1
|
Jiao S, Wan L, Li J, Gao J, Qin X, Hu W, Yang J. Projected Wave Function Extrapolation Scheme to Accelerate Plane-Wave Hybrid Functional-Based Born-Oppenheimer Molecular Dynamics Simulations. J Phys Chem A 2025; 129:1741-1756. [PMID: 39885685 DOI: 10.1021/acs.jpca.4c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Born-Oppenheimer molecular dynamics (BOMD) simulations are of great interest for the dynamic properties of molecular and solid systems. However, BOMD simulations necessitate not only an extensive period of dynamical evolution but also costly self-consistent-field (SCF) electronic structure calculations, especially for hybrid functional-based BOMD (H-BOMD) simulations within plane-wave basis sets. Here, we propose an improved always stable predictor-corrector (ASPC) method for the wave function extrapolation to accelerate the plane-wave H-BOMD simulations, named projected ASPC (PASPC), yielding a wave function closer to the actual solution space and efficiently reducing the number of SCF iterations at each MD step. We investigated the convergence properties of different extrapolation schemes for molecular and solid systems. Numerical results demonstrate that plane-wave H-BOMD simulations can be significantly faster than conventional cases by combining the accelerated algorithms with the PASPC method. The energy drift is also evaluated, showing that PASPC produces energy drift with smaller oscillations and can simulate a larger time step for systems containing heavy atoms, demonstrating the accuracy of the extrapolation schemes. Furthermore, H-BOMD simulations showcase more accurate power and infrared spectra of silicon dioxide and liquid water that are comparable to those of experimental measurements.
Collapse
Affiliation(s)
- Shizhe Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jielan Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinming Qin
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Li J, Knijff L, Zhang ZY, Andersson L, Zhang C. PiNN: Equivariant Neural Network Suite for Modeling Electrochemical Systems. J Chem Theory Comput 2025; 21:1382-1395. [PMID: 39883580 PMCID: PMC11823406 DOI: 10.1021/acs.jctc.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Electrochemical energy storage and conversion play increasingly important roles in electrification and sustainable development across the globe. A key challenge therein is to understand, control, and design electrochemical energy materials with atomistic precision. This requires inputs from molecular modeling powered by machine learning (ML) techniques. In this work, we have upgraded our pairwise interaction neural network Python package PiNN via introducing equivariant features to the PiNet2 architecture for fitting potential energy surfaces along with PiNet2-dipole for dipole and charge predictions as well as PiNet2-χ for generating atom-condensed charge response kernels. By benchmarking publicly accessible data sets of small molecules, crystalline materials, and liquid electrolytes, we found that the equivariant PiNet2 shows significant improvements over the original PiNet architecture and provides a state-of-the-art overall performance. Furthermore, leveraging on plug-ins such as PiNNAcLe for an adaptive learn-on-the-fly workflow in generating ML potentials and PiNNwall for modeling heterogeneous electrodes under external bias, we expect PiNN to serve as a versatile and high-performing ML-accelerated platform for molecular modeling of electrochemical systems.
Collapse
Affiliation(s)
- Jichen Li
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden
| | - Lisanne Knijff
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden
| | - Zhan-Yun Zhang
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden
| | - Linnéa Andersson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden
| | - Chao Zhang
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Uppsala University, 75121 Uppsala, Sweden
| |
Collapse
|
3
|
Paul A, Samala NR, Grinberg I. Generalized bond polarizability model for more accurate atomistic modeling of Raman spectra. J Chem Phys 2025; 162:054711. [PMID: 39902692 DOI: 10.1063/5.0246427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
Raman spectroscopy is an important tool for studying molecules, liquids and solids. While Raman spectra can be obtained theoretically from molecular dynamics (MD) simulations, this requires the calculation of electronic polarizability along the simulation trajectory. First-principles calculations of electronic polarizability are computationally expensive, motivating the development of atomistic models for the evaluation of the changes in the electronic polarizability with the changes in the atomic coordinates of the system. The bond polarizability model (BPM) is one of the oldest and simplest such atomistic models but cannot reproduce the effects of angular vibrations, leading to inaccurate modeling of Raman spectra. Here, we demonstrate that the generalization of BPM through the inclusion of terms for atom pairs that are traditionally considered to be not involved in bonding dramatically improves the accuracy of polarizability modeling and Raman spectra calculations. The generalized BPM (GBPM) reproduces the ab initio polarizability and Raman spectra for a range of tested molecules (SO2, H2S, H2O, NH3, CH4, CH3OH, and CH3CH2OH) with high accuracy and also shows significantly improved agreement with ab initio results for the more complex ferroelectric BaTiO3 systems. For liquid water, the anisotropic Raman spectrum derived from atomistic MD simulations using the GBPM evaluation of polarizability shows significantly improved agreement with the experimental spectrum compared to the spectrum derived using the BPM. Thus, the GBPM can be used for the modeling of Raman spectra using large-scale molecular dynamics and provides a good basis for the further development of atomistic polarizability models.
Collapse
Affiliation(s)
- Atanu Paul
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Gorbachev V, Savoy A, Tsybizova A, Pollice R, van Tetering L, Martens J, Oomens J, Berden G, Chen P. Probing London Dispersion in Proton-Bound Onium Ions: Are Alkyl-Alkyl Steric Interactions Reliably Modeled? J Am Chem Soc 2025; 147:4308-4323. [PMID: 39873533 DOI: 10.1021/jacs.4c14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
We report spectroscopic and spectrometric experiments that probe the London dispersion interaction between tert-butyl substituents in three series of covalently linked, protonated bis-pyridines in the gas phase. Molecular ions in the three test series, along with several reference molecules for control, were electrosprayed from solution into the gas phase and then probed by infrared multiphoton dissociation spectroscopy and trapped ion mobility spectrometry. The observed N-H stretching frequencies provided an experimental readout diagnostic of the ground-state geometry of each ion, which could be furthermore compared to a second, independent structural readout via the collision cross section. In each of the three series, the strength of a London dispersion interaction could be modulated systematically by a progressive increase in the size of substituents from H to Me to tert-Bu. Parallel to the experimental study, extensive dispersion-corrected density functional theory (DFT-D3BJ) calculations were performed with a range of exchange correlation functionals. A full analysis of the conformational space for the flexible members of the series, and an analysis of the vibrational spectra in the context of a general double-well potential, finds that DFT-D3BJ appears to significantly overbind alkyl-alkyl interactions, specifically interactions between tert-Bu groups, even failing to predict the minimum energy structures reliably in the case of molecules in which London dispersion competes with other noncovalent interactions such as hydrogen bonding.
