1
|
Switching azide and alkyne tags on bioorthogonal reporters in metabolic labeling of sialylatedglycoconjugates: a comparative study. Sci Rep 2022; 12:22129. [PMID: 36550357 PMCID: PMC9780200 DOI: 10.1038/s41598-022-26521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.
Collapse
|
2
|
Murali M, Murali VP, Joseph MM, Rajan S, Maiti KK. Elucidating cell surface glycan imbalance through SERS guided metabolic glycan labelling: An appraisal of metastatic potential in cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112506. [PMID: 35785648 DOI: 10.1016/j.jphotobiol.2022.112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The intrinsic complexities of cell-surface glycans impede tracking the metabolic changes in cells. By coupling metabolic glycan labelling (MGL) and surface-enhanced Raman scattering (SERS), we employed the MGL-SERS strategy to elucidate the differential glycosylation pattern in cancer cell lines. Herein, for the first time, we are reporting an N-alkyl derivative of glucosamine (GlcNPhAlk) as a glycan labelling precursor. The extent of labelling was assessed by utilizing Raman imaging and verified by complementary fluorescence and Western blot analysis. MGL-SERS technique was implemented for a comparative evaluation of cell surface glycan imbalance in different cancer cells wherein a linear relationship between glycan expression and metastatic potential was established. Further, the effect of sialyltransferase inhibitor, P-3Fax-Neu5Ac, on metabolic labelling of GlcNPhAlk proved the incorporation of GlcNPhAlk to the terminal glycans through the sialic acid biosynthetic pathway. Hence, this methodology unveils the phenomenon of metastatic progression in cancer cells with inherent glycosylation-related dysplasia.
Collapse
Affiliation(s)
- Madhukrishnan Murali
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishnu Priya Murali
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Manu M Joseph
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
| | - Soumya Rajan
- Government College, Kasargod 671123, Kerala, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences & Technology Division (CSTD), Organic Chemistry Section, CSIR- National Institute for Interdisciplinary Science & Technology (CSIR-NIIST), Industrial Estate, Pappanamcode, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Veale CGL, Talukdar A, Vauzeilles B. ICBS 2021: Looking Toward the Next Decade of Chemical Biology. ACS Chem Biol 2022; 17:728-743. [PMID: 35293726 DOI: 10.1021/acschembio.2c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clinton G. L. Veale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Vogt G, El Choubassi N, Herczegfalvi Á, Kölbel H, Lekaj A, Schara U, Holtgrewe M, Krause S, Horvath R, Schuelke M, Hübner C, Mundlos S, Roos A, Lochmüller H, Karcagi V, Kornak U, Fischer‐Zirnsak B. Expanding the clinical and molecular spectrum of ATP6V1A related metabolic cutis laxa. J Inherit Metab Dis 2021; 44:972-986. [PMID: 33320377 PMCID: PMC8638669 DOI: 10.1002/jimd.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Several inborn errors of metabolism show cutis laxa as a highly recognizable feature. One group of these metabolic cutis laxa conditions is autosomal recessive cutis laxa type 2 caused by defects in v-ATPase components or the mitochondrial proline cycle. Besides cutis laxa, muscular hypotonia and cardiac abnormalities are hallmarks of autosomal recessive cutis laxa type 2D (ARCL2D) due to pathogenic variants in ATP6V1A encoding subunit A of the v-ATPase. Here, we report on three affected individuals from two families with ARCL2D in whom we performed whole exome and Sanger sequencing. We performed functional studies in fibroblasts from one individual, summarized all known probands' clinical, molecular, and biochemical features and compared them, also to other metabolic forms of cutis laxa. We identified novel missense and the first nonsense variant strongly affecting ATP6V1A expression. All six ARCL2D affected individuals show equally severe cutis laxa and dysmorphism at birth. While for one no information was available, two died in infancy and three are now adolescents with mild or absent intellectual disability. Muscular weakness, ptosis, contractures, and elevated muscle enzymes indicated a persistent myopathy. In cellular studies, a fragmented Golgi compartment, a delayed Brefeldin A-induced retrograde transport and glycosylation abnormalities were present in fibroblasts from two individuals. This is the second and confirmatory report on pathogenic variants in ATP6V1A as the cause of this extremely rare condition and the first to describe a nonsense allele. Our data highlight the tremendous clinical variability of ATP6V1A related phenotypes even within the same family.
