1
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
2
|
Fu Y, Simeth NA, Szymanski W, Feringa BL. Visible and near-infrared light-induced photoclick reactions. Nat Rev Chem 2024; 8:665-685. [PMID: 39112717 DOI: 10.1038/s41570-024-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes, that is, non-invasive and high spatiotemporal control, with classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photocrosslinking, protein labelling and bioimaging. Despite these advances, most photoclick reactions typically require near-ultraviolet (UV) and mid-UV light to proceed. UV light can trigger undesirable responses, including cellular apoptosis, and therefore, visible and near-infrared light-induced photoclick reaction systems are highly desirable. Shifting to a longer wavelength can also reduce degradation of the photoclick reagents and products. Several strategies have been used to induce a bathochromic shift in the wavelength of irradiation-initiating photoclick reactions. For instance, the extension of the conjugated π-system, triplet-triplet energy transfer, multi-photon excitation, upconversion technology, photocatalytic and photoinitiation approaches, and designs involving photocages have all been used to achieve this goal. Current design strategies, recent advances and the outlook for long wavelength-driven photoclick reactions are presented.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Georg-August-University Göttingen, Göttingen, Germany.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Fu Y, Alachouzos G, Simeth NA, Di Donato M, Hilbers MF, Buma WJ, Szymanski W, Feringa BL. Triplet-Triplet Energy Transfer: A Simple Strategy for an Efficient Visible Light-Induced Photoclick Reaction. Angew Chem Int Ed Engl 2024; 63:e202319321. [PMID: 38511339 DOI: 10.1002/anie.202319321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.
Collapse
Affiliation(s)
- Youxin Fu
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Mariangela Di Donato
- LENS (European Laboratory for Non-Linear Spectroscopy), via N. Carrara 1, 50019, Sesto Fiorentino (FI), Italy
- ICCOM-CNR, via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| | - Michiel F Hilbers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Heidarnezhad Z, Ghorbani-Choghamarani A, Taherinia Z. Fe 3O 4@SiO 2@SBA-3@CPTMS@Arg-Cu: preparation, characterization, and catalytic performance in the conversion of nitriles to amides and the synthesis of 5-substituted 1 H-tetrazoles. NANOSCALE ADVANCES 2024; 6:2431-2446. [PMID: 38694458 PMCID: PMC11059512 DOI: 10.1039/d3na00318c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/15/2023] [Indexed: 05/04/2024]
Abstract
A novel, efficient, and recyclable mesoporous Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu nanocatalyst was synthesized by grafting l-arginine (with the ability to coordinate with Cu) onto a mixed phase of a magnetic mesoporous SBA-3 support. The catalyst was characterized using several techniques, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray diffraction (XRD) analysis, N2 adsorption-desorption analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) analysis, and atomic absorption spectroscopy (AAS). The resulting solid material possessed a surface area of 145 m2 g-1 and a total pore volume of 34 cm3 g-1. The prepared mesoporous material was studied as a practical, recyclable, and chemoselective catalyst in some organic functional group transformations such as the conversion of nitriles to amides and synthesis of 5-substituted 1H-tetrazoles. This novel magnetic nanocatalyst proved to be effective and provided the products in high to excellent yields under green solvent conditions. Meanwhile, the as-prepared Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu demonstrated excellent reusability and stability under reaction conditions, and its catalytic activity shown only a slight decrease after seven consecutive runs. Therefore, the as-synthesized magnetic Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu has broad prospects for practical applications, and offers various benefits such as simplicity, nontoxicity, low cost, simple work-up, and an environmentally benign nature.
Collapse
Affiliation(s)
| | - Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Ilam Iran
| |
Collapse
|
5
|
Zhang H, Fang M, Lin Q. Photo-activatable Reagents for Bioorthogonal Ligation Reactions. Top Curr Chem (Cham) 2023; 382:1. [PMID: 38091203 PMCID: PMC11803906 DOI: 10.1007/s41061-023-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Light-induced bioorthogonal reactions offer spatiotemporal control over selective biomolecular labeling. This review covers the recent advances in the design of photo-activatable reagents for bioorthogonal conjugation reactions in living systems. These reagents are stable in the absence of light, but transformed into reactive species upon light illumination, which then undergo rapid ligation reactions. The light wavelength has been tuned from ultraviolet to near infrared to enable efficient photo-activation in reactions in deep tissues. The most prominent photo-activatable reagents are presented, including tetrazoles, tetrazines, 9,10-phenanthrenequinone, diarylsydnones, and others. A particular focus is on the strategies for improving reaction kinetics and biocompatibility accomplished through careful molecular engineering. The utilities of these photo-activatable reagents are illustrated through a broad range of biological applications, including in vivo protein labeling, positron emission tomography (PET) imaging, responsive hydrogels, and fluorescence microscopy. The further development and optimization of these biocompatible photo-activatable reagents should lead to new chemical biology strategies for studying biomolecular structure and function in living systems.