Collapse
Affiliation(s)
- Vladimir Gorbachev
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Adélaïde Savoy
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Alexandra Tsybizova
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Robert Pollice
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Lara van Tetering
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Peter Chen
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
5
|
Zhang W, Hu X, Diop MA, Kang H, Yu J, Liu A, Shi Z, Wang Z. Study on Microscopic Properties of Molten NaF-AlF 3-CaF 2/LiF/KF Using First-Principles Molecular Dynamics. J Phys Chem B 2025; 129:1007-1015. [PMID: 39791839 DOI: 10.1021/acs.jpcb.4c07434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF3-CaF2/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na+, Ca2+, Li+, and K+ exist in a free state in the molten salts, while Al3+ forms complex ion groups in the form of [AlFx]3-x with F-, and free F- also exists in the molten salts. In the NaF-AlF3-CaF2 system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF3-LiF. Cryolite ratios and additive concentrations have little effect on the average Al-F distance. The diffusion abilities of different ions follow the order: Li+ > Na+ > F- > Al3+, with the diffusion ability of K+ being close to that of Li+. In Al-F chemical bonds, both ionic and covalent bonds coexist and double bonds can be observed in certain transient structures. The Al-F complex ion groups mainly consist of [AlF4]-, [AlF5]2-, and [AlF6]3-, with the concentration of [AlF6]3- being higher in the NaF-AlF3-LiF system compared to the other two systems. This study establishes the relationship between the microscopic properties and the composition of aluminum electrolytes, demonstrating the suitability of FPMD combined with Voronoi tessellation for probing the microstructural properties of aluminum electrolytes.
Collapse
Affiliation(s)
- Wendi Zhang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xianwei Hu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Mouhamadou Aziz Diop
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Hongguang Kang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Jiangyu Yu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Aimin Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Zhongning Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Zhaowen Wang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
6
|
Parker SF. The Analysis of Vibrational Spectra: Past, Present and Future. Chempluschem 2025; 90:e202400461. [PMID: 39523825 DOI: 10.1002/cplu.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/05/2024] [Indexed: 11/16/2024]
Abstract
Vibrational spectroscopy can be said to have started with the seminal work of Coblentz in the 1900s, who recorded the first recognisable infrared spectra. Today, vibrational spectroscopy is ubiquitous and there are many ways to measure a vibrational spectrum. But this is usually only the first step, almost always there is a need to assign the resulting spectra: "what property of the system results in a feature at this energy"? How this question has been answered has changed over the last century, as our understanding of the fundamental physics of matter has evolved. In this Perspective, I will present my view of how the analysis of vibrational spectra has evolved over time. The article is divided into three sections: past, present and future. The "past" section consists of a very brief history of vibrational spectroscopy. The "present" is centered around ab initio studies, particularly with density functional theory (DFT) and I will describe how this has become almost routine. For the "future", I will extrapolate current trends and also speculate as to what might come next.
Collapse
Affiliation(s)
- Stewart F Parker
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Chilton, OX11 0QX, UK
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Kumar D, Sauer J, Airi A, Bordiga S, Galimberti DR. Assignment of IR spectra of ethanol at Brønsted sites of H-ZSM-5 to monomer adsorption using a Fermi resonance model. Phys Chem Chem Phys 2024; 27:550-563. [PMID: 39655396 DOI: 10.1039/d4cp03861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS. Specifically, we assign the bands at 2450 cm-1 and 1670 cm-1 to a FERMI resonance between the fundamental (Z)O-H stretching band of a single-ethanol-loaded BAS and the first overtone of the (Z)O-H out-of-plane bending. We conclude that adsorbed dimers do not contribute in a noticeable way up to a concentration of almost one ethanol molecule per BAS site. We further show that hybrid functionals (B3LYP) are required to get a close match between the predicted and experimental spectra, whereas commonly used generalized gradient type functionals such as PBE incorrectly describe the potential energy surface. They overestimate the redshift of the OH stretching band on hydrogen bond formation which results in an erroneous assignment of the IR bands.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| | - Alessia Airi
- INRiM Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, I-10135 Turin, Italy.
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Silvia Bordiga
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Na GS. Deep Learning for Generating Phase-Conditioned Infrared Spectra. Anal Chem 2024; 96:19659-19669. [PMID: 39575882 DOI: 10.1021/acs.analchem.4c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.
Collapse
Affiliation(s)
- Gyoung S Na
- Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
9
|
Sowa JK, Rossky PJ. A Bond-Based Machine Learning Model for Molecular Polarizabilities and A Priori Raman Spectra. J Chem Theory Comput 2024; 20:10071-10079. [PMID: 39499197 DOI: 10.1021/acs.jctc.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The use of machine learning (ML) algorithms in molecular simulations has become commonplace in recent years. There now exists, for instance, a multitude of ML force field algorithms that have enabled simulations approaching ab initio level accuracy at time scales and system sizes that significantly exceed what is otherwise possible with traditional methods. Far fewer algorithms exist for predicting rotationally equivariant, tensorial properties such as the electric polarizability. Here, we introduce a kernel ridge regression algorithm for machine learning of the polarizability tensor. This algorithm is based on the bond polarizability model and allows prediction of the tensor components at the cost similar to that of scalar quantities. We subsequently show the utility of this algorithm by simulating gas phase Raman spectra of biphenyl and malonaldehyde using classical molecular dynamics simulations of these systems performed with the recently developed MACE-OFF23 potential. The calculated spectra are shown to agree very well with the experiments and thus confirm the expediency of our algorithm as well as the accuracy of the used force field. More generally, this work demonstrates the potential of physics-informed approaches to yield simple yet effective machine learning algorithms for molecular properties.
Collapse
Affiliation(s)
- Jakub K Sowa
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Alberts M, Laino T, Vaucher AC. Leveraging infrared spectroscopy for automated structure elucidation. Commun Chem 2024; 7:268. [PMID: 39550488 PMCID: PMC11569215 DOI: 10.1038/s42004-024-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
The application of machine learning models in chemistry has made remarkable strides in recent years. While analytical chemistry has received considerable interest from machine learning practitioners, its adoption into everyday use remains limited. Among the available analytical methods, Infrared (IR) spectroscopy stands out in terms of affordability, simplicity, and accessibility. However, its use has been limited to the identification of a selected few functional groups, as most peaks lie beyond human interpretation. We present a transformer model that enables chemists to leverage the complete information contained within an IR spectrum to directly predict the molecular structure. To cover a large chemical space, we pretrain the model using 634,585 simulated IR spectra and fine-tune it on 3,453 experimental spectra. Our approach achieves a top-1 accuracy of 44.4% and top-10 accuracy of 69.8% on compounds containing 6 to 13 heavy atoms. When solely predicting scaffolds, the model accurately predicts the top-1 scaffold in 84.5% and among the top-10 in 93.0% of cases.
