085634 DOI: 10.3390/molecules29092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.
Collapse
Affiliation(s)
- Muddasar Jamal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Muhammad Shozab Mehdi
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan;
| | - Muhammad Fakhar-e-Alam
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Muhammad Asif
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Waleed Mustafa
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Mustehsan Bashir
- Department of Plastic, Reconstructive Surgery and Burn Unit, King Edward Medical University, Lahore 54000, Pakistan;
| | - Sikandar Rafiq
- Department of Chemical, Polymer and Composites Materials Engineering, University of Engineering and Technology-Lahore, New Campus, Lahore 39161, Pakistan;
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Saif-ur-Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kholood A. Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed F. Shibl
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | | |
Collapse
|
2
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
3
|
Wang X, Chen Y, Fan Z, Hua K. Evaluating tissue-engineered repair material for pelvic floor dysfunction: a comparison of in vivo response to meshes implanted in rats. Int Urogynecol J 2021; 33:2143-2150. [PMID: 34741620 DOI: 10.1007/s00192-021-05008-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Achieving better anatomic restoration and decreasing the associated complications are necessary for material repair of pelvic floor dysfunction (PFD). This study was aimed to investigate host response to tissue-engineered repair material (TERM) in rat models by comparing different materials and study the changes in biomechanical properties over time. METHODS TERM was constructed by seeding adipose-derived stem cells (ADSCs) on electrospun poly(L-lactide)-trimethylene carbonate-glycolide (PLTG) terpolymers. The TERM, PLTG, porcine small intestine submucosa mesh (SIS), and polypropylene (PP) (n = 6 / group per time point) were implanted in rats for 7, 30, 60, and 90 days. Hematoxylin-eosin and Masson's trichrome staining were used to assess the host response, and mechanical testing was used to evaluate the changes in biomechanical properties. RESULTS In vivo imaging showed that the ADSCs were confined to the abdominal wall and did not migrate to other organs or tissues. The TERM was encapsulated by a thicker layer of connective tissue and was associated with less reduced inflammatory scores compared with PLTG and PP over time. The vascularization of the TERM was greater than that with PP and PLTG over time (p < 0.05) and was greater than that with SIS on day 90. The ultimate tensile strain and Young's modulus of the PP group showed the greatest increases, and the TERM group followed on day 90. CONCLUSIONS This TERM achieved better host integration in rat models and better biomechanical properties, and it may be an alternative material for PFD.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China
| | - Zhongyong Fan
- Department of Materials Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, People's Republic of China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang Road, Shanghai, 200090, People's Republic of China.
| |
Collapse
|
4
|
Antonova LV, Krivkina EO, Sevostianova VV, Mironov AV, Rezvova MA, Shabaev AR, Tkachenko VO, Krutitskiy SS, Khanova MY, Sergeeva TY, Matveeva VG, Glushkova TV, Kutikhin AG, Mukhamadiyarov RA, Deeva NS, Akentieva TN, Sinitsky MY, Velikanova EA, Barbarash LS. Tissue-Engineered Carotid Artery Interposition Grafts Demonstrate High Primary Patency and Promote Vascular Tissue Regeneration in the Ovine Model. Polymers (Basel) 2021; 13:polym13162637. [PMID: 34451177 PMCID: PMC8400235 DOI: 10.3390/polym13162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo, n = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, n = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts was 62.5% (5/8) at 24 h postimplantation and 50% (4/8) at 18 months postimplantation, while all (5/5) ePTFE conduits were occluded within the 24 h after the surgery. At 18 months postimplantation, PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts were completely resorbed and replaced by the vascular tissue. Regenerated arteries displayed a hierarchical three-layer structure similar to the native blood vessels, being fully endothelialised, highly vascularised and populated by vascular smooth muscle cells and macrophages. The most (4/5, 80%) of the regenerated arteries were free of calcifications but suffered from the aneurysmatic dilation. Therefore, biodegradable PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts showed better short- and long-term results than bio-stable ePTFE analogues, although these scaffolds must be reinforced for the efficient prevention of aneurysms.
Collapse
Affiliation(s)
- Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Viktoriia V. Sevostianova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
- Correspondence: ; Tel.: +7-9069356076
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vadim O. Tkachenko
- Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Sergey S. Krutitskiy
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana Yu. Sergeeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Nadezhda S. Deeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana N. Akentieva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Leonid S. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| |
Collapse
|
5
|
Fabrication and Characterization of the Core-Shell Structure of Poly(3-Hydroxybutyrate-4-Hydroxybutyrate) Nanofiber Scaffolds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8868431. [PMID: 33575351 PMCID: PMC7864743 DOI: 10.1155/2021/8868431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
Tissue engineering scaffolds with nanofibrous structures provide positive support for cell proliferation and differentiation in biomedical fields. These scaffolds are widely used for defective tissue repair and drug delivery. However, the degradation performance and mechanical properties of scaffolds are often unsatisfactory. Here, we successfully prepared a novel poly(3-hydroxybutyrate-4-hydroxybutyrate)/polypyrrole (P34HB-PPy) core-shell nanofiber structure scaffold with electrospinning and in situ surface polymerization technology. The obtained composite scaffold showed good mechanical properties, hydrophilicity, and thermal stability based on the universal material testing machine, contact angle measuring system, thermogravimetric analyzer, and other methods. The results of the in vitro bone marrow-derived mesenchymal stem cells (BMSCs) culture showed that the P34HB-PPy composite scaffold effectively mimicked the extracellular matrix (ECM) and exhibited good cell retention and proliferative capacity. More importantly, P34HB is a controllable degradable polyester material, and its degradation product 3-hydroxybutyric acid (3-HB) is an energy metabolite that can promote cell growth and proliferation. These results strongly support the application potential of P34HB-PPy composite scaffolds in biomedical fields, such as tissue engineering and soft tissue repair.