Collapse
Affiliation(s)
- Guido Vogt
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Naji El Choubassi
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Ágnes Herczegfalvi
- Department of Pediatric NeurologySemmelweis Medical University, II. Pediatric ClinicBudapestHungary
| | - Heike Kölbel
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Anja Lekaj
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Ulrike Schara
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
| | - Manuel Holtgrewe
- CUBI – Core Unit BioinformaticsBerlin Institute of HealthBerlinGermany
| | - Sabine Krause
- Friedrich‐Baur‐Institute, Department of NeurologyLudwig‐Maximilians‐University of MunichMunichGermany
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of Cambridge, Cambridge Biomedical CampusCambridgeUK
| | - Markus Schuelke
- Department of Neuropediatrics, Charité‐Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité‐Universitätsmedizin Berlincorporate member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Stefan Mundlos
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| | - Andreas Roos
- Department of Pediatric NeurologyUniversity Hospital Essen, University Duisburg‐EssenEssenGermany
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaOntarioCanada
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research InstituteUniversity of OttawaOttawaOntarioCanada
- Division of Neurology, Department of Medicine, The Ottawa HospitalOttawaCanada
- Brain and Mind Research InstituteUniversity of OttawaOttawaCanada
| | - Veronika Karcagi
- NIEH, Department of Molecular Genetics and DiagnosticsBudapestHungary
- Istenhegyi Genetic Diagnostic CentreBudapestHungary
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
- Institute of Human GeneticsUniversity Medical Center GöttingenGöttingenGermany
| | - Björn Fischer‐Zirnsak
- Institut für Medizinische Genetik und Humangenetik, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Max Planck Institute for Molecular Genetics, RG Development & DiseaseBerlinGermany
| |
Collapse
|
5
|
Ma C, Takeuchi H, Hao H, Yonekawa C, Nakajima K, Nagae M, Okajima T, Haltiwanger RS, Kizuka Y. Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int J Mol Sci 2020; 21:ijms21176007. [PMID: 32825463 PMCID: PMC7503990 DOI: 10.3390/ijms21176007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycans critically regulate the physiological functions of proteins and cells. Alterations in levels of fucosylated glycans are associated with various diseases. For detection and functional modulation of fucosylated glycans, chemical biology approaches using fucose (Fuc) analogs are useful. However, little is known about how efficiently each unnatural Fuc analog is utilized by enzymes in the biosynthetic pathway of fucosylated glycans. We show here that three clickable Fuc analogs with similar but distinct structures labeled cellular glycans with different efficiency and protein specificity. For instance, 6-alkynyl (Alk)-Fuc modified O-Fuc glycans much more efficiently than 7-Alk-Fuc. The level of GDP-6-Alk-Fuc produced in cells was also higher than that of GDP-7-Alk-Fuc. Comprehensive in vitro fucosyltransferase assays revealed that 7-Alk-Fuc is commonly tolerated by most fucosyltransferases. Surprisingly, both protein O-fucosyltransferases (POFUTs) could transfer all Fuc analogs in vitro, likely because POFUT structures have a larger space around their Fuc binding sites. These findings demonstrate that labeling and detection of fucosylated glycans with Fuc analogs depend on multiple cellular steps, including conversion to GDP form, transport into the ER or Golgi, and utilization by each fucosyltransferase, providing insights into design of novel sugar analogs for specific detection of target glycans or inhibition of their functions.
Collapse
Affiliation(s)
- Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Huilin Hao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Chizuko Yonekawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Japan;
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Disease, Osaka University, Suita 565-0871, Japan;
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3356
| |
Collapse
|
6
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Kizuka Y. Detection and Modulation of Fucosylated Glycans using Fucose Analogs. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1757.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University
| |
Collapse
|
8
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Gilormini PA, Lion C, Vicogne D, Guérardel Y, Foulquier F, Biot C. Chemical glycomics enrichment: imaging the recycling of sialic acid in living cells. J Inherit Metab Dis 2018; 41:515-523. [PMID: 29294191 PMCID: PMC5959963 DOI: 10.1007/s10545-017-0118-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/28/2017] [Accepted: 11/20/2017] [Indexed: 01/10/2023]
Abstract
The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear fundamental for the characterization of lysosomal storage diseases.
