1
|
Kang Y, Masud MK, Guo Y, Zhao Y, Nishat ZS, Zhao J, Jiang B, Sugahara Y, Pejovic T, Morgan T, Hossain MSA, Li H, Salomon C, Asahi T, Yamauchi Y. Au-Loaded Superparamagnetic Mesoporous Bimetallic CoFeB Nanovehicles for Sensitive Autoantibody Detection. ACS NANO 2023; 17:3346-3357. [PMID: 36744876 DOI: 10.1021/acsnano.2c07694] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Construction of a well-defined mesoporous nanostructure is crucial for applying nonnoble metals in catalysis and biomedicine owing to their highly exposed active sites and accessible surfaces. However, it remains a great challenge to controllably synthesize superparamagnetic CoFe-based mesoporous nanospheres with tunable compositions and exposed large pores, which are sought for immobilization or adsorption of guest molecules for magnetic capture, isolation, preconcentration, and purification. Herein, a facile assembly strategy of a block copolymer was developed to fabricate a mesoporous CoFeB amorphous alloy with abundant metallic Co/Fe atoms, which served as an ideal scaffold for well-dispersed loading of Au nanoparticles (∼3.1 nm) via the galvanic replacement reaction. The prepared Au-CoFeB possessed high saturation magnetization as well as uniform and large open mesopores (∼12.5 nm), which provided ample accessibility to biomolecules, such as nucleic acids, enzymes, proteins, and antibodies. Through this distinctive combination of superparamagnetism (CoFeB) and biofavorability (Au), the resulting Au-CoFeB was employed as a dispersible nanovehicle for the direct capture and isolation of p53 autoantibody from serum samples. Highly sensitive detection of the autoantibody was achieved with a limit of detection of 0.006 U/mL, which was 50 times lower than that of the conventional p53-ELISA kit-based detection system. Our assay is capable of quantifying differential expression patterns for detecting p53 autoantibodies in ovarian cancer patients. This assay provides a rapid, inexpensive, and portable platform with the potential to detect a wide range of clinically relevant protein biomarkers.
Collapse
Affiliation(s)
- Yunqing Kang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Mostafa Kamal Masud
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yanna Guo
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Zakia Sultana Nishat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Tanja Pejovic
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Terry Morgan
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Joint International Research Laboratory of Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
2
|
Salman MS, Yang Y, Zubair M, Bedford NM, Aguey‐Zinsou K. Core-shell NaBH 4 @Ni Nanoarchitectures: A Platform for Tunable Hydrogen Storage. CHEMSUSCHEM 2022; 15:e202200664. [PMID: 35723027 PMCID: PMC9542058 DOI: 10.1002/cssc.202200664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The core-shell approach has surfaced as an attractive strategy to make complex hydrides reversible for hydrogen storage; however, no synthetic method exists for taking advantage of this approach. Here, a detailed investigation was undertaken to effectively design freestanding core-shell NaBH4 @Ni nanoarchitectures and correlate their hydrogen properties with structure and chemical composition. It was shown that the Ni shell growth on the surface of NaBH4 particles could be kinetically and thermodynamically controlled. The latter led to varied hydrogen properties. Near-edge X-ray absorption fine structure analysis confirmed that control over the Ni0 /Nix By concentrations upon NiII reduction led to a destabilized hydride system. Hydrogen release from the sphere, cube, and bar-like core-shell nanoarchitectures occurred at around 50, 90, and 95 °C, respectively, compared to the bulk (>500 °C). This core-shell approach, when extended to other hydrides, could open new avenues to decipher structure-property correlation in hydrogen storage/generation.
Collapse
Affiliation(s)
- Muhammad Saad Salman
- MERLinSchool of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- MERLinSchool of ChemistryThe University of SydneySydneyNSW 2006Australia
| | - Yuwei Yang
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - Muhammad Zubair
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - Nicholas M. Bedford
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | | |
Collapse
|
3
|
Huang Y, Cheng Y, Zhang J. A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yijing Huang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
4
|
Facile Aqueous–Phase Synthesis of Pd–FePt Core–Shell Nanoparticles for Methanol Oxidation Reaction. Catalysts 2021. [DOI: 10.3390/catal11010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multi-metallic Pd@FePt core–shell nanoparticles were synthesized using a direct seed-mediated growth method, consisting of facile and mild procedures, to increase yield. The Fe/Pt ratio in the shell was easily controlled by adjusting the amount of Fe and Pt precursors. Furthermore, compared with commercial Pt/C catalysts, Pd@FePt nanoparticles exhibited excellent activity and stability toward the methanol oxidation reaction (MOR), making them efficient in direct methanol fuel cells (DMFC).