Collapse
Affiliation(s)
- Marvin Alberts
- IBM Research Europe, Rüschlikon, Switzerland.
- University of Zürich, Department of Chemistry, Zürich, Switzerland.
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland.
| | - Teodoro Laino
- IBM Research Europe, Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland
| | - Alain C Vaucher
- IBM Research Europe, Rüschlikon, Switzerland
- National Center for Competence in Research-Catalysis (NCCR-Catalysis), Zurich, Switzerland
| |
Collapse
|
11
|
Vester J, Olsen JMH. Assessing the Partial Hessian Approximation in QM/MM-Based Vibrational Analysis. J Chem Theory Comput 2024; 20:9533-9546. [PMID: 39423336 PMCID: PMC11562069 DOI: 10.1021/acs.jctc.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The partial Hessian approximation is often used in vibrational analysis of quantum mechanics/molecular mechanics (QM/MM) systems because calculating the full Hessian matrix is computationally impractical. This approach aligns with the core concept of QM/MM, which focuses on the QM subsystem. Thus, using the partial Hessian approximation implies that the main interest is in the local vibrational modes of the QM subsystem. Here, we investigate the accuracy and applicability of the partial Hessian vibrational analysis (PHVA) approach as it is typically used within QM/MM, i.e., only the Hessian belonging to the QM subsystem is computed. We focus on solute-solvent systems with small, rigid solutes. To separate two of the major sources of errors, we perform two separate analyses. First, we study the effects of the partial Hessian approximation on local normal modes, harmonic frequencies, and harmonic IR and Raman intensities by comparing them to those obtained using full Hessians, where both partial and full Hessians are calculated at the QM level. Then, we quantify the errors introduced by QM/MM used with the PHVA by comparing normal modes, frequencies, and intensities obtained using partial Hessians calculated using a QM/MM-type embedding approach to those obtained using partial Hessians calculated at the QM level. Another aspect of the PHVA is the appearance of normal modes resembling the translation and rotation of the QM subsystem. These pseudotranslational and pseudorotational modes should be removed as they are collective vibrations of the atoms in the QM subsystem relative to a frozen MM subsystem and, thus, not well-described. We show that projecting out translation and rotation, usually done for systems in isolation, can adversely affect other normal modes. Instead, the pseudotranslational and pseudorotational modes can be identified and removed.
Collapse
Affiliation(s)
- Jonas Vester
- DTU
Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jógvan Magnus Haugaard Olsen
- DTU
Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
12
|
Bas EE, Garcia Alvarez KM, Schneemann A, Heine T, Golze D. Robust Computation and Analysis of Vibrational Spectra of Layered Framework Materials Including Host-Guest Interactions. J Chem Theory Comput 2024; 20:9547-9561. [PMID: 39428623 PMCID: PMC11562374 DOI: 10.1021/acs.jctc.4c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Layered framework materials, a rapidly advancing class of porous materials, are composed of molecular components stitched together via covalent bonds and are usually synthesized through wet-chemical methods. Computational infrared (IR) and Raman spectra are among the most important characterization tools for this material class. Besides the a priori known spectra of the molecular building blocks and the solvent, they allow for in situ monitoring of the framework formation during synthesis. Therefore, they need to capture the additional peaks from host-guest interactions and the bands from emerging bonds between the molecular building blocks, verifying the successful synthesis of the desired material. In this work, we propose a robust computational framework based on ab initio molecular dynamics (AIMD), where we compute IR and Raman spectra from the time-correlation functions of dipole moments and polarizability tensors, respectively. As a case study, we apply our methodology to a covalent organic framework (COF) material, COF-1, and present its AIMD-computed IR and Raman spectra with and without 1,4-dioxane solvent molecules in its pores. To determine robust settings, we meticulously validate our model and explore how stacking disorder and different methods for computing dipole moments and polarizabilities affect IR and Raman intensities. Using our robust computational protocol, we achieve excellent agreement with experimental data. Furthermore, we illustrate how the computed spectra can be dissected into individual contributions from the solvent molecules, the molecular building blocks of COF-1, and the bonds connecting them.
Collapse
Affiliation(s)
- Ekin Esme Bas
- Chair
of Theoretical Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, HZDR, 01328 Dresden, Germany
- Center
for Advanced Systems Understanding, CASUS, 02826 Görlitz, Germany
| | | | - Andreas Schneemann
- Chair
of Inorganic Chemistry I, Technische Universität
Dresden, 01069 Dresden, Germany
| | - Thomas Heine
- Chair
of Theoretical Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, HZDR, 01328 Dresden, Germany
- Center
for Advanced Systems Understanding, CASUS, 02826 Görlitz, Germany
- Department
of Chemistry, Yonsei University and ibs-cnm,
Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Dorothea Golze
- Chair
of Theoretical Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| |
Collapse
|
13
|
Bocanegra EL, Rana A, McCoy AB, Johnson MA. Isomer-Specific, Cryogenic Ion Vibrational Spectroscopy Investigation of D 2- and N 2-Tagged, Protonated Formic Acid Complexes Using Two-Color, IR-IR Photobleaching. J Phys Chem Lett 2024; 15:10944-10949. [PMID: 39451162 DOI: 10.1021/acs.jpclett.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Here we analyze cryogenic ion vibrational spectra of tagged protonated formic acid (PFA) with electronic structure and anharmonic vibrational calculations to establish the isomers generated by electrospray ionization (ESI) followed by buffer gas cooling to ∼25 K. Two isomers are identified (the trans form (E,Z) and the cis form (E,E)) and generated in comparable abundance despite the fact that the calculated E,E structure lies 6.40 kJ mol-1 above the E,Z form. A large (∼60 kJ mol-1) barrier separates them such that the E,E form can be kinetically trapped upon cooling in the ion trap. The anticooperativity between the H-bonds of the OH groups is explored by measuring the shift in the D2-bound OH fundamental when a second D2 is attached. Both isomers are observed in the N2-tagged counterparts, displaying the expected red-shifted OH bands. These results indicate that ESI generates both isomers and both must be considered when analyzing cluster spectra based on the PFA core ion.