Collapse
Affiliation(s)
- Pierre André Gilormini
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Cédric Lion
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Dorothée Vicogne
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Yann Guérardel
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - François Foulquier
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| | - Christophe Biot
- University Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
10
|
Kizuka Y, Funayama S, Shogomori H, Nakano M, Nakajima K, Oka R, Kitazume S, Yamaguchi Y, Sano M, Korekane H, Hsu TL, Lee HY, Wong CH, Taniguchi N. High-Sensitivity and Low-Toxicity Fucose Probe for Glycan Imaging and Biomarker Discovery. Cell Chem Biol 2017; 23:782-792. [PMID: 27447047 DOI: 10.1016/j.chembiol.2016.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 01/13/2023]
Abstract
Fucose, a terminal sugar in glycoconjugates, critically regulates various physiological and pathological phenomena, including cancer development and inflammation. However, there are currently no probes for efficient labeling and detection of this sugar. We chemically synthesized a novel series of alkynyl-fucose analogs as probe candidates and found that 7-alkynyl-fucose gave the highest labeling efficiency and low cytotoxicity. Among the fucose analogs, 7-alkynyl-fucose was the best substrate against all five fucosyltransferases examined. We confirmed its conversion to the corresponding guanosine diphosphate derivative in cells and found that cellular glycoproteins were labeled much more efficiently with 7-alkynyl-fucose than with an existing probe. 7-Alkynyl-fucose was detected in the N-glycan core by mass spectrometry, and 7-alkynyl-fucose-modified proteins mostly disappeared in core-fucose-deficient mouse embryonic fibroblasts, suggesting that this analog mainly labeled core fucose in these cells. These results indicate that 7-alkynyl-fucose is a highly sensitive and powerful tool for basic glycobiology research and clinical application for biomarker discovery.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sho Funayama
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Hidehiko Shogomori
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima 739-8530, Japan
| | - Kazuki Nakajima
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan; Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinobu Kitazume
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Global Research Cluster, RIKEN, Saitama 351-0198, Japan
| | - Masahiro Sano
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Hiroaki Korekane
- Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsiu-Yu Lee
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Disease Glycomics (Seikagaku Corporation), Research Institute for Microbial Diseases, Osaka University, Osaka 567-0047, Japan.
| |
Collapse
|
11
|
Péanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, Pérez B, Seta N, Thiel C, Van Schaftingen E, Matthijs G, Jaeken J. Congenital disorders of glycosylation (CDG): Quo vadis? Eur J Med Genet 2017; 61:643-663. [PMID: 29079546 DOI: 10.1016/j.ejmg.2017.10.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 12/12/2022]
Abstract
The survey summarizes in its first part the current status of knowledge on the Congenital Disorders of Glycosylation (CDG) with regard to their phenotypic spectrum, diagnostic and therapeutic strategies, and pathophysiology. It documents the clinical and basic research activities, and efforts to involve patients and their families. In the second part, it tries to look into the future of CDG. More specific biomarkers are needed for fast CDG diagnosis and treatment monitoring. Whole genome sequencing will play an increasingly important role in the molecular diagnosis of unsolved CDG. Epigenetic defects are expected to join the rapidly expanding genetic and allelic heterogeneity of the CDG family. Novel treatments are urgently needed particularly for PMM2-CDG, the most prevalent CDG. Patient services such as apps should be developed e.g. to document the natural history and monitor treatment. Networking (EURO-CDG, the European Reference Networks (MetabERN)) is an efficient tool to disseminate knowledge and boost collaboration at all levels. The final goal is of course to improve the quality of life of the patients and their families.
Collapse
Affiliation(s)
- Romain Péanne
- Center for Human Genetics, KU Leuven, Leuven, Belgium; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", France
| | - Pascale de Lonlay
- APHP, Hôpital Necker Enfants Malades, Service et Centre de Référence des Maladies Métaboliques, Université Paris Descartes, Institut Imagine, Paris, France
| | - François Foulquier
- Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve D'ascq, France; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", Belgium
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, and Berlin-Brandenburg Centre for Regenerative Therapies, Charité University, Berlin, Germany
| | - Dirk J Lefeber
- Department of Neurology, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Morava
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Belén Pérez
- Centro de Diagnostico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nathalie Seta
- AP-HP, Hôpital Bichat, Biochemistry Laboratory, Paris, France
| | - Christian Thiel
- Stoffwechselzentrum, Universitäts-Kinderklinik, Heidelberg, Germany
| | - Emile Van Schaftingen
- Laboratory of Biochemistry, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Gert Matthijs
- Center for Human Genetics, KU Leuven, Leuven, Belgium; LIA GLYCOLAB4CDG France/Belgium (International Associated Laboratory "Laboratory for the Research on Congenital Disorders of Glycosylation - from cellular mechanisms to cure", France.