Collapse
|
5
|
Akhtar K, Ali F, Sohni S, Kamal T, Asiri AM, Bakhsh EM, Khan SB. Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:823-836. [PMID: 31811610 DOI: 10.1007/s11356-019-06908-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/28/2019] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass waste is a cheap, eco-friendly, and sustainable raw material for a wide array of applications. In the present study, an easy, fast, and economically feasible route has been proposed for the preparation of different zero-valent metal nanoparticles (ZV-MNPs) based on Cu, Co, Ag, and Ni NPs using empty fruit bunch (EFB) biomass residue as support material. The catalytic efficiency of ZV-MNPs/EFB catalyst was investigated against five model pollutants, such as methyl orange (MO), congo red (CR), methylene blue (MB), acridine orange (AO), and 4-nitrophenol (4-NP) using NaBH4 as a source of hydrogen and electron. Comparative study revealed that among as-prepared ZV-MNPs/EFB catalysts, Cu-NPs immobilized onto EFB (Cu/EFB) exhibited maximum catalytic efficiency towards pollutant abasement. Degradation reactions were highly efficient, and were completed within a short time (4 min) in case of MO, CR, and MB, whilst AO and 4-NP were reduced in less than 15 min. Kinetic investigation revealed that the degradation rate of model pollutants accorded with pseudo-first order model. Furthermore, supported catalysts were easily recovered after the completion of experiment by simply pulling the catalyst from reaction system. Recyclability tests performed on Cu/EFB revealed that more than 97% of the reduction was achieved in case of MO dye for four successive cycles of reuse. The as-prepared heterostructure showed multifunctional properties, such as enhanced uptake of contaminants, high catalytic efficiency, and easy recovery, hence, offers great prospects in wastewater purification.
Collapse
Affiliation(s)
- Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Abbottabad University of Science and Technology, Havelian, Abbottabad, KPK, Pakistan
| | - Saima Sohni
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Tahseen Kamal
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
6
|
Lai Q, Alligier D, Aguey-Zinsou KF, Demirci UB. Hydrogen generation from a sodium borohydride-nickel core@shell structure under hydrolytic conditions. NANOSCALE ADVANCES 2019; 1:2707-2717. [PMID: 36132719 PMCID: PMC9418610 DOI: 10.1039/c9na00037b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/03/2019] [Indexed: 06/13/2023]
Abstract
Sodium borohydride (NaBH4) is an attractive hydrogen carrier owing to its reactivity with water: it can generate 4 equivalents of H2 by hydrolysis (NaBH4 + 4H2O → NaB(OH)4 + 4H2). Since using NaBH4 in the solid state is the most favorable way to achieve a high gravimetric hydrogen storage capacity (theoretical maximum of 7.3 wt%), we have investigated the possibility of developing a core@shell nanocomposite (NaBH4@Ni) where a metallic nickel catalyst facilitating the hydrolysis is directly supported onto NaBH4 nanoparticles. Following our initial work on core-shell hydrides, the successful preparation of NaBH4@Ni has been confirmed by TEM, EDS, IR, XRD and XPS. During hydrolysis, the intimately combined Ni0 and NaBH4 allow the production of H2 at high rates (e.g. 6.1 L min-1 g-1 at 39 °C) when water is used in excess. After H2 generation, the spent fuel is composed of an aqueous solution of NaB(OH)4 and a nickel-based agglomerated material in the form of Ni(OH)2 as evidenced by TEM, XPS and XRD. The effective gravimetric hydrogen storage capacity of nanosized NaBH4@Ni has been optimized by adjusting the required amount of water for hydrolysis and an effective hydrogen capacity of 4.4 wt% has been achieved. This is among the best reported values.