Collapse
Affiliation(s)
- Heyang Zhang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Ming Fang
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
6
|
Rieger L, Pfeuffer B, Wagenknecht HA. Metabolic labelling of DNA in cells by means of the "photoclick" reaction triggered by visible light. RSC Chem Biol 2023; 4:1037-1042. [PMID: 38033731 PMCID: PMC10685802 DOI: 10.1039/d3cb00150d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Two pyrene-tetrazole conjugates were synthesized as photoreactive chromophores that allow for the first time the combination of metabolic labelling of DNA in cells and subsequent bioorthogonal "photoclick" modification triggered by visible light. Two strained alkenes and three alkene-modified nucleosides were used as reactive counterparts and revealed no major differences in their "photoclick" reactivity. This is a significant advantage because it allows 5-vinyl-2'-deoxyuridine to be applied as the smallest possible alkene-modified nucleoside for metabolic labelling of DNA in cells. Both pyrene-tetrazole conjugates show fluorogenicity during the "photoclick" reactions, which is a second advantage for cellular imaging. Living HeLa cells were incubated with 5-vinyl-2'-deoxyuridine for 48 h to ensure one cell division. After fixation, the newly synthesized genomic DNA was successfully labelled by irradiation with visible light at 405 nm and 450 nm. This method is an attractive tool for the visualization of genomic DNA in cells with full spatiotemporal control by the use of visible light as a reaction trigger.
Collapse
Affiliation(s)
- Lisa Rieger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Bastian Pfeuffer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6 Karlsruhe 76131 Germany
| |
Collapse
|
7
|
Yang Y, Liang J, Li W, Yang W, Wang C, Zhang X, Fang WH, Guo Z, Chen X. Mechanistic Understanding and Reactivity Analyses for the Photochemistry of Disubstituted Tetrazoles. J Phys Chem A 2023; 127:4115-4124. [PMID: 37133205 DOI: 10.1021/acs.jpca.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The photolysis of tetrazoles has undergone extensive research. However, there are still some problems to be solved in terms of mechanistic understanding and reactivity analyses, which leaves room for theoretical calculations. Herein, multiconfiguration perturbation theory at the CASPT2//CASSCF level was employed to account for electron correction effects involved in the photolysis of four disubstituted tetrazoles. Based on calculations of vertical excitation properties and evaluations of intersystem crossing (ISC) efficiencies in the Frank-Condon region, the combination of space and electronic effects is found in maximum-absorption excitation. Two types of ISC (1ππ* → 3nπ*, 1ππ* → 3ππ*) are determined in disubstituted tetrazoles, and the obtained rates follow the El-Sayed rule. Through mapping three representative types of minimum energy profiles for the photolysis of 1,5-, and 2,5-disubstituted tetrazoles, a conclusion can be drawn that the photolysis of tetrazoles exhibits reactivity characteristic of bond-breaking selectivity. Kinetic evaluations show that the photogeneration of singlet imidoylnitrene operates predominately over that in the triplet state, which can be confirmed by a double-well model in the triplet potential energy surface of 1,5-disubstituted tetrazole. Similar mechanistic explorations and reactivity analyses were also applied to the photolysis of 2,5-disubstituted tetrazole to unveil fragmentation patterns of nitrile imine generation. All computational efforts allow us to better understand the photoreactions of disubstituted tetrazoles and to provide useful strategies for regulating their unique reactivity.
Collapse
Affiliation(s)
- Yanting Yang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing Liang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Weijia Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Chu Wang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaorui Zhang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, People's Republic of China
| | - Xuebo Chen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Michenfelder RT, Delafresnaye L, Truong VX, Barner-Kowollik C, Wagenknecht HA. DNA labelling in live cells via visible light-induced [2+2] photocycloaddition. Chem Commun (Camb) 2023; 59:4012-4015. [PMID: 36920883 DOI: 10.1039/d3cc00817g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
We introduce a visible light-driven (λmax = 451 nm) photo-chemical strategy for labelling of DNA in living HeLa cells via the [2+2] cycloaddition of a styrylquinoxaline moiety, which we incorporate into both the DNA and the fluorescent label. Our methodology offers advanced opportunities for the mild remote labelling of DNA in water while avoiding UV light activation.
Collapse
Affiliation(s)
- Rita T Michenfelder
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Laura Delafresnaye
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
| | - Vinh X Truong
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, 138634, Singapore.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George St, Brisbane QLD 4000, Australia.
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber Weg 6, Karlsruhe 76131, Germany.
| |
Collapse
|
9
|
Truong VX, Holloway JO, Barner-Kowollik C. Fluorescence turn-on by photoligation - bright opportunities for soft matter materials. Chem Sci 2022; 13:13280-13290. [PMID: 36507164 PMCID: PMC9682895 DOI: 10.1039/d2sc05403e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022] Open
Abstract
Photochemical ligation has become an indispensable tool for applications that require spatially addressable functionalisation, both in biology and materials science. Interestingly, a number of photochemical ligations result in fluorescent products, enabling a self-reporting function that provides almost instantaneous visual feedback of the reaction's progress and efficiency. Perhaps no other chemical reaction system allows control in space and time to the same extent, while concomitantly providing inherent feedback with regard to reaction success and location. While photoactivable fluorescent properties have been widely used in biology for imaging purposes, the expansion of the array of photochemical reactions has further enabled its utility in soft matter materials. Herein, we concisely summarise the key developments of fluorogenic-forming photoligation systems and their emerging applications in both biology and materials science. We further summarise the current challenges and future opportunities of exploiting fluorescent self-reporting reactions in a wide array of chemical disciplines.