Collapse
Affiliation(s)
- Erica L Bocanegra
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Abhijit Rana
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
14
|
Perrella F, Petrone A, Rega N. Second-Order Mass-Weighting Scheme for Atom-Centered Density Matrix Propagation Molecular Dynamics. J Chem Theory Comput 2024; 20:8820-8832. [PMID: 39382519 DOI: 10.1021/acs.jctc.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The atom-centered density matrix propagation (ADMP) method is an extended Lagrangian approach to ab initio molecular dynamics, which includes the density matrix in an orthonormalized atom-centered Gaussian basis as additional, fictitious, electronic degrees of freedom, classically propagated along with the nuclear ones. A high adiabaticity between the nuclear and electronic subsystems is mandatory in order to keep the trajectory close to the Born-Oppenheimer (BO) surface. In this regard, the fictitious electronic mass μ, being a symmetric, nondiagonal matrix in its most general form, represents a free parameter, exploitable to optimize the propagation of the electronic density. Although mass-weighting schemes in ADMP exist, a systematic procedure to define an optimal value of the fictitious masses is not available yet. In this work, in order to rationally evaluate the electronic mass, fictitious electronic normal modes are defined through the diagonalization of the Hessian of the electronic density matrix. If the same frequency is imposed on all such modes (compatible with the chosen integration time step), then the corresponding μ matrix can be calculated and then employed for the following propagation. Analysis of several ADMP test simulations reveals that such Hessian-based mass-weighting approach is able to ensure, together with a 0.1/0.2 fs time steps, a high separation between the (real) nuclear and the (fictitious) electronic frequencies, which determines a high adiabaticity. This high, unprecedented, accuracy in the propagation leads, in turn, to low errors in the estimated nuclear vibrational frequencies, making the ADMP method totally comparable to a fully converged BO molecular dynamics simulation but more computationally efficient. This work, therefore, contributes to a further development of the ADMP ab initio molecular dynamics method, aimed at improving its accuracy through a more rational evaluation of the fictitious electronic mass parameter.
Collapse
Affiliation(s)
- Fulvio Perrella
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli I-80138, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, Napoli I-80126, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, Via Cintia 21, Napoli I-80126, Italy
| |
Collapse
|
15
|
Rossi E, Kundu A, Ferrarini A, Elsaesser T, Sulpizi M. Structure and Dynamics of ATP and the ATP-Zn 2+ Complex in Solution. J Phys Chem Lett 2024; 15:10039-10045. [PMID: 39323317 PMCID: PMC11457213 DOI: 10.1021/acs.jpclett.4c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Despite the crucial role of ATP in life and artificial life-like applications, fundamental aspects relevant to its function, such as its conformational properties and its interaction with water and ions, remain unclear. Here, by integrating linear and two-dimensional infrared spectroscopy with ab initio molecular dynamics, we provide a detailed characterization of the vibrational spectra of the phosphate groups in ATP and in its complex with Zn2+ in water. Our study highlights the role of conformational disorder and solvation dynamics, beyond the harmonic normal-mode analysis, and reveals a complex scenario in which electronic and environmental effects tune the coupling between phosphate vibrations. We identify βγ-bidentate and αβγ-tridentate modes as the preferential coordination modes of Zn2+, as was proposed in the literature for Mg2+, although this conclusion is reached by a different spectral interpretation.
Collapse
Affiliation(s)
- Emma Rossi
- Università
degli Studi di Padova, Department of Chemical
Sciences, 35131 Padova, Italy
- Ruhr-Universität
Bochum, Department of Physics and Astronomy, 44801 Bochum, Germany
| | - Achintya Kundu
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Alberta Ferrarini
- Università
degli Studi di Padova, Department of Chemical
Sciences, 35131 Padova, Italy
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Marialore Sulpizi
- Ruhr-Universität
Bochum, Department of Physics and Astronomy, 44801 Bochum, Germany
| |
Collapse
|
16
|
O’Leary W, Grumet M, Kaiser W, Bučko T, Rupp JLM, Egger DA. Rapid Characterization of Point Defects in Solid-State Ion Conductors Using Raman Spectroscopy, Machine-Learning Force Fields, and Atomic Raman Tensors. J Am Chem Soc 2024; 146:26863-26876. [PMID: 39292100 PMCID: PMC11450927 DOI: 10.1021/jacs.4c07812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The successful design of solid-state photo- and electrochemical devices depends on the careful engineering of point defects in solid-state ion conductors. Characterization of point defects is critical to these efforts, but the best-developed techniques are difficult and time-consuming. Raman spectroscopy─with its exceptional speed, flexibility, and accessibility─is a promising alternative. Raman signatures arise from point defects due to local symmetry breaking and structural distortions. Unfortunately, the assignment of these signatures is often hampered by a shortage of reference compounds and corresponding reference spectra. This issue can be circumvented by calculation of defect-induced Raman signatures from first principles, but this is computationally demanding. Here, we introduce an efficient computational procedure for the prediction of point defect Raman signatures in solid-state ion conductors. Our method leverages machine-learning force fields and "atomic Raman tensors", i.e., polarizability fluctuations due to motions of individual atoms. We find that our procedure reduces computational cost by up to 80% compared to existing first-principles frozen-phonon approaches. These efficiency gains enable synergistic computational-experimental investigations, in our case allowing us to precisely interpret the Raman spectra of Sr(Ti0.94Ni0.06)O3-δ, a model oxygen ion conductor. By predicting Raman signatures of specific point defects, we determine the nature of dominant defects and unravel impacts of temperature and quenching on in situ and ex situ Raman spectra. Specifically, our findings reveal the temperature-dependent distribution and association behavior of oxygen vacancies and nickel substitutional defects. Overall, our approach enables rapid Raman-based characterization of point defects to support defect engineering in novel solid-state ion conductors.
Collapse
Affiliation(s)
- Willis O’Leary
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Manuel Grumet
- Department
of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Waldemar Kaiser
- Department
of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Tomáš Bučko
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava SK-84215, Slovakia
- Institute
of Inorganic Chemistry, Slovak Academy of
Sciences, Bratislava SK-84236, Slovakia
| | - Jennifer L. M. Rupp
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - David A. Egger
- Department
of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
- Atomistic
Modeling Center, Munich Data Science Institute, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
17
|
Khanifaev J, Schrader T, Perlt E. Machine-learning to predict anharmonic frequencies: a study of models and transferability. Phys Chem Chem Phys 2024; 26:23495-23502. [PMID: 39222042 DOI: 10.1039/d4cp01789g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
With more and more accurate electronic structure methods at hand, the inclusion of anharmonic effects in the post-processing of such data towards thermochemical properties is the next step. In this context, the description of anharmonicity has been an important topic of physical chemistry and chemical physics for a long time. In this study, anharmonic frequencies of various hydrogen-halides and halogenated hydrocarbon molecular clusters are calculated using harmonic as well as explicitly anharmonic methods, i.e., normal mode analysis and vibrational self-consistent field. Simple harmonic model based descriptors were used to predict anharmonic frequencies via multilinear regression and gradient boosting regression. Gradient boosting regression is capable of predicting reliable anharmonic data and even the simple multilinear regression model yields reasonable predictions that can account for mode-to-mode couplings. Moreover, the transferability to unseen chemical systems is assessed and it is confirmed that the machine-learned models can be applied to larger, unseen molecules.