Collapse
|
6
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
7
|
Sharma K, Bullock AJ, Giblin V, MacNeil S. Identification of a fibrin concentration that promotes skin cell outgrowth from skin explants onto a synthetic dermal substitute. JPRAS Open 2020; 25:8-17. [PMID: 32490127 PMCID: PMC7260611 DOI: 10.1016/j.jpra.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Our overall objective is to develop a single-stage in-theatre skin replacement by combining small explants of skin with a synthetic biodegradable dermal scaffold. The aim of the current study is to determine the concentration of fibrin constituents and their handling properties for both adhering skin explants to the scaffold and encouraging cellular outgrowth to achieve reepithelialization. METHODS Small skin explants were combined with several concentrations of thrombin (2.5,4.5,and 6.5 I.U) and fibrinogen (18.75,67, and 86.5 mg/ml), cultured in Green's media for 14 days and cellular outgrowth was measured using Rose Bengal staining. They were also cultured on electrospun scaffolds for 14 and 21 days. Hematoxylin and eosin (H&E) staining was undertaken to visualize the interface between skin explants and scaffolds and metabolic activity and collagen production were assessed. RESULTS A thrombin/fibrinogen combination of 2.5 I. U/ml /18.75 mg/ml showed significantly greater cell viability as assessed by Rose Bengal stained areas at days 7 and 14. This was also seen in DAPI images and H&E stains skin explant/scaffold constructs. Fibrin with a concentration of thrombin 2.5 I.U./ml took 5-6 min to set, which is convenient for distributing skin explants on the scaffold. CONCLUSION The study identified concentrations of thrombin (2.5 I.U/ml) and fibrinogen (18.75 mg/ml), which were easy to handle and aided the retention of skin explants and permitted cell outgrowth from explants.
Collapse
Affiliation(s)
- Kavita Sharma
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S1 7HQ UK
| | - Anthony J. Bullock
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S1 7HQ UK
| | - Victoria Giblin
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S1 7HQ UK
| | - Sheila MacNeil
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield, S1 7HQ UK
| |
Collapse
|
8
|
Garrison CM, Singh-Varma A, Pastino AK, Steele JAM, Kohn J, Murthy NS, Schwarzbauer JE. A multilayered scaffold for regeneration of smooth muscle and connective tissue layers. J Biomed Mater Res A 2020; 109:733-744. [PMID: 32654327 DOI: 10.1002/jbm.a.37058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023]
Abstract
Tissue regeneration often requires recruitment of different cell types and rebuilding of two or more tissue layers to restore function. Here, we describe the creation of a novel multilayered scaffold with distinct fiber organizations-aligned to unaligned and dense to porous-to template common architectures found in adjacent tissue layers. Electrospun scaffolds were fabricated using a biodegradable, tyrosine-derived terpolymer, yielding densely-packed, aligned fibers that transition into randomly-oriented fibers of increasing diameter and porosity. We demonstrate that differently-oriented scaffold fibers direct cell and extracellular matrix (ECM) organization, and that scaffold fibers and ECM protein networks are maintained after decellularization. Smooth muscle and connective tissue layers are frequently adjacent in vivo; we show that within a single scaffold, the architecture supports alignment of contractile smooth muscle cells and deposition by fibroblasts of a meshwork of ECM fibrils. We rolled a flat scaffold into a tubular construct and, after culture, showed cell viability, orientation, and tissue-specific protein expression in the tube were similar to the flat-sheet scaffold. This scaffold design not only has translational potential for reparation of flat and tubular tissue layers but can also be customized for alternative applications by introducing two or more cell types in different combinations.
Collapse
Affiliation(s)
- Carly M Garrison
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Anya Singh-Varma
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexandra K Pastino
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joseph A M Steele
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
9
|
Dikici S, Claeyssens F, MacNeil S. Pre-Seeding of Simple Electrospun Scaffolds with a Combination of Endothelial Cells and Fibroblasts Strongly Promotes Angiogenesis. Tissue Eng Regen Med 2020; 17:445-458. [PMID: 32447555 PMCID: PMC7392995 DOI: 10.1007/s13770-020-00263-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Introduction of pro-angiogenic cells into tissue-engineered (TE) constructs (prevascularisation) is a promising approach to overcome delayed neovascularisation of such constructs post-implantation. Accordingly, in this study, we examined the contribution of human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts (HDFs) alone and in combination on the formation of new blood vessels in ex-ovo chick chorioallantoic membrane (CAM) assay. METHODS Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polycaprolactone (PCL) were first examined in terms of their physical, mechanical, and biological performances. The effect of gelatin coating and co-culture conditions on enhancing endothelial cell viability and growth was then investigated. Finally, the angiogenic potential of HDMECs and HDFs were assessed macroscopically and histologically after seeding on simple electrospun PHBV scaffolds either in isolation or in indirect co-culture using an ex-ovo CAM assay. RESULTS The results demonstrated that PHBV was slightly more favourable than PCL for HDMECs in terms of cell metabolic activity. The gelatin coating of PHBV scaffolds and co-culture of HDMECs with HDFs both showed a positive impact on HDMECs viability and growth. Both cell types induced angiogenesis over 7 days in the CAM assay either in isolation or in co-culture. The introduction of HDMECs to the scaffolds resulted in the production of more blood vessels in the area of implantation than the introduction of HDFs, but the co-culture of HDMECs and HDFs gave the most significant angiogenic activity. CONCLUSION Our findings showed that the in vitro prevascularisation of TE constructs with HDMECs and HDFs alone or in co-culture promotes angiogenesis in implantable TE constructs.