Collapse
Affiliation(s)
- Qiwen Lai
- MERLin, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Damien Alligier
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Univ Montpellier Montpellier France umit.demirci@umontpellier
| | | | - Umit B Demirci
- Institut Européen des Membranes, IEM - UMR 5635, ENSCM, CNRS, Univ Montpellier Montpellier France umit.demirci@umontpellier
| |
Collapse
|
7
|
Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 2019; 132:772-783. [DOI: 10.1016/j.ijbiomac.2019.03.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022]
|
8
|
Khan SB, Ali F, Akhtar K. Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. Carbohydr Polym 2019; 207:650-662. [DOI: 10.1016/j.carbpol.2018.12.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 01/22/2023]
|
9
|
Schneemann A, White JL, Kang S, Jeong S, Wan LF, Cho ES, Heo TW, Prendergast D, Urban JJ, Wood BC, Allendorf MD, Stavila V. Nanostructured Metal Hydrides for Hydrogen Storage. Chem Rev 2018; 118:10775-10839. [PMID: 30277071 DOI: 10.1021/acs.chemrev.8b00313] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Knowledge and foundational understanding of phenomena associated with the behavior of materials at the nanoscale is one of the key scientific challenges toward a sustainable energy future. Size reduction from bulk to the nanoscale leads to a variety of exciting and anomalous phenomena due to enhanced surface-to-volume ratio, reduced transport length, and tunable nanointerfaces. Nanostructured metal hydrides are an important class of materials with significant potential for energy storage applications. Hydrogen storage in nanoscale metal hydrides has been recognized as a potentially transformative technology, and the field is now growing steadily due to the ability to tune the material properties more independently and drastically compared to those of their bulk counterparts. The numerous advantages of nanostructured metal hydrides compared to bulk include improved reversibility, altered heats of hydrogen absorption/desorption, nanointerfacial reaction pathways with faster rates, and new surface states capable of activating chemical bonds. This review aims to summarize the progress to date in the area of nanostructured metal hydrides and intends to understand and explain the underpinnings of the innovative concepts and strategies developed over the past decade to tune the thermodynamics and kinetics of hydrogen storage reactions. These recent achievements have the potential to propel further the prospects of tuning the hydride properties at nanoscale, with several promising directions and strategies that could lead to the next generation of solid-state materials for hydrogen storage applications.
Collapse
Affiliation(s)
- Andreas Schneemann
- Sandia National Laboratories , Livermore , California 94551 , United States
| | - James L White
- Sandia National Laboratories , Livermore , California 94551 , United States
| | - ShinYoung Kang
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Sohee Jeong
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Liwen F Wan
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Eun Seon Cho
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Tae Wook Heo
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - David Prendergast
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Jeffrey J Urban
- Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Brandon C Wood
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Mark D Allendorf
- Sandia National Laboratories , Livermore , California 94551 , United States
| | - Vitalie Stavila
- Sandia National Laboratories , Livermore , California 94551 , United States
| |
Collapse
|
10
|
Ali F, Khan SB, Kamal T, Alamry KA, Asiri AM. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Sci Rep 2018; 8:6260. [PMID: 29674721 PMCID: PMC5908960 DOI: 10.1038/s41598-018-24311-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Different chitosan-titanium oxide (CS-TiO2-x, with x = TiO2 loadings of 1, 5, 10,15 and 20 wt%) nanocomposite fibers were prepared and kept separately in each salt solution of CuSO4, CoNO3, AgNO3 and NiSO4 to adsorb Cu2+, Co2+, Ag+, and Ni+ ions, respectively. The metal ions loaded onto CS-TiO2 fibers were reduced to their respective zero-valent metal nanoparticles (ZV-MNPs) like Cu0, Co0, Ag0 and Ni0 by treating with NaBH4. The CS-TiO2 fibers templated with various ZV-MNPs were characterized and investigated for their catalytic efficiency. Among all prepared ZV-MNPs, Cu0 nanoparticles templated on CS-TiO2-15 fibers exhibited high catalytic efficiency for the reduction of dyes (methyl orange (MO), congo red (CR), methylene blue (MB) and acridine orange (AO)) and nitrophenols (4-nitrohphenol (4-NP), 2-nitrophenol (2-NP), 3-nitrophenol (3-NP) and 2,6-dinitrophenol (2,6-DNP)). Besides the good catalytic activities of Cu/CS-TiO2-15 fibers, it could be easily recovered by simply pulling the fiber from the reaction medium.
Collapse
Affiliation(s)
- Fayaz Ali
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Khalid A Alamry
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.,Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Ali F, Khan SB, Kamal T, Anwar Y, Alamry KA, Asiri AM. Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. Carbohydr Polym 2017; 173:676-689. [DOI: 10.1016/j.carbpol.2017.05.074] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/14/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
|
12
|
Xia G, Chen X, Zhao Y, Li X, Guo Z, Jensen CM, Gu Q, Yu X. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15502-15509. [PMID: 28436647 DOI: 10.1021/acsami.7b02589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An effective route based on space-confined chemical reaction to synthesize uniform Li2Mg(NH)2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li3N, serve as intelligent nanoreactors for the reaction of Li3N with Mg-containing precursors, resulting in the formation of uniformly discrete Li2Mg(NH)2 nanoparticles. The nanostructured Li2Mg(NH)2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li2Mg(NH)2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H2 sorption of Li2Mg(NH)2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.