Collapse
Affiliation(s)
| | - Tim Schrader
- Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| | - Eva Perlt
- Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany.
| |
Collapse
|
18
|
Bloino J, Jähnigen S, Merten C. After 50 Years of Vibrational Circular Dichroism Spectroscopy: Challenges and Opportunities of Increasingly Accurate and Complex Experiments and Computations. J Phys Chem Lett 2024; 15:8813-8828. [PMID: 39167088 DOI: 10.1021/acs.jpclett.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
VCD research continues to thrive, driven by ongoing experimental and theoretical advances. Modern studies deal with increasingly complex samples featuring weak intermolecular interactions and shallow potential energy surfaces. Likewise, the combination of VCD measurements with, for instance, cryo-spectroscopic techniques has significantly increased their sensitivity. The extent to which such modern measurements enhance the informative value of VCD depends significantly on the quality of the theoretical models, which must adequately account for anharmonicity, solvation and molecular dynamics. We herein discuss how experimental advancements engage in a stimulating interplay with recent theoretical developments, pursuing either the static or the dynamic computational route. Both paths have their own strengths and limitations, each addressing fundamentally different problems. We give an outlook on future challenges of VCD research, including the possibility to combine static and dynamic approaches to obtain a full picture of the sample.
Collapse
Affiliation(s)
- Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Sascha Jähnigen
- Freie Universität Berlin, Institut für Chemie und Biochemie, Arnimallee 22, 14195 Berlin, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
19
|
Ning H, Wang K, Zhang Q, Guo L, Wang S, Yang L, Gong Y. Influence of terahertz waves on the binding of choline to choline acetyltransferase: insights from molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:22413-22422. [PMID: 39140173 DOI: 10.1039/d4cp02436b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Acetylcholine (Ach) is a common neurotransmitter in the central nervous system (CNS) and peripheral nervous system (PNS). It is one of the neurotransmitters in the autonomic nervous system and the main neurotransmitter in all autonomic ganglia. Experiments have confirmed that electromagnetic waves can affect the synthesis of animal neurotransmitters, but the microscopic effects of electromagnetic waves in the terahertz (THz) frequency band are still unclear. Based on density functional theory (DFT) and molecular dynamics (MD) simulation methods, this paper studies the effect of THz electromagnetic waves on the binding of choline to choline acetyltransferase (ChAT). By emitting THz waves that resonate with the characteristic vibration mode of choline near the active site, it was found that THz waves with a frequency of 45.3 THz affected the binding of choline to ChAT, especially the binding of the active site histidine His324 to choline. The main evidence is that under the action of THz waves, the binding free energy of choline to histidine His324 and ChAT at the active site was significantly reduced compared to noE, which may have a potential impact on the enzymatic synthesis of Ach. It is expected to achieve the purpose of regulating the synthesis of the neurotransmitter Ach under the action of THz waves and treat certain nervous system diseases.
Collapse
Affiliation(s)
- Hui Ning
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Kaicheng Wang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Qin Zhang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Lianghao Guo
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Shaomeng Wang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Lixia Yang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Yubin Gong
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| |
Collapse
|
20
|
Kebabsa A, Maurel F, Brémond É. Boosting the Modeling of Infrared and Raman Spectra of Bulk Phase Chromophores with Machine Learning. J Chem Theory Comput 2024. [PMID: 39145741 DOI: 10.1021/acs.jctc.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the field of vibrational spectroscopy simulation, hybrid approximations to Kohn-Sham density-functional theory (KS-DFT) are often considered computationally prohibitive due to the significant effort required to evaluate the exchange-correlation potential in planewave codes. In this Letter, we show that by leveraging the porting of KS-DFT on GPU and incorporating machine-learning techniques, simulating IR and Raman spectra of real-life chromophores in bulk aqueous solution becomes a routine application at this level of theory.
Collapse
Affiliation(s)
- Abir Kebabsa
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | | | - Éric Brémond
- Université Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| |
Collapse
|
21
|
Paul A, Rubenstein M, Ruffino A, Masiuk S, Spanier JE, Grinberg I. Accuracy and limitations of the bond polarizability model in modeling of Raman scattering from molecular dynamics simulations. J Chem Phys 2024; 161:064305. [PMID: 39132793 DOI: 10.1063/5.0217227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Calculation of Raman scattering from molecular dynamics (MD) simulations requires accurate modeling of the evolution of the electronic polarizability of the system along its MD trajectory. For large systems, this necessitates the use of atomistic models to represent the dependence of electronic polarizability on atomic coordinates. The bond polarizability model (BPM) is the simplest such model and has been used for modeling the Raman spectra of molecular systems but has not been applied to solid-state systems. Here, we systematically investigate the accuracy and limitations of the BPM parameterized from the density functional theory results for a series of simple molecules, such as CO2, SO2, H2S, H2O, NH3, and CH4; the more complex CH2O, CH3OH, CH3CH2OH, and thiophene molecules; and the BaTiO3 and CsPbBr3 perovskite solids. We find that BPM can reliably reproduce the overall features of the Raman spectra, such as shifts of peak positions. However, with the exception of highly symmetric systems, the assumption of non-interacting bonds limits the quantitative accuracy of the BPM; this assumption also leads to qualitatively inaccurate polarizability evolution and Raman spectra for systems where large deviations from the ground state structure are present.
Collapse
Affiliation(s)
- Atanu Paul
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maya Rubenstein
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Anthony Ruffino
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Stefan Masiuk
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Jonathan E Spanier
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
22
|
Silarski M, Dziedzic-Kocurek K, Drużbicki K, Reterski R, Grabowski P, Krzystyniak M. Non-invasive detection of hazardous materials with a thermal-to-epithermal neutron station: a feasibility study towards practical application. Sci Rep 2024; 14:18584. [PMID: 39127754 DOI: 10.1038/s41598-024-69290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The growing scale of the devastation that even a single terrorist attack can cause requires more effective methods for the detection of hazardous materials. In particular, there are no solutions for effectively monitoring threats at sea, both for the off-shore infrastructure and ports. Currently, state-of-the-art detection methods determine the density distribution and the shapes of tested subjects but only allow for a limited degree of substance identification. This work aims to present a feasibility study of the possible usage of several methods available on the thermal-to-epithermal neutron station, VESUVIO, at the ISIS neutron and muon spallation source, UK, for the detection of hazardous materials. To this end, we present the results of a series of experiments performed concurrently employing neutron transmission and Compton scattering using melamine, a commonly used explosive surrogate, in order to determine its signal characteristics and limits of detection and quantitation. The experiments are supported by first-principles modelling, providing detailed scrutiny of the material structure and the nuclear dynamics behind the neutron scattering observables.