Collapse
Affiliation(s)
- Serkan Dikici
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Sheila MacNeil
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK.
| |
Collapse
|
10
|
Dikici S, Claeyssens F, MacNeil S. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models in Vitro. ACS Biomater Sci Eng 2020; 6:3513-3528. [PMID: 32582840 PMCID: PMC7304666 DOI: 10.1021/acsbiomaterials.0c00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Angiogenesis assays are essential for studying aspects of neovascularization and angiogenesis and investigating drugs that stimulate or inhibit angiogenesis. To date, there are several in vitro and in vivo angiogenesis assays that are used for studying different aspects of angiogenesis. Although in vivo assays are the most representative of native angiogenesis, they raise ethical questions, require considerable technical skills, and are expensive. In vitro assays are inexpensive and easier to perform, but the majority of them are only two-dimensional cell monolayers which lack the physiological relevance of three-dimensional structures. Thus, it is important to look for alternative platforms to study angiogenesis under more physiologically relevant conditions in vitro. Accordingly, in this study, we developed polymeric vascular networks to be used to study angiogenesis and vascularization of a 3D human skin model in vitro. Our results showed that this platform allowed the study of more than one aspect of angiogenesis, endothelial migration and tube formation, in vitro when combined with Matrigel. We successfully reconstructed a human skin model, as a representative of a physiologically relevant and complex structure, and assessed the suitability of the developed in vitro platform for studying endothelialization of the tissue-engineered skin model.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Frederik Claeyssens
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
11
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|
12
|
Haldar S, Sharma A, Gupta S, Chauhan S, Roy P, Lahiri D. Bioengineered smart trilayer skin tissue substitute for efficient deep wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110140. [PMID: 31546402 DOI: 10.1016/j.msec.2019.110140] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023]
Abstract
Skin substitutes for deep wound healing require meticulous designing and fabrication to ensure proper structural and functional regeneration of the tissue. Range of physical and mechanical properties conducive for regeneration of different layers of skin is a prerequisite of an ideal scaffold. However, single or bilayer substitutes, lacking this feature, fail to heal full thickness wound. Complete scar free regeneration of skin is still a big challenge. This study reports fabrication of a trilayer scaffold, from biodegradable polymers that can provide the right ambience for simultaneous regeneration of all the three layers of skin. The scaffold was developed through optimization of different fabrication techniques, namely, casting, electrospinning and lyophilisation, for obtaining a tailored trilayer structure. It has mechanical strength similar to skin layers, can maintain a porosity-gradient and provides microenvironments suitable for simultaneous regeneration of epidermis, dermis and hypodermis. A co-culture model, of keratinocytes and dermal fibroblasts, confirms the efficiency of the scaffold in supporting proliferation and differentiation of different types of cells, into organized tissue. The scaffold showed improved and expedited wound healing in-vivo. Taken together, these compelling evidences successfully established the engineered trilayer scaffold as a promising template for skin tissue regeneration in case of deep wound.
Collapse
Affiliation(s)
- Swati Haldar
- Tissue Engineering Lab, Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India; Molecular Endocrinology Lab, Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Akriti Sharma
- Tissue Engineering Lab, Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India
| | - Sumeet Gupta
- Department of Pharmacology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Samrat Chauhan
- Department of Pharmacology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Partha Roy
- Tissue Engineering Lab, Centre of Nanotechnology, IIT Roorkee, India; Molecular Endocrinology Lab, Department of Biotechnology, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debrupa Lahiri
- Tissue Engineering Lab, Centre of Nanotechnology, IIT Roorkee, India; Biomaterials and Multiscale Mechanics Lab, Department of Metallurgical and Materials Engineering, IIT Roorkee, India.
| |
Collapse
|
13
|
Aldemir Dikici B, Dikici S, Reilly GC, MacNeil S, Claeyssens F. A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2643. [PMID: 31434207 PMCID: PMC6721100 DOI: 10.3390/ma12162643] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 01/08/2023]
Abstract
Guided bone regeneration is a common dental implant treatment where a barrier membrane (BM) is used between epithelial tissue and bone or bone graft to prevent the invasion of the fast-proliferating epithelial cells into the defect site to be able to preserve a space for infiltration of slower-growing bone cells into the periodontal defect site. In this study, a bilayer polycaprolactone (PCL) BM was developed by combining electrospinning and emulsion templating techniques. First, a 250 µm thick polymerised high internal phase emulsion (polyHIPE) made of photocurable PCL was manufactured and treated with air plasma, which was shown to enhance the cellular infiltration. Then, four solvent compositions were investigated to find the best composition for electrospinning a nanofibrous PCL barrier layer on PCL polyHIPE. The biocompatibility and the barrier properties of the electrospun layer were demonstrated over four weeks in vitro by histological staining. Following in vitro assessment of cell viability and cell migration, cell infiltration and the potential of PCL polyHIPE for supporting blood vessel ingrowth were further investigated using an ex-ovo chick chorioallantoic membrane assay. Our results demonstrated that the nanofibrous PCL electrospun layer was capable of limiting cell infiltration for at least four weeks, while PCL polyHIPE supported cell infiltration, calcium and mineral deposition of bone cells, and blood vessel ingrowth through pores.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Serkan Dikici
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, University of Sheffield, INSIGNEO Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Sheila MacNeil
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To set in context the challenge of developing tissue-engineered constructs for use in the female pelvic floor compared with at least 30 years of research progress in tissue engineering for other tissues. RECENT FINDINGS The relative lack of information on the mechanical requirements of the pelvic floor in women who have suffered damage to these tissues is a major challenge to designing tissue-engineered materials for use in this area. A few groups are now using autologous cells and biomaterials to develop constructs for repair and regeneration of the pelvic floor. Progress with these has reached early stage evaluation in small animal models. Meanwhile the regulatory challenge of introducing laboratory-expanded cell therapy into the clinic is prompting groups to look at alternatives, such as using lipoaspirate retrieved in theatre as a source of adult stem cells for a number of tissues. In our group, we have begun to look at lipoaspirate for repair of the pelvic floor. SUMMARY There is a need for research to harvest the advances made over the last 30 years in developing tissue-engineered constructs for several tissues to now tackle the problems of the weakened pelvic floor. At present, there are relatively few groups engaged in this challenge despite the growing clinical need.