Collapse
Affiliation(s)
- Guanglin Xia
- Department of Materials Science, Fudan University , Shanghai 200433, China
- Institute for Superconducting and Electronic Materials, University of Wollongong , North Wollongong, NSW 2522, Australia
| | - Xiaowei Chen
- Department of Physics, School of Science, Jimei University , Xiamen 361021, China
| | - Yan Zhao
- Department of Materials Science, Fudan University , Shanghai 200433, China
| | - Xingguo Li
- College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zaiping Guo
- Institute for Superconducting and Electronic Materials, University of Wollongong , North Wollongong, NSW 2522, Australia
| | - Craig M Jensen
- Department of Chemistry, University of Hawaii at Manoa , 2545 The McCathy Mall, Honolulu, Hawaii 96822-2275, United States
| | - Qinfen Gu
- Australian Synchrotron , Clayton 3168, Australia
| | - Xuebin Yu
- Department of Materials Science, Fudan University , Shanghai 200433, China
| |
Collapse
|
13
|
Kamal T, Khan SB, Asiri AM. Nickel nanoparticles-chitosan composite coated cellulose filter paper: An efficient and easily recoverable dip-catalyst for pollutants degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:625-633. [PMID: 27481647 DOI: 10.1016/j.envpol.2016.07.046] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/05/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
In this report, we used cellulose filter paper (FP) as high surface area catalyst supporting green substrate for the synthesis of nickel (Ni) nanoparticles in thin chitosan (CS) coating layer and their easy separation was demonstrated for next use. In this work, FP was coated with a 1 wt% CS solution onto cellulose FP to prepare CS-FP as an economical and environment friendly host material. CS-FP was put into 0.2 M NiCl2 aqueous solution for the adsorption of Ni2+ ions by CS coating layer. The Ni2+ adsorbed CS-FP was treated with 0.1 M NaBH4 aqueous solution to convert the ions into nanoparticles. Thus, we achieved Ni nanoparticles-CS composite through water based in-situ preparation process. Successful Ni nanoparticles formations was assessed by FESEM and EDX analyses. FTIR used to track the interactions between nanoparticles and host material. Furthermore, we demonstrated that the nanocomposite displays an excellent catalytic activity and reusability in three reduction reactions of toxic compounds i.e. conversion of 4-nitrophenol to 4-aminophenol, 2-nitrophenol to 2-aminophenol, and methyl orange dye reduction by NaBH4. Such a fabrication process of Ni/CS-FP may be applicable for the immobilization of other metal nanoparticles onto FP for various applications in catalysis, sensing, and environmental sciences.
Collapse
Affiliation(s)
- Tahseen Kamal
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Li Y, Ding X, Zhang Q. Self-Printing on Graphitic Nanosheets with Metal Borohydride Nanodots for Hydrogen Storage. Sci Rep 2016; 6:31144. [PMID: 27484735 PMCID: PMC4971464 DOI: 10.1038/srep31144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022] Open
Abstract
Although the synthesis of borohydride nanostructures is sufficiently established for advancement of hydrogen storage, obtaining ultrasmall (sub-10 nm) metal borohydride nanocrystals with excellent dispersibility is extremely challenging because of their high surface energy, exceedingly strong reducibility/hydrophilicity and complicated composition. Here, we demonstrate a mechanical-force-driven self-printing process that enables monodispersed (~6 nm) NaBH4 nanodots to uniformly anchor onto freshly-exfoliated graphitic nanosheets (GNs). Both mechanical-forces and borohydride interaction with GNs stimulate NaBH4 clusters intercalation/absorption into the graphite interlayers acting as a ‘pen’ for writing, which is accomplished by exfoliating GNs with the ‘printed’ borohydrides. These nano-NaBH4@GNs exhibit favorable thermodynamics (decrease in ∆H of ~45%), rapid kinetics (a greater than six-fold increase) and stable de-/re-hydrogenation that retains a high capacity (up to ~5 wt% for NaBH4) compared with those of micro-NaBH4. Our results are helpful in the scalable fabrication of zero-dimensional complex hydrides on two-dimensional supports with enhanced hydrogen storage for potential applications.
Collapse
Affiliation(s)
- Yongtao Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Xiaoli Ding
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qingan Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
15
|
Lai Q, Paskevicius M, Sheppard DA, Buckley CE, Thornton AW, Hill MR, Gu Q, Mao J, Huang Z, Liu HK, Guo Z, Banerjee A, Chakraborty S, Ahuja R, Aguey-Zinsou KF. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. CHEMSUSCHEM 2015; 8:2789-2825. [PMID: 26033917 DOI: 10.1002/cssc.201500231] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/10/2015] [Indexed: 06/04/2023]
Abstract
One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed.