Collapse
Affiliation(s)
- Vinh X Truong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138 634 Singapore
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Joshua O Holloway
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) Brisbane QLD 4000 Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Kumar GS, Lin Q. Seeking Citius: Photochemical Access of Reactive Intermediates for Faster Bioorthogonal Reactions. Chembiochem 2022; 23:e202200175. [PMID: 35612501 PMCID: PMC9488641 DOI: 10.1002/cbic.202200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Indexed: 11/08/2022]
Abstract
Fast bioorthogonal reactions are sought after because of their superior performance in labeling low-abundance biomolecules in native cellular environments. An attractive strategy to increase reaction kinetics is to access the reactive intermediates through photochemical activation. To this end, significant progress was made in the last few years in harnessing two highly reactive intermediates-nitrile imine and tetrazine-generated through photoinduced ring rupture and catalytic photooxidation, respectively. The efficient capture of these reactive intermediates by their cognate reaction partners has enabled bioorthogonal fluorescent labeling of biomolecules in live cells.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260-3000, USA
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260-3000, USA
| |
Collapse
|
11
|
Zhang YK, Li M, Ruan L, An P. A tetrazole-ene photoactivatable fluorophore with improved brightness and stability in protic solution. Chem Commun (Camb) 2022; 58:10404-10407. [PMID: 36039909 DOI: 10.1039/d2cc03482d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The pyrazoline fluorophore, generated by photoinduced tetrazole-ene cycloaddition, shows faint fluorescence in protic solvents. To suppress this fluorescence-quenching, we rationally designed a series of substituted diaryl tetrazoles at the N-side phenyl ring to produce a tetrazole-ene based photoactivatable fluorophore. Spectroscopic and cellular imaging studies demonstrated that the version of the fluorophore with a bis(trifluoromethyl)benzene substituent exhibited significantly enhanced brightness and photostability.
Collapse
Affiliation(s)
- Yi-Kang Zhang
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Meng Li
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Lan Ruan
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| | - Peng An
- School of Chemical Science and Technology & Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
12
|
Arora A, Singh K. Click Chemistry Mediated by Photochemical Energy. ChemistrySelect 2022. [DOI: 10.1002/slct.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amandeep Arora
- Department of Natural and Applied Science University of Dubuque 2000 University Ave. Dubuque, IA 52001 USA
| | - Kamaljeet Singh
- TLC Pharmaceutical Standards 130 Pony Drive, Newmarket ON Canada L3Y 7B6 USA
| |
Collapse
|
13
|
Wang Y, Wang P, Zhou L, Su Y, Zhou Y, Zhu X, Huang W, Yan D. A novel docetaxel derivative exhibiting potent anti-tumor activity and high safety in preclinical animal models. Biomater Sci 2022; 10:4876-4888. [PMID: 35861325 DOI: 10.1039/d2bm00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a taxoid agent, docetaxel (DTX) exhibits potent antitumor activity. However, severe toxic side effects and acquired multidrug resistance represent its clinical challenges. Herein, a novel docetaxel derivative (DTX-AI) is synthesized via the nucleophilic addition reaction of 4-acetylphenyl carbamate at the C10 position of the DTX framework. DTX-AI exhibits superior cytotoxicity and a higher apoptotic ratio in vitro against DTX-sensitive tumor cells (MCF-7, HeLa and A549 cells) and even DTX-resistant ones (HeLa/PTX cells), but displays less toxicity against normal cells (MRC-5 and L929 cells) compared with DTX. DTX-AI can effectively suppress the growth of HeLa-tumor xenografts in vivo and even induce complete tumor regression. Furthermore, DTX-AI shows sustained effects on the inhibition of A549-tumor xenograft growth and no obvious recurrence, even after the drug administration was stopped for 30 d. More importantly, DTX-AI has significantly reduced long-term and short-term animal toxicity and extended the survival of mice (100%) compared with DTX (0%). DTX-AI is expected to be a promising 'me-better' anti-tumor drug with higher efficiency and lower toxicity for improved chemotherapy in the clinic.
Collapse
Affiliation(s)
- Yao Wang
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China.
| | - Penghui Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Linzhu Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Deyue Yan
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, P. R. China. .,School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
14
|
Pirota V, Benassi A, Doria F. Lights on 2,5-diaryl tetrazoles: applications and limits of a versatile photoclick reaction. Photochem Photobiol Sci 2022; 21:879-898. [DOI: 10.1007/s43630-022-00173-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 01/14/2023]
Abstract
AbstractRecently, photoclick chemistry emerged as a powerful tool employed in several research fields, from medicinal chemistry and biology to material sciences. The growing interest in this type of chemical process is justified by the possibility to produce complex molecular systems using mild reaction conditions. However, the elevated spatio-temporal control offered by photoclick chemistry is highly intriguing, as it expands the range of applications. In this context, the light-triggered reaction of 2,5-diaryl tetrazoles with dipolarophiles emerged for its interesting features: excellent stability of the substrates, fast reaction kinetic, and the formation of a highly fluorescent product, fundamental for sensing applications. In the last years, 2,5-diaryl tetrazoles have been extensively employed, especially for bioorthogonal ligations, to label biomolecules and nucleic acids. In this review, we summarized recent applications of this interesting photoclick reaction, with a particular focus on biological fields. Moreover, we described the main limits that affect this system and current strategies proposed to overcome these issues. The general discussion here presented could prompt further optimization of the process and pave the way for the development of new original structures and innovative applications.