Collapse
|
15
|
Improving the biocompatibility of biomaterial constructs and constructs delivering cells for the pelvic floor. Curr Opin Urol 2019; 29:419-425. [PMID: 30950867 DOI: 10.1097/mou.0000000000000621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Interactions between biomaterials and biomaterial-delivering cells and the host tissues are complexly affected by the material itself, the ultrastructure of the overall construct and cells and other bioactive factors involved. The aim of this review is to review the current understanding on the definitions of biocompatibility and current advances in improving biocompatability of tissue-engineered constructs. RECENT FINDINGS Some synthetic materials are associated with more foreign body reactions compared with natural materials; however, they allow fabrication of materials with a great diversity of physical and mechanical properties. Material design strategies can be tailored to mimic the natural extracellular matrix topography. There are also advancements in the pharmacological functionalization of materials with improved angiogenic potential that can lead to better tissue response. Stem cells are also used to improve the tissue response of tissue-engineered materials; however, the recent regulations on regenerative medicine products necessitate significant regulatory approval processes for these. SUMMARY The biggest challenge faced in translation of tissue-engineered constructs into clinical practice relates to their engraftment and poor tissue integration into the challenging wound bed of the pelvic floor. Biocompatibility of tissue engineered constructs can theoretically be improved by the incorporation of bioactive agents, such as vitamins C or oestradiol.
Collapse
|
16
|
Pal P, Dadhich P, Srivas PK, Das B, Maulik D, Dhara S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater Sci 2018. [PMID: 28650050 DOI: 10.1039/c7bm00174f] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.
Collapse
Affiliation(s)
- Pallabi Pal
- Biomaterials & Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India.
| | | | | | | | | | | |
Collapse
|
17
|
Puwanun S, Delaine‐Smith RM, Colley HE, Yates JM, MacNeil S, Reilly GC. A simple rocker-induced mechanical stimulus upregulates mineralization by human osteoprogenitor cells in fibrous scaffolds. J Tissue Eng Regen Med 2018; 12:370-381. [PMID: 28486747 PMCID: PMC5836908 DOI: 10.1002/term.2462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023]
Abstract
Biodegradable electrospun polycaprolactone scaffolds can be used to support bone-forming cells and could fill a thin bony defect, such as in cleft palate. Oscillatory fluid flow has been shown to stimulate bone production in human progenitor cells in monolayer culture. The aim of this study was to examine whether bone matrix production by primary human mesenchymal stem cells from bone marrow or jaw periosteal tissue could be stimulated using oscillatory fluid flow supplied by a standard see-saw rocker. This was investigated for cells in two-dimensional culture and within electrospun polycaprolactone scaffolds. From day 4 of culture onwards, samples were rocked at 45 cycles/min for 1 h/day, 5 days/week (rocking group). Cell viability, calcium deposition, collagen production, alkaline phosphatase activity and vascular endothelial growth factor secretion were evaluated to assess the ability of the cells to undergo bone differentiation and induce vascularisation. Both cell types produced more mineralized tissue when subjected to rocking and supplemented with dexamethasone. Mesenchymal progenitors and primary human mesenchymal stem cells from bone marrow in three-dimensional scaffolds upregulated mineral deposition after rocking culture as assessed by micro-computed tomography and alizarin red staining. Interestingly, vascular endothelial growth factor secretion, which has previously been shown to be mechanically sensitive, was not altered by rocking in this system and was inhibited by dexamethasone. Rocker culture may be a cost effective, simple pretreatment for bone tissue engineering for small defects such as cleft palate.
Collapse
Affiliation(s)
- Sasima Puwanun
- Faculty of DentistryNaresuan UniversityThailand
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | | | - Julian M. Yates
- Oral and Maxillofacial Surgery and Implantology, School of DentistryUniversity of ManchesterUK
| | - Sheila MacNeil
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | - Gwendolen C. Reilly
- Department of Materials Science and EngineeringUniversity of SheffieldUK
- INSIGNEO Institute for in silico MedicineUniversity of SheffieldUK
| |
Collapse
|
18
|
Asencio IO, Mittar S, Sherborne C, Raza A, Claeyssens F, MacNeil S. A methodology for the production of microfabricated electrospun membranes for the creation of new skin regeneration models. J Tissue Eng 2018; 9:2041731418799851. [PMID: 30263105 PMCID: PMC6153546 DOI: 10.1177/2041731418799851] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
The continual renewal of the epidermis is thought to be related to the presence of populations of epidermal stem cells residing in physically protected microenvironments (rete ridges) directly influenced by the presence of mesenchymal fibroblasts. Current skin in vitro models do acknowledge the influence of stromal fibroblasts in skin reorganisation but the study of the effect of the rete ridge-microenvironment on epidermal renewal still remains a rich topic for exploration. We suggest there is a need for the development of new in vitro models in which to study epithelial stem cell behaviour prior to translating these models into the design of new cell-free biomaterial devices for skin reconstruction. In this study, we aimed to develop new prototype epidermal-like layers containing pseudo-rete ridge structures for studying the effect of topographical cues on epithelial cell behaviour. The models were designed using a range of three-dimensional electrospun microfabricated scaffolds. This was achieved via the utilisation of polyethylene glycol diacrylate to produce a reusable template over which poly(3-hydrroxybutyrate-co-3-hydroxyvalerate) was electrospun. Initial investigations studied the behaviour of keratinocytes cultured on models using plain scaffolds (without the presence of intricate topography) versus keratinocytes cultured on scaffolds containing microfeatures.