Collapse
Affiliation(s)
- Michał Silarski
- M. Smoluchowski Institute of Physics of the Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Katarzyna Dziedzic-Kocurek
- M. Smoluchowski Institute of Physics of the Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Kacper Drużbicki
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Radosław Reterski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland
| | - Patryk Grabowski
- M. Smoluchowski Institute of Physics of the Jagiellonian University, Łojasiewicza 11, 30-348, Cracow, Poland
| | - Matthew Krzystyniak
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Oxford, OX11 0QX, UK.
| |
Collapse
|
23
|
Capone M, Parisse G, Narzi D, Guidoni L. Unravelling Mn 4Ca cluster vibrations in the S 1, S 2 and S 3 states of the Kok-Joliot cycle of photosystem II. Phys Chem Chem Phys 2024; 26:20598-20609. [PMID: 39037338 PMCID: PMC11290063 DOI: 10.1039/d4cp01307g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Vibrational spectroscopy serves as a powerful tool for characterizing intermediate states within the Kok-Joliot cycle. In this study, we employ a QM/MM molecular dynamics framework to calculate the room temperature infrared absorption spectra of the S1, S2, and S3 states via the Fourier transform of the dipole time auto-correlation function. To better analyze the computational data and assign spectral peaks, we introduce an approach based on dipole-dipole correlation function of cluster moieties of the reaction center. Our analysis reveals variation in the infrared signature of the Mn4Ca cluster along the Kok-Joliot cycle, attributed to its increasing symmetry and rigidity resulting from the rising oxidation state of the Mn ions. Furthermore, we successfully assign the debated contributions in the frequency range around 600 cm-1. This computational methodology provides valuable insights for deciphering experimental infrared spectra and understanding the water oxidation process in both biological and artificial systems.
Collapse
Affiliation(s)
- Matteo Capone
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Gianluca Parisse
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Daniele Narzi
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| | - Leonardo Guidoni
- Università degli studi dell'Aquila, Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy.
| |
Collapse
|
24
|
Dong W, Blasius J, Fan Z, Wylie L. Vibrational Spectra Simulations in Amino Acid-Based Imidazolium Ionic Liquids. J Phys Chem B 2024; 128:6560-6566. [PMID: 38943623 DOI: 10.1021/acs.jpcb.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
We present maximally localized Wannier functions and Voronoi tessellation to obtain dipole moment distributions for vibrational spectra in several important ionic liquids calculated by using ab initio molecular dynamics simulations. IR and Raman spectra of various imidazolium-based ionic liquids (ILs) paired with six amino acid anions are shown herein. For IR spectra, two approaches (Wannier and Voronoi) are in agreement with respect to the relative intensities and the overall shapes for the main peaks. Under Raman spectra, the polarizability of the covalent bonds is shown to affect the strength of the Raman scattering signal. The advantage of the Voronoi tessellation method, being that it does not have strong spikes in its time development, is demonstrated by the comparison of two theoretical methods (Wannier and Voronoi) with experimental data. We analyze the errors between theoretical and experimental spectroscopic data, with the Voronoi method shown to accurately reproduce experimental values. In addition, theoretical spectroscopy shows the ability to accurately separate components of a mixture. The combination of theoretical and experimental methods is utilized to understand the spectroscopic properties of amino acid-based imidazolium ILs.
Collapse
Affiliation(s)
- Wenbo Dong
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| | - Zhijie Fan
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
25
|
Kölbel J, Ruggiero MT, Keren S, Benshalom N, Yaffe O, Zeitler JA, Mittleman DM. Is Ortho-Terphenyl a Rigid Glass Former? J Phys Chem Lett 2024; 15:7020-7027. [PMID: 38949623 PMCID: PMC11247491 DOI: 10.1021/acs.jpclett.4c01217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Ortho-terphenyl (OTP) has long been used as a model system to study the glass transition due to its apparent simplicity and a widespread assumption that it is a rigid molecule. Here, we employ terahertz time-domain spectroscopy and low-frequency Raman spectroscopy to investigate the rigidity of OTP by direct observation of the low-frequency vibrational dynamics. These terahertz phonons involve complex large-amplitude atomic motions where intramolecular and intermolecular displacements are often mixed. Comparison of experimental results with density functional theory and ab initio molecular dynamics simulations shows that the assumption of rigidity neglects important implications for the glass transition and must be revisited. These results highlight the significance of terahertz modes on elasticity, which will be even more critical in more complex systems such as biomolecules.
Collapse
Affiliation(s)
- Johanna Kölbel
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Michael T. Ruggiero
- Department
of Chemistry, University of Rochester, Rochester, New York, 14627, United
States
| | - Shachar Keren
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Nimrod Benshalom
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - J. Axel Zeitler
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Daniel M. Mittleman
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
26
|
Chng CP, Dowd A, Mechler A, Hsia KJ. Molecular dynamics simulations reliably identify vibrational modes in far-IR spectra of phospholipids. Phys Chem Chem Phys 2024; 26:18715-18726. [PMID: 38932689 DOI: 10.1039/d4cp00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The properties of self-assembled phospholipid membranes are of essential importance in biochemistry and physical chemistry, providing a platform for many cellular life functions. Far-infrared (far-IR) vibrational spectroscopy, on the other hand, is a highly information-rich method to characterize intermolecular interactions and collective behaviour of lipids that can help explain, e.g., chain packing, thermodynamic phase behaviour, and sequestration. However, reliable interpretation of the far-IR spectra is still lacking. Here we present a molecular dynamics (MD) based approach to simulate vibrational modes of individual lipids and in an ensemble. The results are a good match to synchrotron far-IR measurements and enable identification of the molecular motions corresponding to each vibrational mode, thus allowing the correct interpretation of membrane spectra with high accuracy and resolving the longstanding ambiguities in the literature in this regard. Our results demonstrate the feasibility of using MD simulations for interpreting far-IR spectra broadly, opening new avenues for practical use of this powerful method.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| | - Annette Dowd
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Republic of Singapore
| |
Collapse
|
27
|
Panuszko A, Śmiechowski M, Pieloszczyk M, Malinowski A, Stangret J. Weakly Hydrated Solute of Mixed Hydrophobic-Hydrophilic Nature. J Phys Chem B 2024; 128:6352-6361. [PMID: 38913837 PMCID: PMC11228977 DOI: 10.1021/acs.jpcb.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Infrared (IR) spectroscopy is a commonly used and invaluable tool in studies of solvation phenomena in aqueous solutions. Concurrently, density functional theory calculations and ab initio molecular dynamics simulations deliver the solvation shell picture at the molecular detail level. The mentioned techniques allowed us to gain insights into the structure and energy of the hydrogen bonding network of water molecules around methylsulfonylmethane (MSM). In the hydration sphere of MSM, there are two types of populations of water molecules: a significant share of water molecules weakly bonded to the sulfone group and a smaller share of water molecules strongly bonded to each other around the methyl groups of MSM. The very weak hydrogen bond of water molecules with the hydrophilic group causes the extended network of water hydrogen bonds to be not "anchored" on the sulfone group, and consequently, the MSM hydration shell is labile.