Graphical abstract
Collapse
|
15
|
Irshadeen IM, Walden SL, Wegener M, Truong VX, Frisch H, Blinco JP, Barner-Kowollik C. Action Plots in Action: In-Depth Insights into Photochemical Reactivity. J Am Chem Soc 2021; 143:21113-21126. [PMID: 34859671 DOI: 10.1021/jacs.1c09419] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Predicting wavelength-dependent photochemical reactivity is challenging. Herein, we revive the well-established tool of measuring action spectra and adapt the technique to map wavelength-resolved covalent bond formation and cleavage in what we term "photochemical action plots". Underpinned by tunable lasers, which allow excitation of molecules with near-perfect wavelength precision, the photoinduced reactivity of several reaction classes have been mapped in detail. These include photoinduced cycloadditions and bond formation based on photochemically generated o-quinodimethanes and 1,3-dipoles such as nitrile imines as well as radical photoinitiator cleavage. Organized by reaction class, these data demonstrate that UV/vis spectra fail to act as a predictor for photochemical reactivity at a given wavelength in most of the examined reactions, with the photochemical reactivity being strongly red shifted in comparison to the absorption spectrum. We provide an encompassing perspective of the power of photochemical action plots for bond-forming reactions and their emerging applications in the design of wavelength-selective photoresists and photoresponsive soft-matter materials.
Collapse
Affiliation(s)
- Ishrath Mohamed Irshadeen
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Martin Wegener
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Vinh X Truong
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Zhu C, Kou T, Kadi AA, Li J, Zhang Y. Molecular platforms based on biocompatible photoreactions for photomodulation of biological targets. Org Biomol Chem 2021; 19:9358-9368. [PMID: 34632469 DOI: 10.1039/d1ob01613j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoirradiation provides a convenient and biocompatible approach for spatiotemporal modulation of biological systems with photoresponsive components. The construction of molecular platforms with a photoresponse to be integrated into biomolecules for photomodulation has been of great research interest in optochemical biology. In this review, we summarize typical molecular platforms that are integratable with biomolecules for photomodulation purposes. We categorize these molecular platforms according to their excitation light source, namely ultraviolet (UV), visible (Vis) or near-infrared (NIR) light. The protype chemistry of these molecular platforms is introduced along with an overview of their most recent applications for spatiotemporal regulation of biomolecular function in living cells or mice models. Challenges and the outlook are also presented. We hope this review paper will contribute to further progress in the development of molecular platforms and their biomedical use.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Tianzhang Kou
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Kingdom of Saudi Arabia.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
17
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Liu H, Zheng T, Zheng Y, Li B, Xie X, Shen X, Zhao X, Yu Z. Visible-light induced photo-click and release strategy between monoarylsydnone and phenoxylfumarate. Chem Commun (Camb) 2021; 57:8135-8138. [PMID: 34350920 DOI: 10.1039/d1cc02841c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report a visible-light induced photo-click and release platform between monoarylsydnone (MASyd) and phenoxylfumarates. The pyrazoline produced by the cycloaddition undergoes a photo-aromatization to form a fluorescent pyrazole. Meanwhile, the photo-aromatization also serves as the driving force to release fluorophores that are quenched in the form of phenoxylfumarates.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering School of Chemistry and Chemical Engineering Nanjing University Jiangsu Nanjing 210023 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
20
|
Hu Y, Schomaker JM. Recent Developments and Strategies for Mutually Orthogonal Bioorthogonal Reactions. Chembiochem 2021; 22:3254-3262. [PMID: 34261195 DOI: 10.1002/cbic.202100164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/12/2021] [Indexed: 12/23/2022]
Abstract
Over the past decade, several different metal-free bioorthogonal reactions have been developed to enable simultaneous double-click labeling with minimal-to-no competing cross-reactivities; such transformations are termed 'mutually orthogonal'. More recently, several examples of successful triple ligation strategies have also been described. In this minireview, we discuss selected aspects of the development of orthogonal bioorthogonal reactions over the past decade, including general strategies to drive future innovations to achieve simultaneous, mutually orthogonal click reactions in one pot.