Collapse
Affiliation(s)
- Ilida Ortega Asencio
- Bioengineering and Health Technologies
Group, The School of Clinical Dentistry, The University of Sheffield, Sheffield,
UK
| | - Shweta Mittar
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Colin Sherborne
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Ahtasham Raza
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering
Group, Department of Materials Science and Engineering, Kroto Research Institute,
The University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater 2017; 13:015006. [PMID: 29165317 DOI: 10.1088/1748-605x/aa8dde] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a pressing need for further advancement in tissue engineering of functional organs with a view to providing a more clinically relevant model for drug development and reduce the dependence on organ donation. Polymer-based scaffolds, such as polycaprolactone (PCL), have been highlighted as a potential avenue for tissue engineered kidneys, but there is little investigation down this stream. Focus within kidney tissue engineering has been on two-dimensional cell culture and decellularised tissue. Electrospun polymer scaffolds can be created with a variety of fibre diameters and have shown a great potential in many areas. The variation in morphology of tissue engineering scaffold has been shown to effect the way cells behave and integrate. In this study we examined the cellular response to scaffold architecture of novel electrospun scaffold for kidney tissue engineering. Fibre diameters of 1.10 ± 0.16 μm and 4.49 ± 0.47 μm were used with three distinct scaffold architectures. Traditional random fibres were spun onto a mandrel rotating at 250 rpm, aligned at 1800 rpm with novel cryogenic fibres spun onto a mandrel loaded with dry ice rotating at 250 rpm. Human kidney epithelial cells were grown for 1 and 2 weeks. Fibre morphology had no effect of cell viability in scaffolds with a large fibre diameter but significant differences were seen in smaller fibres. Fibre diameter had a significant effect in aligned and cryogenic scaffold. Imaging detailed the differences in cell attachment due to scaffold differences. These results show that architecture of the scaffold has a profound effect on kidney cells; whether that is effects of fibre diameter on the cell attachment and viability or the effect of fibre arrangement on the distribution of cells and their alignment with fibres. Results demonstrate that PCL scaffolds have the capability to maintain kidney cells life and should be investigated further as a potential scaffold in kidney tissue engineering.
Collapse
Affiliation(s)
- Todd P Burton
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | | | |
Collapse
|
20
|
Thorat Gadgil BS, Killi N, Rathna GVN. Polyhydroxyalkanoates as biomaterials. MEDCHEMCOMM 2017; 8:1774-1787. [PMID: 30108887 PMCID: PMC6084198 DOI: 10.1039/c7md00252a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers synthesized by bacteria under unbalanced growth conditions. These biopolymers are considered as potential biomaterials for future applications because they are biocompatible, biodegradable, and easy to produce and functionalize with strong mechanical strength. Currently, PHAs are being extensively innovated for biomedical applications due to their prerequisite properties. The wide range of biomedical applications includes drug delivery systems, implants, tissue engineering, scaffolds, artificial organ constructs, etc. In this article we review the utility of PHAs in various forms (bulk/nano) for biomedical applications so as to bring about the future vision for PHAs as biomaterials for the advancement of research and technology.
Collapse
Affiliation(s)
- Bhagyashri S Thorat Gadgil
- Polymer Science and Engineering division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pashan , Pune , 411008 India .
| | - Naresh Killi
- Polymer Science and Engineering division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pashan , Pune , 411008 India .
| | - Gundloori V N Rathna
- Polymer Science and Engineering division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pashan , Pune , 411008 India .
| |
Collapse
|
21
|
Wang X, Chen Y, Fan Z, Hua K. Comparing different tissue-engineered repair materials for the treatment of pelvic organ prolapse and urinary incontinence: which material is better? Int Urogynecol J 2017; 29:131-138. [PMID: 28730531 DOI: 10.1007/s00192-017-3406-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/15/2017] [Indexed: 01/25/2023]
Abstract
INTRODUCTION AND HYPOTHESIS Synthetic non-absorbable meshes are widely used to augment surgical repair of pelvic organ prolapse (POP) and stress urinary incontinence (SUI), but these meshes are associated with serious complications. This study compares the attachment and extracellular matrix (ECM) production of adipose-derived stem cells (ADSCs) on different biodegradable nanomaterials to develop tissue engineered repair materials. METHODS Rat ADSCs were isolated and cultured on electrospun poly-L-lactic acid (PLA) and electrospun poly(L-lactide)-trimethylene carbonate-gycolide (PLTG) terpolymers for 1 and 2 weeks. Samples were tested for cell proliferation (cell counting kit-8), microstructure, and morphology (scanning electron microscopy), production of ECM components (immunostaining for collagen I, collagen III, and elastin) and biomechanical properties (uniaxial tensile methods). RESULTS The ADSCs showed good attachment and proliferation on both PLA and PLTG scaffolds. The production of collagen I and collagen III on both scaffolds was greater at 14 days than at 7 days and was greater on PLTG scaffolds than on PLA scaffolds, but these differences were not significant. The addition of ADSCs onto scaffolds led to a significant increase in the biomechanical properties of both PLA and PLTG scaffolds compared with unseeded scaffolds. CONCLUSION These data support the use of both PLA and PLTG as tissue-engineered repair materials for POP or SUI.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 413 Zhao-Zhou Road, Shanghai, 200011, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 413 Zhao-Zhou Road, Shanghai, 200011, People's Republic of China
| | - Zhongyong Fan
- Department of Materials Science, Fudan University, Handan Road No. 220, Shanghai, 200433, People's Republic of China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, 413 Zhao-Zhou Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
22
|
Castellano D, Sanchis A, Blanes M, Pérez del Caz MD, Ruiz‐Saurí A, Piquer‐Gil M, Pelacho B, Marco B, Garcia N, Ontoria‐Oviedo I, Cambra V, Prosper F, Sepúlveda P. Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis. J Tissue Eng Regen Med 2017; 12:e983-e994. [DOI: 10.1002/term.2420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Delia Castellano
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
- Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe‐Centro de Investigación Príncipe Felipe Valencia Spain
| | - Ana Sanchis