Collapse
Affiliation(s)
- Aneta Panuszko
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Maciej Pieloszczyk
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Adrian Malinowski
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Janusz Stangret
- Department of Physical Chemistry, Faculty
of Chemistry, Gdańsk University of
Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
28
|
Khan MY, Hassan A, Samad A, Souwaileh AA. Exploring the Structural Stability of 1T-PdO 2 and the Interface Properties of the 1T-PdO 2/Graphene Heterojunction. ACS OMEGA 2024; 9:28176-28185. [PMID: 38973886 PMCID: PMC11223223 DOI: 10.1021/acsomega.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Motivated by a recent study on the air stability of PdSe2, which also reports the metastability of the PdO2 monolayer [Hoffman A. N.. npj 2D Mater. Appl.2019, 3( (1), ), 50.], in this work, we use density functional theory (DFT) to further explore the thermal, dynamic, and mechanical stability of monolayer PdO2 and study its structural and electronic properties. We further studied its vertical heterojunction composed of 1T-PdO2 and graphene monolayers. We show that both the monolayer and the heterojunction are energetically and dynamically stable with no negative frequencies in the phonon spectrum and belong to the vdW-type. 1T-PdO2 is an indirect-band-gap semiconductor with band-gap values of 0.5 eV (GGA) and 1.54 eV (HSE06). The interface properties of the heterojunction show that the n-type Schottky barrier height (SBH) becomes negative at the vertical interface in the PdO2/graphene contact, forming an Ohmic contact and mainly suggesting the potential of graphene for efficient electrical contact with the PdO2 monolayer. However, at the same time, a negative band bending occurs at the lateral interface based on the current-in-plane model. Moreover, the optical absorption of the PdO2/graphene heterojunction under visible-light irradiation is significantly enhanced compared to the situation in their free-standing monolayers.
Collapse
Affiliation(s)
- Muhammad Yar Khan
- Foundation
department Qilu Institute of Technology, Jinan 250200, Shandong, P. R. China
- School
of Materials Science and Engineering, Zhejiang
University, Hangzhou 310027, P.
R. China
| | - Arzoo Hassan
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, P. R. China
| | - Abdus Samad
- Department
of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Abdullah Al Souwaileh
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Berger E, Niemelä J, Lampela O, Juffer AH, Komsa HP. Raman Spectra of Amino Acids and Peptides from Machine Learning Polarizabilities. J Chem Inf Model 2024; 64:4601-4612. [PMID: 38829726 DOI: 10.1021/acs.jcim.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Raman spectroscopy is an important tool in the study of vibrational properties and composition of molecules, peptides, and even proteins. Raman spectra can be simulated based on the change of the electronic polarizability with vibrations, which can nowadays be efficiently obtained via machine learning models trained on first-principles data. However, the transferability of the models trained on small molecules to larger structures is unclear, and direct training on large structures is prohibitively expensive. In this work, we first train two machine learning models to predict the polarizabilities of all 20 amino acids. Both models are carefully benchmarked and compared to density functional theory (DFT) calculations, with the neural network method being found to offer better transferability. By combination of machine learning models with classical force field molecular dynamics, Raman spectra of all amino acids are also obtained and investigated, showing good agreement with experiments. The models are further extended to small peptides. We find that adding structures containing peptide bonds to the training set greatly improves predictions, even for peptides not included in training sets.
Collapse
Affiliation(s)
- Ethan Berger
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, Oulu FIN-90014, Finland
| | - Juha Niemelä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FIN-90014, Finland
| | - Outi Lampela
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FIN-90014, Finland
| | - André H Juffer
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FIN-90014, Finland
| | - Hannu-Pekka Komsa
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, Oulu FIN-90014, Finland
| |
Collapse
|
30
|
Chen Y, Pios SV, Gelin MF, Chen L. Accelerating Molecular Vibrational Spectra Simulations with a Physically Informed Deep Learning Model. J Chem Theory Comput 2024; 20:4703-4710. [PMID: 38825857 DOI: 10.1021/acs.jctc.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
In recent years, machine learning (ML) surrogate models have emerged as an indispensable tool to accelerate simulations of physical and chemical processes. However, there is still a lack of ML models that can accurately predict molecular vibrational spectra. Here, we present a highly efficient multitask ML surrogate model termed Vibrational Spectra Neural Network (VSpecNN), to accurately calculate infrared (IR) and Raman spectra based on dipole moments and polarizabilities obtained on-the-fly via ML-enhanced molecular dynamics simulations. The methodology is applied to pyrazine, a prototypical polyatomic chromophore. The VSpecNN-predicted energies are well within the chemical accuracy (1 kcal/mol), and the errors for VSpecNN-predicted forces are only half of those obtained from a popular high-performance ML model. Compared to the ab initio reference, the VSpecNN-predicted frequencies of IR and Raman spectra differ only by less than 5.87 cm-1, and the intensities of IR spectra and the depolarization ratios of Raman spectra are well reproduced. The VSpecNN model developed in this work highlights the importance of constructing highly accurate neural network potentials for predicting molecular vibrational spectra.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
31
|
Ahmad M, Patel R, Lee DT, Corkery P, Kraetz A, Prerna, Tenney SA, Nykypanchuk D, Tong X, Siepmann JI, Tsapatsis M, Boscoboinik JA. ZIF-8 Vibrational Spectra: Peak Assignments and Defect Signals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27887-27897. [PMID: 38753657 DOI: 10.1021/acsami.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Zeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites. Depending on the synthesis method and postsynthesis treatments, ZIF-8 materials may deviate from the nominal defect-free ZIF-8 crystal structure due to defects like missing 2mIm, missing zinc, and physically adsorbed 2mIm trapped in the ZIF-8 pores, which may alter its performance and stability. Infrared (IR) spectroscopy has been used to assess the presence of defects in ZIF-8 and related materials. However, conflicting interpretations by various authors persist in the literature. Here, we systematically investigate ZIF-8 vibrational spectra by combining experimental IR spectroscopy and first-principles molecular dynamics simulations, focusing on assigning peaks and elucidating the spectroscopic signals of putative defects present in the ZIF-8 material. We attempt to resolve conflicting assignments from the literature and to provide a comprehensive understanding of the vibrational spectra of ZIF-8 and its defect-induced variations, aiming toward more precise quality control and design of ZIF-8-based materials for emerging applications.