Collapse
Affiliation(s)
- Yun Hu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
21
|
Song G, Heng H, Wang J, Liu R, Huang Y, Lu H, Du K, Feng F, Wang S. Photoactivated In Situ Generation of Near Infrared Cyanines for Spatiotemporally Controlled Fluorescence Imaging in Living Cells. Angew Chem Int Ed Engl 2021; 60:16889-16893. [PMID: 34050693 DOI: 10.1002/anie.202103706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Photoactivated trimerization of 2,3,3-trimethyl-3H-indole derivatives created near infrared fluorophore Cy5. The synthetic method is air-tolerant, photosensitizer free, metal free, and condensation agent free. Living cells make Cy5 on a time scale of minutes under white light irradiation at a low power intensity, with the monomer as the only exogenous agent. The new method is promising to find applications in cell studies for in situ spatiotemporally controlled fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Gang Song
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Heng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Jiaqi Wang
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Ronghua Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huan Lu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu, Nanjing, 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
22
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Abstract
The merging of click chemistry with discrete photochemical processes has led to the creation of a new class of click reactions, collectively known as photoclick chemistry. These light-triggered click reactions allow the synthesis of diverse organic structures in a rapid and precise manner under mild conditions. Because light offers unparalleled spatiotemporal control over the generation of the reactive intermediates, photoclick chemistry has become an indispensable tool for a wide range of spatially addressable applications including surface functionalization, polymer conjugation and cross-linking, and biomolecular labeling in the native cellular environment. Over the past decade, a growing number of photoclick reactions have been developed, especially those based on the 1,3-dipolar cycloadditions and Diels-Alder reactions owing to their excellent reaction kinetics, selectivity, and biocompatibility. This review summarizes the recent advances in the development of photoclick reactions and their applications in chemical biology and materials science. A particular emphasis is placed on the historical contexts and mechanistic insights into each of the selected reactions. The in-depth discussion presented here should stimulate further development of the field, including the design of new photoactivation modalities, the continuous expansion of λ-orthogonal tandem photoclick chemistry, and the innovative use of these unique tools in bioconjugation and nanomaterial synthesis.
Collapse
Affiliation(s)
- Gangam Srikanth Kumar
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
24
|
Marshall DL, Menzel JP, McKinnon BI, Blinco JP, Trevitt AJ, Barner-Kowollik C, Blanksby SJ. Laser Photodissociation Action Spectroscopy for the Wavelength-Dependent Evaluation of Photoligation Reactions. Anal Chem 2021; 93:8091-8098. [PMID: 34019383 DOI: 10.1021/acs.analchem.1c01584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nitrile imine-mediated tetrazole-ene cycloaddition is a widely used class of photoligation. Optimizing the reaction outcome requires detailed knowledge of the tetrazole photoactivation profile, which can only partially be ascertained from absorption spectroscopy, or otherwise involves laborious reaction monitoring in solution. Photodissociation action spectroscopy (PDAS) combines the advantages of optical spectroscopy and mass spectrometry in that only absorption events resulting in a mass change are recorded, thus revealing the desired wavelength dependence of product formation. Moreover, the sensitivity and selectivity afforded by the mass spectrometer enable reliable assessment of the photodissociation profile even on small amounts of crude material, thus accelerating the design and synthesis of next-generation substrates. Using this workflow, we demonstrate that the photodissociation onset for nitrile imine formation is red-shifted by ca. 50 nm with a novel N-ethylcarbazole derivative relative to a phenyl-substituted archetype. Benchmarked against solution-phase tunable laser experiments and supported by quantum chemical calculations, these discoveries demonstrate that PDAS is a powerful tool for rapidly screening the efficacy of new substrates in the quest toward efficient visible light-triggered ligation for biological applications.
Collapse
Affiliation(s)
- David L Marshall
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Jan P Menzel
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Benjamin I McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Adam J Trevitt
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
25
|
Kamm PW, Blinco JP, Unterreiner AN, Barner-Kowollik C. Green-light induced cycloadditions. Chem Commun (Camb) 2021; 57:3991-3994. [PMID: 33885643 DOI: 10.1039/d1cc00340b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We introduce a red-shifted tetrazole that is able to undergo efficient nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) under blue and green light irradiation. We provide a detailed wavelength-dependent reactivity map, and employ a number of LEDs for high-conversion small molecule and polymer end-group modification.
Collapse
Affiliation(s)
- Philipp W Kamm
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia and Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Geb. 30.44, Karlsruhe 76131, Germany.
| | - James P Blinco
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Andreas-Neil Unterreiner
- Molecular Physical Chemistry Group, Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, Geb. 30.44, Karlsruhe 76131, Germany.
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia. and School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
26
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
27
|
Yao J, Huang X, Ren J. Selective analysis of newly synthesized proteins by combining fluorescence correlation spectroscopy with bioorthogonal non-canonical amino acid tagging. Analyst 2021; 146:478-486. [DOI: 10.1039/d0an01697g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FCS with the BONCAT strategy is a promising approach for analysis of newly synthesized proteins and also be extended to further application for studying physiological or pathological processes related to proteins or other metabolic molecular changes.
Collapse
Affiliation(s)
- Jun Yao
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Jicun Ren
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
28
|
Livingstone K, Bertrand S, Kennedy AR, Jamieson C. Transition-Metal-Free Coupling of 1,3-Dipoles and Boronic Acids as a Sustainable Approach to C-C Bond Formation. Chemistry 2020; 26:10591-10597. [PMID: 32428258 PMCID: PMC7496359 DOI: 10.1002/chem.202001590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Indexed: 12/19/2022]
Abstract
The need for alternative, complementary approaches to enable C-C bond formation within organic chemistry is an on-going challenge in the area. Of particular relevance are transformations that proceed in the absence of transition-metal reagents. In the current study, we report a comprehensive investigation of the coupling of nitrile imines and aryl boronic acids as an approach towards sustainable C-C bond formation. In situ generation of the highly reactive 1,3-dipole facilitates a Petasis-Mannich-type coupling via a nucleophilic boronate complex. The introduction of hydrazonyl chlorides as a complementary nitrile imine source to the 2,5-tetrazoles previously reported by our laboratory further broadens the scope of the approach. Additionally, we exemplify for the first time the extension of this protocol into another 1,3-dipole, through the synthesis of aryl ketone oximes from aryl boronic acids and nitrile N-oxides.