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
| | | | - Mª. Dolores Pérez del Caz
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
| | - Amparo Ruiz‐Saurí
- Departamento de Patología, Facultad de Medicina, Universidad de Valencia Valencia Spain
| | - Marina Piquer‐Gil
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
- Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe‐Centro de Investigación Príncipe Felipe Valencia Spain
| | - Beatriz Pelacho
- Laboratory of Cell TherapyFoundation for Applied Medical Research and Clínica Universidad de Navarra, University of Navarra Pamplona Spain
| | - Bruno Marco
- Instituto Tecnológico Textil Aitex Alcoy Spain
| | - Nahuel Garcia
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
- Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe‐Centro de Investigación Príncipe Felipe Valencia Spain
| | - Imelda Ontoria‐Oviedo
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
- Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe‐Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - Felipe Prosper
- Laboratory of Cell TherapyFoundation for Applied Medical Research and Clínica Universidad de Navarra, University of Navarra Pamplona Spain
| | - Pilar Sepúlveda
- Instituto de Investigación Sanitaria la Fe, Regenerative Medicine and Heart Transplantation Unit Valencia Spain
- Joint Unit for Cardiovascular Repair Instituto de Investigación Sanitaria La Fe‐Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
23
|
Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017; 15:e107-e121. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Collapse
|
24
|
Ramanathan G, Singaravelu S, Muthukumar T, Thyagarajan S, Perumal PT, Sivagnanam UT. Design and characterization of 3D hybrid collagen matrixes as a dermal substitute in skin tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:359-370. [PMID: 28024598 DOI: 10.1016/j.msec.2016.11.095] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
The highly interconnected porous dressing material was fabricated with the utilization of novel collagen (COL-SPG) for the efficient healing of the wound. Herein, we report the fabrication of 3D collagen impregnated with bioactive extract (COL-SPG-CPE) to get rid of infection at the wound site. The resultant 3D collagen matrix was characterized physiochemically using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and mechanical property. The dressing substrate possesses the high swelling ability, increase in the porosity, in vitro enzymatic degradability and antibacterial property. The in vitro biocompatibility and fluorescence activity of the collagen scaffold against both NIH 3T3 fibroblast and Human keratinocyte (HaCaT) cell lines assisted in excellent cell adhesion and proliferation over the collagen matrix. Furthermore, the in vivo evaluation of the COL-SPG-CPE 3D sponge exhibited with enhanced collagen synthesis and aids in faster reepithelialization. However, the rate of wound healing was influenced by the expression of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor (TGF-β) growth factors promotes the collagen synthesis, thereby increases the healing efficiency. Based on the results, COL-SPG-CPE has a potential ability in the remodeling of the wound with the 3D collagen as wound dressing material.
Collapse
Affiliation(s)
- Giriprasath Ramanathan
- Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu, India
| | - Sivakumar Singaravelu
- Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu, India
| | - Thangavelu Muthukumar
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, 79 Gobong-ro, Iksan-city, Jeollabuk-Do 570-752, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Dew L, English WR, Ortega I, Claeyssens F, MacNeil S. Fabrication of Biodegradable Synthetic Vascular Networks and Their Use as a Model of Angiogenesis. Cells Tissues Organs 2016; 202:319-328. [DOI: 10.1159/000446644] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
One of the greatest challenges currently faced in tissue engineering is the incorporation of vascular networks within tissue-engineered constructs. The aim of this study was to develop a technique for producing a perfusable, 3-dimensional, cell-friendly model of vascular structures that could be used to study the factors affecting angiogenesis and vascular biology in engineered systems in more detail. Initially, biodegradable synthetic pseudovascular networks were produced via the combination of robocasting and electrospinning techniques. The internal surfaces of the vascular channels were then recellularized with human dermal microvascular endothelial cells (HDMECs) with and without the presence of human dermal fibroblasts (HDFs) on the outer surface of the scaffold. After 7 days in culture, channels that had been reseeded with HDMECs alone demonstrated irregular cell coverage. However, when using a co-culture of HDMECs inside and HDFs outside the vascular channels, coverage was found to be continuous throughout the internal channel. Using this cell combination, collagen gels loaded with vascular endothelial growth factor were deposited onto the outer surface of the scaffold and cultured for a further 7 days. After this, endothelial cell outgrowth from within the channels into the collagen gel was observed, showing that the engineered vasculature maintains its capacity for angiogenesis. Furthermore, the HDMECs appeared to have formed perfusable tubules within the gel. These results show promising steps towards the development of an in vitro platform for studying angiogenesis and vascular biology in a tissue engineering context.
Collapse
|
26
|
Puwanun S, Bye FJ, Ireland MM, MacNeil S, Reilly GC, Green NH. Production and Characterization of a Novel, Electrospun, Tri-Layer Polycaprolactone Membrane for the Segregated Co-Culture of Bone and Soft Tissue. Polymers (Basel) 2016; 8:E221. [PMID: 30979316 PMCID: PMC6431928 DOI: 10.3390/polym8060221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
Composite tissue-engineered constructs combining bone and soft tissue have applications in regenerative medicine, particularly dentistry. This study generated a tri-layer, electrospun, poly-ε-caprolactone membrane, with two microfiber layers separated by a layer of nanofibers, for the spatially segregated culture of mesenchymal progenitor cells (MPCs) and fibroblasts. The two cell types were seeded on either side, and cell proliferation and spatial organization were investigated over several weeks. Calcium deposition by MPCs was detected using xylenol orange (XO) and the separation between fibroblasts and the calcified matrix was visualized by confocal laser scanning microscopy. SEM confirmed that the scaffold consisted of two layers of micron-diameter fibers with a thin layer of nano-diameter fibers in-between. Complete separation of cell types was maintained and calcified matrix was observed on only one side of the membrane. This novel tri-layer membrane is capable of supporting the formation of a bilayer of calcified and non-calcified connective tissue.