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Kizuka Y, Nakano M, Yamaguchi Y, Nakajima K, Oka R, Sato K, Ren CT, Hsu TL, Wong CH, Taniguchi N. An Alkynyl-Fucose Halts Hepatoma Cell Migration and Invasion by Inhibiting GDP-Fucose-Synthesizing Enzyme FX, TSTA3. Cell Chem Biol 2017; 24:1467-1478.e5. [PMID: 29033318 DOI: 10.1016/j.chembiol.2017.08.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/30/2017] [Accepted: 08/30/2017] [Indexed: 12/30/2022]
Abstract
Fucosylation is a glycan modification critically involved in cancer and inflammation. Although potent fucosylation inhibitors are useful for basic and clinical research, only a few inhibitors have been developed. Here, we focus on a fucose analog with an alkyne group, 6-alkynyl-fucose (6-Alk-Fuc), which is used widely as a detection probe for fucosylated glycans, but is also suggested for use as a fucosylation inhibitor. Our glycan analysis using lectin and mass spectrometry demonstrated that 6-Alk-Fuc is a potent and general inhibitor of cellular fucosylation, with much higher potency than the existing inhibitor, 2-fluoro-fucose (2-F-Fuc). The action mechanism was shown to deplete cellular GDP-Fuc, and the direct target of 6-Alk-Fuc is FX (encoded by TSTA3), the bifunctional GDP-Fuc synthase. We also show that 6-Alk-Fuc halts hepatoma invasion. These results highlight the unappreciated role of 6-Alk-Fuc as a fucosylation inhibitor and its potential use for basic and clinical science.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miyako Nakano
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Hiroshima 739-8530, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Kazuki Nakajima
- Division of Clinical Research Promotion and Support, Center for Research Promotion, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Ritsuko Oka
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Keiko Sato
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan
| | - Chien-Tai Ren
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, Global Research Cluster, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
13
|
Evidence for splice transcript variants of TMEM165, a gene involved in CDG. Biochim Biophys Acta Gen Subj 2017; 1861:737-748. [DOI: 10.1016/j.bbagen.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
|
14
|
Sminia TJ, Zuilhof H, Wennekes T. Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydr Res 2016; 435:121-141. [PMID: 27750120 DOI: 10.1016/j.carres.2016.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 12/16/2022]
Abstract
This review discusses the advances in metabolic oligosaccharide engineering (MOE) from 2010 to 2016 with a focus on the structure, preparation, and reactivity of its chemical probes. A brief historical overview of MOE is followed by a comprehensive overview of the chemical probes currently available in the MOE molecular toolbox and the bioconjugation techniques they enable. The final part of the review focusses on the synthesis of a selection of probes and finishes with an outlook on recent and potential upcoming advances in the field of MOE.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
15
|
Gilormini PA, Lion C, Noel M, Krzewinski-Recchi MA, Harduin-Lepers A, Guérardel Y, Biot C. Improved workflow for the efficient preparation of ready to use CMP-activated sialic acids. Glycobiology 2016; 26:1151-1156. [PMID: 27543325 DOI: 10.1093/glycob/cww084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 11/13/2022] Open
Abstract
Natural and synthetically modified cytidine monophosphate activated sialic acids (CMP-Sias) are essential research assets in the field of glycobiology: among other applications, they can be used to probe glycans, detect sialylation defects at the cell surface or carry out detailed studies of sialyltransferase activities. However, these chemical tools are notoriously unstable because of hydrolytic decomposition, and are very time-consuming and costly to obtain. They are nigh impossible to store with satisfactory purity, and their preparation requires multiple laborious purification steps that usually lead to heavy product loss. Using in situ time-resolved 31P phosphorus nuclear magnetic resonance (31P NMR), we precisely established the kinetics of formation and degradation of a number of CMP-Sias including CMP-Neu5Ac, CMP-Neu5Gc, CMP-SiaNAl and CMP-SiaNAz in several experimental conditions. 31P NMR can be carried out in undeuterated solvents and is a sensitive and nondestructive technique that allows for direct in situ monitoring and optimization of chemo-enzymatic syntheses that involve phosphorus-containing species. Thus, we showed that CMP-sialic acid derivatives can be robustly obtained in high yields using the readily available Neisseria meningitidis CMP-sialic acid synthase. This integrated workflow takes less than an hour, and the freshly prepared CMP-Sias can be directly transferred to sialylation biological assays without any purification step.
Collapse
Affiliation(s)
- Pierre-André Gilormini
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Cédric Lion
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Maxence Noel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Marie-Ange Krzewinski-Recchi
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Anne Harduin-Lepers
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Yann Guérardel
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| | - Christophe Biot
- Université Lille 1, CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Bât. C9, Cité Scientifique, F-59000 Lille, France
| |
Collapse
|
16
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
17
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
18
|
Jansen J, Timal S, van Scherpenzeel M, Michelakakis H, Vicogne D, Ashikov A, Moraitou M, Hoischen A, Huijben K, Steenbergen G, van den Boogert M, Porta F, Calvo P, Mavrikou M, Cenacchi G, van den Bogaart G, Salomon J, Holleboom A, Rodenburg R, Drenth J, Huynen M, Wevers R, Morava E, Foulquier F, Veltman J, Lefeber D. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. Am J Hum Genet 2016; 98:322-30. [PMID: 26833330 DOI: 10.1016/j.ajhg.2015.12.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.