Collapse
Affiliation(s)
- Keith Livingstone
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building, 295 Cathedral StGlasgowG1 1XLUK
| | - Sophie Bertrand
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building, 295 Cathedral StGlasgowG1 1XLUK
| | - Craig Jamieson
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building, 295 Cathedral StGlasgowG1 1XLUK
| |
Collapse
|
29
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
30
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
31
|
Li J, Kong H, Zhu C, Zhang Y. Photo-controllable bioorthogonal chemistry for spatiotemporal control of bio-targets in living systems. Chem Sci 2020; 11:3390-3396. [PMID: 34109018 PMCID: PMC8152734 DOI: 10.1039/c9sc06540g] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/07/2020] [Indexed: 12/27/2022] Open
Abstract
The establishment of bioorthogonal chemistry is one of the most significant advances in chemical biology using exogenous chemistry to perturb and study biological processes. Photo-modulation of biological systems has realized temporal and spatial control on biomacromolecules in living systems. The combination of photo-modulation and bioorthogonal chemistry is therefore emerging as a new direction to develop new chemical biological tools with spatiotemporal resolution. This minireview will focus on recent development of bioorthogonal chemistry subject to spatiotemporal control through photo-irradiation. Different strategies to realize photo-control on bioorthogonal bond-forming reactions and biological applications of photo-controllable bioorthogonal reactions will be summarized to give a perspective on how the innovations on photo-chemistry can contribute to the development of optochemical biology. Future trends to develop more optochemical tools based on novel photochemistry will also be discussed to envision the development of chemistry-oriented optochemical biology.
Collapse
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
32
|
Gao J, Xiong Q, Wu X, Deng J, Zhang X, Zhao X, Deng P, Yu Z. Direct ring-strain loading for visible-light accelerated bioorthogonal ligation via diarylsydnone-dibenzo[b,f ][1,4,5]thiadiazepine photo-click reactions. Commun Chem 2020; 3:29. [PMID: 36703431 PMCID: PMC9814081 DOI: 10.1038/s42004-020-0273-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 01/29/2023] Open
Abstract
Ultra-fast and selective covalent-bond forming reactions with spatiotemporal controllability are foundational for developing a bioorthogonal approach with high manipulability. However, it is challenging to exploit a reporter functional group to achieve these requirements simultaneously. Here, 11H-Dibenzo[c,f][1,2]diazepine and a set of heterocyclic analogues are investigated for both their photo-switching natures and their ability to serve as dipolarophiles in photo-click reactions with diarylsydnone. Sulfur-containing dibenzothiadiazepine (DBTD) is discovered to be an excellent chemical reporter in cycloaddition with visible-light excitation for in-situ ring-strain loading via its (Z) → (E) photo-isomerization. The bioorthogonal utility of the DBTD tag in spatiotemporally controlled ligation for protein modifications on live cells is also demonstrated.
Collapse
Affiliation(s)
- Jingshuo Gao
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Qin Xiong
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xueting Wu
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Jiajie Deng
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xiaocui Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Xiaohu Zhao
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Pengchi Deng
- grid.13291.380000 0001 0807 1581Analytical and Testing Center, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| | - Zhipeng Yu
- grid.13291.380000 0001 0807 1581Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, 610064 Chengdu, China
| |
Collapse
|
33
|
Li M, Dove AP, Truong VX. Additive‐Free Green Light‐Induced Ligation Using BODIPY Triggers. Angew Chem Int Ed Engl 2020; 59:2284-2288. [DOI: 10.1002/anie.201912555] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/21/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ming Li
- School of Materials Science and EngineeringCentral South University Changsha Hunan 410083 China
| | - Andrew P. Dove
- School of ChemistryUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Vinh X. Truong
- Department of Materials Science and EngineeringMonash University Clayton VIC 3800 Australia
| |
Collapse
|
34
|
Jiang S, Wu X, Liu H, Deng J, Zhang X, Yao Z, Zheng Y, Li B, Yu Z. Ring‐Strain‐Promoted Ultrafast Diaryltetrazole–Alkyne Photoclick Reactions Triggered by Visible Light. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900290] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Hui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jiajie Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yuanqin Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Bo Li
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of EducationSichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
35
|
Tuten BT, Wiedbrauk S, Barner-Kowollik C. Contemporary catalyst-free photochemistry in synthetic macromolecular science. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
|
37
|
Wang R, Jin X, Kong D, Chen Z, Liu J, Liu L, Cheng L. Visible‐Light Facilitated Fluorescence “Switch‐On” Labelling of 5‐Formylpyrimidine RNA. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Rui‐Li Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiao‐Yang Jin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - De‐Long Kong
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Zhi‐Gang Chen
- BNLMS, State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ji Liu
- BNLMS, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangzhou 510640 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
38
|
Hata T, Hayashi Y, Hasegawa Y, Iwai M, Ishii A, Hasegawa M, Shigeta M, Urabe H. Preparation of Tetrazole-fused π-Conjugated Molecules and Their Fluorescence Behavior. CHEM LETT 2019. [DOI: 10.1246/cl.190150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Hata
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoshiki Hayashi
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yuki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masaaki Iwai
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ayumi Ishii
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Miki Hasegawa
- College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Masayuki Shigeta
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hirokazu Urabe
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-59 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
39
|
An P, Lin Q. Sterically shielded tetrazoles for a fluorogenic photoclick reaction: tuning cycloaddition rate and product fluorescence. Org Biomol Chem 2019; 16:5241-5244. [PMID: 29995029 DOI: 10.1039/c8ob01404c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A panel of sterically shielded tetrazoles with different N-aryl groups were synthesized and subsequently evaluated in the photoinduced tetrazole-alkene cycloaddition reaction. It was found that increase in the HOMO energy of the corresponding nitrile imines leads to a faster cycloaddition reaction along with a red shift in the fluorescence emission of the pyrazoline cycloadduct.