Collapse
Affiliation(s)
- Sasima Puwanun
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Frazer J Bye
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Moira M Ireland
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK.
| | - Nicola H Green
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| |
Collapse
|
27
|
Hillary CJ, Roman S, Bullock AJ, Green NH, Chapple CR, MacNeil S. Developing Repair Materials for Stress Urinary Incontinence to Withstand Dynamic Distension. PLoS One 2016; 11:e0149971. [PMID: 26981860 PMCID: PMC4794140 DOI: 10.1371/journal.pone.0149971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/08/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Polypropylene mesh used as a mid-urethral sling is associated with severe clinical complications in a significant minority of patients. Current in vitro mechanical testing shows that polypropylene responds inadequately to mechanical distension and is also poor at supporting cell proliferation. AIMS AND OBJECTIVES Our objective therefore is to produce materials with more appropriate mechanical properties for use as a sling material but which can also support cell integration. METHODS Scaffolds of two polyurethanes (PU), poly-L-lactic acid (PLA) and co-polymers of the two were produced by electrospinning. Mechanical properties of materials were assessed and compared to polypropylene. The interaction of adipose derived stem cells (ADSC) with the scaffolds was also assessed. Uniaxial tensiometry of scaffolds was performed before and after seven days of cyclical distension. Cell penetration (using DAPI and a fluorescent red cell tracker dye), viability (AlamarBlue assay) and total collagen production (Sirius red assay) were measured for ADSC cultured on scaffolds. RESULTS Polypropylene was stronger than polyurethanes and PLA. However, polypropylene mesh deformed plastically after 7 days of sustained cyclical distention, while polyurethanes maintained their elasticity. Scaffolds of PU containing PLA were weaker and stiffer than PU or polypropylene but were significantly better than PU scaffolds alone at supporting ADSC. CONCLUSIONS Therefore, prolonged mechanical distension in vitro causes polypropylene to fail. Materials with more appropriate mechanical properties for use as sling materials can be produced using PU. Combining PLA with PU greatly improves interaction of cells with this material.
Collapse
Affiliation(s)
- Christopher J. Hillary
- Kroto research Institute, University of Sheffield, Broad Lane, Sheffield, United Kingdom
- Royal Hallamshire Hospital, Glossop Road, Sheffield, United Kingdom
| | - Sabiniano Roman
- Kroto research Institute, University of Sheffield, Broad Lane, Sheffield, United Kingdom
| | - Anthony J. Bullock
- Kroto research Institute, University of Sheffield, Broad Lane, Sheffield, United Kingdom
| | - Nicola H Green
- Kroto research Institute, University of Sheffield, Broad Lane, Sheffield, United Kingdom
| | | | - Sheila MacNeil
- Kroto research Institute, University of Sheffield, Broad Lane, Sheffield, United Kingdom
| |
Collapse
|
28
|
Roman S, Mangir N, Bissoli J, Chapple CR, MacNeil S. Biodegradable scaffolds designed to mimic fascia-like properties for the treatment of pelvic organ prolapse and stress urinary incontinence. J Biomater Appl 2016; 30:1578-88. [PMID: 26896234 DOI: 10.1177/0885328216633373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is an urgent clinical need for better synthetic materials to be used in surgical support of the pelvic floor. The aim of the current study was to construct biodegradable synthetic scaffolds that mimic the three-dimensional architecture of human fascia, which can integrate better into host tissues both mechanically and biologically. Therefore, four different polylactic acid (PLA) scaffolds with various degrees of fibre alignment were electrospun by modifying the electrospinning parameters. Physical and mechanical properties were assessed using a BOSE electroforce tensiometer. The attachment, viability and extracellular matrix production of adipose-derived stem cells cultured on the polylactic acid scaffolds were evaluated. The bulk density of the scaffolds decreased as the proportion of aligned fibres increased. Scaffolds became stronger and stiffer with increasing amounts of aligned fibres as measured along the axis parallel to the fibre alignment. In addition, more total collagen was produced on scaffolds with aligned fibres and was organised in the direction of the aligned fibres. In conclusion, the electrospinning technique can be easily modified to develop biodegradable scaffolds with a spectrum of mechanical properties allowing extracellular matrix organisation towards human-like fascia.
Collapse
Affiliation(s)
- Sabiniano Roman
- Material Science & Engineering, University of Sheffield, Sheffield, UK
| | - Naside Mangir
- Material Science & Engineering, University of Sheffield, Sheffield, UK
| | - Julio Bissoli
- Hospital das Clínicas da Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | | | - Sheila MacNeil
- Material Science & Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Mangır N, Bullock AJ, Roman S, Osman N, Chapple C, MacNeil S. Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater 2016; 29:188-197. [PMID: 26478470 PMCID: PMC4678952 DOI: 10.1016/j.actbio.2015.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/10/2015] [Accepted: 10/14/2015] [Indexed: 01/31/2023]
Abstract
OBJECTIVE An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. MATERIALS AND METHODS Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. RESULTS No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. CONCLUSION This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. STATEMENT OF SIGNIFICANCE Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better integrate into sites of implantation both biologically and mechanically. The impact of vitamin C on extracellular matrix production is well established but we in this study have undertaken a critical comparison of two derivatives of vitamin C as they are released from a biodegradable scaffold. This strategy proved to be equally useful with both derivatives in terms of new tissue production yet we observed significant differences in mechanical properties of these biomaterials.
Collapse
Affiliation(s)
- Naşide Mangır
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom; Royal Hallamshire Hospital, Urology Clinic, Sheffield, United Kingdom
| | - Anthony J Bullock
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom
| | - Sabiniano Roman
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom
| | - Nadir Osman
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom; Royal Hallamshire Hospital, Urology Clinic, Sheffield, United Kingdom
| | | | - Sheila MacNeil
- Department of Materials Science Engineering, Kroto Research Institute, University of Sheffield, United Kingdom.