Collapse
|
19
|
Jansen J, Cirak S, van Scherpenzeel M, Timal S, Reunert J, Rust S, Pérez B, Vicogne D, Krawitz P, Wada Y, Ashikov A, Pérez-Cerdá C, Medrano C, Arnoldy A, Hoischen A, Huijben K, Steenbergen G, Quelhas D, Diogo L, Rymen D, Jaeken J, Guffon N, Cheillan D, van den Heuvel L, Maeda Y, Kaiser O, Schara U, Gerner P, van den Boogert M, Holleboom A, Nassogne MC, Sokal E, Salomon J, van den Bogaart G, Drenth J, Huynen M, Veltman J, Wevers R, Morava E, Matthijs G, Foulquier F, Marquardt T, Lefeber D. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. Am J Hum Genet 2016; 98:310-21. [PMID: 26833332 DOI: 10.1016/j.ajhg.2015.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/11/2015] [Indexed: 01/06/2023] Open
Abstract
Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.
Collapse
|
20
|
Gilormini PA, Lion C, Vicogne D, Levade T, Potelle S, Mariller C, Guérardel Y, Biot C, Foulquier F. A sequential bioorthogonal dual strategy: ManNAl and SiaNAl as distinct tools to unravel sialic acid metabolic pathways. Chem Commun (Camb) 2016; 52:2318-21. [DOI: 10.1039/c5cc08838k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new sequential orthogonal dual strategy to unravel the intracellular trafficking and cellular uptake mechanism of sialic acid.
Collapse
Affiliation(s)
- P. A. Gilormini
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Lion
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - D. Vicogne
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - T. Levade
- Laboratoire de Biochimie Métabolique
- IFB
- CHU Purpan
- INSERM UMR 1037
- CRCT
| | - S. Potelle
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Mariller
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - Y. Guérardel
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - C. Biot
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| | - F. Foulquier
- Univ. Lille
- UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle
- F-59000 Lille
- France
- CNRS
| |
Collapse
|
21
|
Büll C, Heise T, Beurskens DMH, Riemersma M, Ashikov A, Rutjes FPJT, van Kuppevelt TH, Lefeber DJ, den Brok MH, Adema GJ, Boltje TJ. Sialic Acid Glycoengineering Using an Unnatural Sialic Acid for the Detection of Sialoglycan Biosynthesis Defects and On-Cell Synthesis of Siglec Ligands. ACS Chem Biol 2015; 10:2353-63. [PMID: 26258433 DOI: 10.1021/acschembio.5b00501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sialoglycans play a vital role in physiology, and aberrant sialoglycan expression is associated with a broad spectrum of diseases. Since biosynthesis of sialoglycans is only partially regulated at the genetic level, chemical tools are crucial to study their function. Here, we report the development of propargyloxycarbonyl sialic acid (Ac5NeuNPoc) as a powerful tool for sialic acid glycoengineering. Ac5NeuNPoc showed strongly increased labeling efficiency and exhibited less toxicity compared to those of widely used mannosamine analogues in vitro and was also more efficiently incorporated into sialoglycans in vivo. Unlike mannosamine analogues, Ac5NeuNPoc was exclusively utilized in the sialoglycan biosynthesis pathway, allowing a genetic defect in sialic acid biosynthesis to be specifically detected. Furthermore, Ac5NeuNPoc-based sialic acid glycoengineering enabled the on-cell synthesis of high-affinity Siglec-7 ligands and the identification of a novel Siglec-2 ligand. Thus, Ac5NeuNPoc glycoengineering is a highly efficient, nontoxic, and selective approach to study and modulate sialoglycan interactions on living cells.
Collapse
Affiliation(s)
| | - Torben Heise
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | - Floris P. J. T. Rutjes
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | | - Thomas J. Boltje
- Cluster
for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
22
|
Gao W, Ou G, Feng X, Liu BF, Zhang H, Liu X. Matrix-assisted laser desorption/ionization mass spectrometry analysis of glycans with co-derivatization of asparaginyl-oligosaccharides. Anal Chim Acta 2015; 896:102-10. [DOI: 10.1016/j.aca.2015.09.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022]
|