Collapse
Affiliation(s)
- Peng An
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA.
| | | |
Collapse
|
40
|
Abstract
The bioorthogonal reaction toolbox contains approximately two-dozen unique chemistries that permit selective tagging and probing of biomolecules. Over the past two decades, significant effort has been devoted to optimizing and discovering bioorthogonal reagents that are faster, fluorogenic, and orthogonal to the already existing bioorthogonal repertoire. Conversely, efforts to explore bioorthogonal reagents whose reactivity can be controlled in space and/or time are limited. The "activatable" bioorthogonal reagents that do exist are often unimodal, meaning that their reagent's activation method cannot be easily modified to enable activation with red-shifted wavelengths, enzymes, or metabolic-byproducts and ions like H2O2 or Fe3+. Here, we summarize the available activatable bioorthogonal reagents with a focus on our recent addition: modular caged cyclopropenes. We designed caged cyclopropenes to be unreactive to their bioorthogonal partner until they are activated through the removal of the cage by light, an enzyme, or another reaction partner. To accomplish this, their structure includes a nitrogen atom at the cyclopropene C3 position that is decorated with the desired caging group through a carbamate linkage. This 3-N cyclopropene system can allow control of cyclopropene reactivity using a multitude of already available photo- and enzyme-caging groups. Additionally, this cyclopropene scaffold can enable metabolic-byproduct or ion activation of bioorthogonal reactions.
Collapse
Affiliation(s)
- Pratik Kumar
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States
| | - Scott T Laughlin
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
41
|
Kulkarni RA, Briney CA, Crooks DR, Bergholtz SE, Mushti C, Lockett SJ, Lane AN, Fan TWM, Swenson RE, Linehan WM, Meier JL. Photoinducible Oncometabolite Detection. Chembiochem 2019; 20:360-365. [PMID: 30358041 PMCID: PMC8141106 DOI: 10.1002/cbic.201800651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Dysregulated metabolism can fuel cancer by altering the production of bioenergetic building blocks and directly stimulating oncogenic gene-expression programs. However, relatively few optical methods for the direct study of metabolites in cells exist. To address this need and facilitate new approaches to cancer treatment and diagnosis, herein we report an optimized chemical approach to detect the oncometabolite fumarate. Our strategy employs diaryl tetrazoles as cell-permeable photoinducible precursors to nitrileimines. Uncaging these species in cells and cell extracts enables them to undergo 1,3-dipolar cycloadditions with endogenous dipolarophile metabolites such as fumarate to form pyrazoline cycloadducts that can be readily detected by their intrinsic fluorescence. The ability to photolytically uncage diaryl tetrazoles provides greatly improved sensitivity relative to previous methods, and enables the facile detection of dysregulated fumarate metabolism through biochemical activity assays, intracellular imaging, and flow cytometry. Our studies showcase an intersection of bioorthogonal chemistry and metabolite reactivity that can be applied for biological profiling, imaging, and diagnostics.
Collapse
Affiliation(s)
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Daniel R. Crooks
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| | - Chandrasekhar Mushti
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Andrew N. Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Teresa W-M. Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, and Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Rolf E. Swenson
- Imaging Probe Development Center, National Heart Lung and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, 20817, USA
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, NIH, Frederick MD, 21702, USA
| |
Collapse
|
42
|
Wu Y, Guo G, Zheng J, Xing D, Zhang T. Fluorogenic "Photoclick" Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens 2019; 4:44-51. [PMID: 30540170 DOI: 10.1021/acssensors.8b00565] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoclickable fluorogenic probes will enable visualization of specific biomolecules with precise spatiotemporal control in their native environment. However, the fluorogenic tagging of DNA with current photocontrolled clickable probes is still challenging. Herein, we demonstrated the fast (19.5 ± 2.5 M-1 s-1) fluorogenic labeling and imaging of DNA in vitro and in vivo with rationally designed coumarin-fused tetrazoles under UV LED photoirradiation. With a water-soluble, nuclear-specific coumarin-fused tetrazole (CTz-SO3), the metabolically synthesized DNA in cultured cells was effectively labeled and visualized, without fixation, via "photoclick" reaction. Moreover, the photoclickable CTz-SO3 enabled real-time, spatially controlled imaging of DNA in live zebrafish.