| |
Collapse
|
30
|
Harrison RH, Steele JAM, Chapman R, Gormley AJ, Chow LW, Mahat MM, Podhorska L, Palgrave RG, Payne DJ, Hettiaratchy SP, Dunlop IE, Stevens MM. Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiber-Initiated Controlled Radical Polymerization. ADVANCED FUNCTIONAL MATERIALS 2015; 25:5748-5757. [PMID: 27134621 PMCID: PMC4845664 DOI: 10.1002/adfm.201501277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/19/2015] [Indexed: 05/25/2023]
Abstract
Native tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end-functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly-ε-caprolactone is end functionalized with either a polymerization-initiating group or a cell-binding peptide motif cyclic Arg-Gly-Asp-Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold. The polymerization-initiating group is then used to graft an antifouling polymer bottlebrush based on poly(ethylene glycol) from the fiber surface using CRP exclusively within one bilayer of the scaffold. The ability to include additional multifunctionality during CRP is showcased by integrating a biotinylated monomer unit into the polymerization step allowing postmodification of the scaffold with streptavidin-coupled moieties. These combined processing techniques result in an effective bilayered and dual-functionality scaffold with a cell-adhesive surface and an opposing antifouling non-cell-adhesive surface in zonally specific regions across the thickness of the scaffold, demonstrated through fluorescent labelling and cell adhesion studies. This modular and versatile approach combines strategies to produce scaffolds with tailorable properties for many applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Rachael H Harrison
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK; Department of Plastic and Reconstructive Surgery Imperial College Healthcare NHS Trust Charing Cross Campus Fulham Palace Road London W6 8RF UK
| | - Joseph A M Steele
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Robert Chapman
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Adam J Gormley
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Lesley W Chow
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Muzamir M Mahat
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Lucia Podhorska
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| | - Robert G Palgrave
- Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
| | - David J Payne
- Department of Materials Imperial College London London SW7 2AZ UK
| | - Shehan P Hettiaratchy
- Department of Plastic and Reconstructive Surgery Imperial College Healthcare NHS Trust Charing Cross Campus Fulham Palace Road London W6 8RF UK
| | - Iain E Dunlop
- Department of Materials Imperial College London London SW7 2AZ UK
| | - Molly M Stevens
- Department of Materials Imperial College London London SW7 2AZ UK; Institute of Biomedical Engineering Imperial College London London SW7 2AZ UK; Department of Bioengineering Imperial College London London SW7 2AZ UK
| |
Collapse
|
31
|
Ortega I, Dew L, Kelly AG, Chong CK, MacNeil S, Claeyssens F. Fabrication of biodegradable synthetic perfusable vascular networks via a combination of electrospinning and robocasting. Biomater Sci 2015. [DOI: 10.1039/c4bm00418c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospinning has been combined with robocasting using alginate as a sacrificial template for the creation of bespoke and perfusable artificial vascular networks.
Collapse
Affiliation(s)
- Ilida Ortega
- Bioengineering and Health Technologies Group
- The School of Clinical Dentistry
- University of Sheffield
- Sheffield
- UK
| | - Lindsey Dew
- Biomaterials and Tissue Engineering Group
- Department of Materials Science and Engineering
- Kroto Research Institute
- University of Sheffield
- Sheffield
| | - Adam G. Kelly
- Biomaterials and Tissue Engineering Group
- Department of Materials Science and Engineering
- Kroto Research Institute
- University of Sheffield
- Sheffield
| | - Chuh K. Chong
- Biomaterials and Tissue Engineering Group
- Department of Materials Science and Engineering
- Kroto Research Institute
- University of Sheffield
- Sheffield
| | - Sheila MacNeil
- Biomaterials and Tissue Engineering Group
- Department of Materials Science and Engineering
- Kroto Research Institute
- University of Sheffield
- Sheffield
| | - Frederik Claeyssens
- Biomaterials and Tissue Engineering Group
- Department of Materials Science and Engineering
- Kroto Research Institute
- University of Sheffield
- Sheffield
| |
Collapse
|
32
|
Tetteh G, Khan A, Delaine-Smith R, Reilly G, Rehman I. Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 2014; 39:95-110. [DOI: 10.1016/j.jmbbm.2014.06.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
33
|
Morris GE, Bridge JC, Brace LA, Knox AJ, Aylott JW, Brightling CE, Ghaemmaghami AM, Rose FRAJ. A novel electrospun biphasic scaffold provides optimal three-dimensional topography for in vitro co-culture of airway epithelial and fibroblast cells. Biofabrication 2014; 6:035014. [PMID: 24925127 DOI: 10.1088/1758-5082/6/3/035014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conventional airway in vitro models focus upon the function of individual structural cells cultured in a two-dimensional monolayer, with limited three-dimensional (3D) models of the bronchial mucosa. Electrospinning offers an attractive method to produce defined, porous 3D matrices for cell culture. To investigate the effects of fibre diameter on airway epithelial and fibroblast cell growth and functionality, we manipulated the concentration and deposition rate of the non-degradable polymer polyethylene terephthalate to create fibres with diameters ranging from nanometre to micrometre. The nanofibre scaffold closely resembles the basement membrane of the bronchiole mucosal layer, and epithelial cells cultured at the air-liquid interface on this scaffold showed polarized differentiation. The microfibre scaffold mimics the porous sub-mucosal layer of the airway into which lung fibroblast cells showed good penetration. Using these defined electrospinning parameters we created a biphasic scaffold with 3D topography tailored for optimal growth of both cell types. Epithelial and fibroblast cells were co-cultured onto the apical nanofibre phase and the basal microfibre phase respectively, with enhanced epithelial barrier formation observed upon co-culture. This biphasic scaffold provides a novel 3D in vitro platform optimized to mimic the different microenvironments the cells encounter in vivo on which to investigate key airway structural cell interactions in airway diseases such as asthma.
Collapse
Affiliation(s)
- G E Morris
- Division of Drug Delivery and Tissue Engineering, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Delaine-Smith RM, Green NH, Matcher SJ, MacNeil S, Reilly GC. Monitoring fibrous scaffold guidance of three-dimensional collagen organisation using minimally-invasive second harmonic generation. PLoS One 2014; 9:e89761. [PMID: 24587017 PMCID: PMC3938545 DOI: 10.1371/journal.pone.0089761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/24/2014] [Indexed: 11/19/2022] Open
Abstract
The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner.
Collapse
Affiliation(s)
- Robin M. Delaine-Smith
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Nicola H. Green
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Stephen J. Matcher
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- INSIGNEO Institute for in silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|