Collapse
Affiliation(s)
- Qiwen Lai
- MERLin Group, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052 (Australia), Fax: (+61) 02-938-55966
| | - Mark Paskevicius
- Department of Chemistry and iNANO, Aarhus University, Aarhus 8000 (Denmark)
- Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, Bentley WA 6102 (Australia)
| | - Drew A Sheppard
- Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, Bentley WA 6102 (Australia)
| | - Craig E Buckley
- Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, Bentley WA 6102 (Australia)
| | | | - Matthew R Hill
- CSIRO, Private Bag 10, Clayton South MDC, VIC 3169 (Australia)
| | - Qinfen Gu
- Australian Synchrotron, Clayton, VIC 3168 (Australia)
| | - Jianfeng Mao
- Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, Squires Way, NSW 2500 (Australia)
| | - Zhenguo Huang
- Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, Squires Way, NSW 2500 (Australia)
| | - Hua Kun Liu
- Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, Squires Way, NSW 2500 (Australia)
| | - Zaiping Guo
- Institute for Superconducting and Electronic Materials, Innovation Campus, University of Wollongong, Squires Way, NSW 2500 (Australia)
| | - Amitava Banerjee
- Condensed Matter Theory Group, Department of Physics & Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden)
| | - Sudip Chakraborty
- Condensed Matter Theory Group, Department of Physics & Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden)
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Department of Physics & Astronomy, Uppsala University, Box 516, 75120 Uppsala (Sweden)
| | - Kondo-Francois Aguey-Zinsou
- MERLin Group, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052 (Australia), Fax: (+61) 02-938-55966.
| |
Collapse
|
16
|
Cho S, Shin DH, Yin Z, Lee C, Park SY, Yoo J, Piao Y, Kim YS. Synthesis of Cu3Sn Alloy Nanocrystals through Sequential Reduction Induced by Gradual Increase of the Reaction Temperature. Chemistry 2015; 21:6690-4. [DOI: 10.1002/chem.201406154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 11/06/2022]
|
17
|
Recent Advances in the Use of Sodium Borohydride as a Solid State Hydrogen Store. ENERGIES 2015. [DOI: 10.3390/en8010430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bhatt P, Banerjee S, Anwar S, Mukadam MD, Meena SS, Yusuf SM. Core-shell Prussian blue analogue molecular magnet Mn(1.5)[Cr(CN)6]·mH2O@Ni(1.5)[Cr(CN)6]·nH2O for hydrogen storage. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17579-17588. [PMID: 25310858 DOI: 10.1021/am503526c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Core-shell Prussian blue analogue molecular magnet Mn1.5[Cr(CN)6]·mH2O@Ni1.5[Cr(CN)6]·nH2O has been synthesized using a core of Mn1.5[Cr(CN)6]·7.5H2O, surrounded by a shell of Ni1.5[Cr(CN)6]·7.5H2O compound. A transmission electron microscopy (TEM) study confirms the core-shell nature of the nanoparticles with an average size of ∼25 nm. The core-shell nanoparticles are investigated by using x-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) and elemental mapping, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and infrared (IR) spectroscopy. The Rietveld refinement of the XRD pattern reveals that the core-shell compound has a face-centered cubic crystal structure with space group Fm3m. The observation of characteristic absorption bands in the range of 2000-2300 cm(-1) in IR spectra corresponds to the CN stretching frequency of Mn(II)/Ni(II)-N≡C-Cr(III) sequence, confirming the formation of Prussian blue analogues. Hydrogen absorption isotherm measurements have been used to investigate the kinetics of molecular hydrogen adsorption into core-shell compounds of the Prussian blue analogue at low temperature conditions. Interestingly, the core-shell compound shows an enhancement in the hydrogen capacity (2.0 wt % at 123 K) as compared to bare-core and bare-shell compounds. The hydrogen adsorption capacity has been correlated with the specific surface area and TGA analysis of the core-shell compound. To the best of our knowledge, this is the first report on the hydrogen storage properties of core-shell Prussian blue analogue molecular magnet that could be useful for hydrogen storage applications.
Collapse
Affiliation(s)
- Pramod Bhatt
- Solid State Physics Division and ‡Chemistry Division, Bhabha Atomic Research Centre , Mumbai 400085, India
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
|
21
|
Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G. Hydrogen storage: beyond conventional methods. Chem Commun (Camb) 2013; 49:8735-51. [DOI: 10.1039/c3cc43836h] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|