Collapse
Affiliation(s)
- Yunxia Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Judun Zheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
| |
Collapse
|
43
|
Yao Z, Wu X, Zhang X, Xiong Q, Jiang S, Yu Z. Synthesis and evaluation of photo-activatable β-diarylsydnone-l-alanines for fluorogenic photo-click cyclization of peptides. Org Biomol Chem 2019; 17:6777-6781. [DOI: 10.1039/c9ob00898e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
β-Diarylsydnone-l-alanines were designed and introduced into peptides allowing photo-cyclization only in phosphate containing buffer with concomitant fluorescence generation in live cells.
Collapse
Affiliation(s)
- Zhuojun Yao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xueting Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaocui Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qin Xiong
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Shichao Jiang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
44
|
Schart VF, Hassenrück J, Späte AK, Dold JEGA, Fahrner R, Wittmann V. Triple Orthogonal Labeling of Glycans by Applying Photoclick Chemistry. Chembiochem 2018; 20:166-171. [DOI: 10.1002/cbic.201800740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Verena F. Schart
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Jessica Hassenrück
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Anne-Katrin Späte
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Jeremias E. G. A. Dold
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Raphael Fahrner
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB); University of Konstanz; 78457 Konstanz Germany
| |
Collapse
|
45
|
Contemporary Photoligation Chemistry: The Visible Light Challenge. Chemistry 2018; 25:3700-3709. [DOI: 10.1002/chem.201803755] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 01/17/2023]
|
46
|
Li J, Kong H, Huang L, Cheng B, Qin K, Zheng M, Yan Z, Zhang Y. Visible Light-Initiated Bioorthogonal Photoclick Cycloaddition. J Am Chem Soc 2018; 140:14542-14546. [DOI: 10.1021/jacs.8b08175] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ke Qin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengmeng Zheng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
47
|
Hu P, Berning K, Lam YW, Ng IHM, Yeung CC, Lam MHW. Development of a Visible Light Triggerable Traceless Staudinger Ligation Reagent. J Org Chem 2018; 83:12998-13010. [DOI: 10.1021/acs.joc.8b01370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Hu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Karsten Berning
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Yun-Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Isabel Hei-Ma Ng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Chi-Chung Yeung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
48
|
Feist F, Menzel JP, Weil T, Blinco JP, Barner-Kowollik C. Visible Light-Induced Ligation via o-Quinodimethane Thioethers. J Am Chem Soc 2018; 140:11848-11854. [DOI: 10.1021/jacs.8b08343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Florian Feist
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jan P. Menzel
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - James P. Blinco
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstrasse 18, 76131 Karlsruhe, Germany
| |
Collapse
|
49
|
Liu Y, Tan YH, Yang CS, Wang B, Wang CF, Chen SP, Tang YZ, Wen HR. Temperature-dependent crystal structure and fluorescence properties of a tetranuclear copper(I) cluster from in situ [2 + 3] cycloaddition synthesis. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1454592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yi Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Yu Hui Tan
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Chang Shan Yang
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Bin Wang
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Chang Feng Wang
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Shao Peng Chen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - Yun Zhi Tang
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| | - He Rui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, PR China
| |
Collapse
|
50
|
An P, Lewandowski TM, Erbay TG, Liu P, Lin Q. Sterically Shielded, Stabilized Nitrile Imine for Rapid Bioorthogonal Protein Labeling in Live Cells. J Am Chem Soc 2018; 140:4860-4868. [PMID: 29565582 DOI: 10.1021/jacs.8b00126] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In pursuit of fast bioorthogonal reactions, reactive moieties have been increasingly employed for selective labeling of biomolecules in living systems, posing a challenge in attaining reactivity without sacrificing selectivity. To address this challenge, here we report a bioinspired strategy in which molecular shape controls the selectivity of a transient, highly reactive nitrile imine dipole. By tuning the shape of structural pendants attached to the ortho position of the N-aryl ring of diaryltetrazoles-precursors of nitrile imines, we discovered a sterically shielded nitrile imine that favors the 1,3-dipolar cycloaddition over the competing nucleophilic addition. The photogenerated nitrile imine exhibits an extraordinarily long half-life of 102 s in aqueous medium, owing to its unique molecular shape that hinders the approach of a nucleophile as shown by DFT calculations. The utility of this sterically shielded nitrile imine in rapid (∼1 min) bioorthogonal labeling of glucagon receptor in live mammalian cells was demonstrated.
Collapse
Affiliation(s)
- Peng An
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260-3000 , United States
| | - Tracey M Lewandowski
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260-3000 , United States
| | - Tuğçe G Erbay
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Peng Liu
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Qing Lin
- Department of Chemistry , State University of New York at Buffalo , Buffalo , New York 14260-3000 , United States
| |
Collapse
|