Collapse
Affiliation(s)
- Mueed Ahmad
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Dennis T Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Andrea Kraetz
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Prerna
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, United States
| | - J Anibal Boscoboinik
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
32
|
Balicki M, Śmiechowski M. Hydration of N-Hydroxyurea from Ab Initio Molecular Dynamics Simulations. Molecules 2024; 29:2435. [PMID: 38893311 PMCID: PMC11173572 DOI: 10.3390/molecules29112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
N-Hydroxyurea (HU) is an important chemotherapeutic agent used as a first-line treatment in conditions such as sickle cell disease and β-thalassemia, among others. To date, its properties as a hydrated molecule in the blood plasma or cytoplasm are dramatically understudied, although they may be crucial to the binding of HU to the radical catalytic site of ribonucleotide reductase, its molecular target. The purpose of this work is the comprehensive exploration of HU hydration. The topic is studied using ab initio molecular dynamic (AIMD) simulations that apply a first principles representation of the electron density of the system. This allows for the calculation of infrared spectra, which may be decomposed spatially to better capture the spectral signatures of solute-solvent interactions. The studied molecule is found to be strongly hydrated and tightly bound to the first shell water molecules. The analysis of the distance-dependent spectra of HU shows that the E and Z conformers spectrally affect, on average, 3.4 and 2.5 of the closest H2O molecules, respectively, in spheres of radii of 3.7 Å and 3.5 Å, respectively. The distance-dependent spectra corresponding to these cutoff radii show increased absorbance in the red-shifted part of the water OH stretching vibration band, indicating local enhancement of the solvent's hydrogen bond network. The radially resolved IR spectra also demonstrate that HU effortlessly incorporates into the hydrogen bond network of water and has an enhancing effect on this network. Metadynamics simulations based on AIMD methodology provide a picture of the conformational equilibria of HU in solution. Contrary to previous investigations of an isolated HU molecule in the gas phase, the Z conformer of HU is found here to be more stable by 17.4 kJ·mol-1 than the E conformer, pointing at the crucial role that hydration plays in determining the conformational stability of solutes. The potential energy surface for the OH group rotation in HU indicates that there is no intramolecular hydrogen bond in Z-HU in water, in stark contrast to the isolated solute in the gas phase. Instead, the preferred orientation of the hydroxyl group is perpendicular to the molecular plane of the solute. In view of the known chaotropic effect of urea and its N-alkyl-substituted derivatives, N-hydroxyurea emerges as a unique urea derivative that exhibits a kosmotropic ordering of nearby water. This property may be of crucial importance for its binding to the catalytic site of ribonucleotide reductase with a concomitant displacement of a water molecule.
Collapse
Affiliation(s)
| | - Maciej Śmiechowski
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
| |
Collapse
|
33
|
Lu XY, Wu HP, Ma H, Li H, Li J, Liu YT, Pan ZY, Xie Y, Wang L, Ren B, Liu GK. Deep Learning-Assisted Spectrum-Structure Correlation: State-of-the-Art and Perspectives. Anal Chem 2024; 96:7959-7975. [PMID: 38662943 DOI: 10.1021/acs.analchem.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spectrum-structure correlation is playing an increasingly crucial role in spectral analysis and has undergone significant development in recent decades. With the advancement of spectrometers, the high-throughput detection triggers the explosive growth of spectral data, and the research extension from small molecules to biomolecules accompanies massive chemical space. Facing the evolving landscape of spectrum-structure correlation, conventional chemometrics becomes ill-equipped, and deep learning assisted chemometrics rapidly emerges as a flourishing approach with superior ability of extracting latent features and making precise predictions. In this review, the molecular and spectral representations and fundamental knowledge of deep learning are first introduced. We then summarize the development of how deep learning assist to establish the correlation between spectrum and molecular structure in the recent 5 years, by empowering spectral prediction (i.e., forward structure-spectrum correlation) and further enabling library matching and de novo molecular generation (i.e., inverse spectrum-structure correlation). Finally, we highlight the most important open issues persisted with corresponding potential solutions. With the fast development of deep learning, it is expected to see ultimate solution of establishing spectrum-structure correlation soon, which would trigger substantial development of various disciplines.
Collapse
Affiliation(s)
- Xin-Yu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hao-Ping Wu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Hui Li
- Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, Xiamen 361005, P. R. China
| | - Jia Li
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, P. R. China
| | - Yan-Ti Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Zheng-Yan Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Xie
- School of Informatics, Xiamen University, Xiamen 361005, P. R. China
| | - Lei Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, P. R. China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, P. R. China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, P. R. China
| |
Collapse
|
34
|
Caicedo-Dávila S, Cohen A, Motti SG, Isobe M, McCall KM, Grumet M, Kovalenko MV, Yaffe O, Herz LM, Fabini DH, Egger DA. Disentangling the effects of structure and lone-pair electrons in the lattice dynamics of halide perovskites. Nat Commun 2024; 15:4184. [PMID: 38760360 PMCID: PMC11101661 DOI: 10.1038/s41467-024-48581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Halide perovskites show great optoelectronic performance, but their favorable properties are paired with unusually strong anharmonicity. It was proposed that this combination derives from the ns2 electron configuration of octahedral cations and associated pseudo-Jahn-Teller effect. We show that such cations are not a prerequisite for the strong anharmonicity and low-energy lattice dynamics encountered in these materials. We combine X-ray diffraction, infrared and Raman spectroscopies, and molecular dynamics to contrast the lattice dynamics of CsSrBr3 with those of CsPbBr3, two compounds that are structurally similar but with the former lacking ns2 cations with the propensity to form electron lone pairs. We exploit low-frequency diffusive Raman scattering, nominally symmetry-forbidden in the cubic phase, as a fingerprint of anharmonicity and reveal that low-frequency tilting occurs irrespective of octahedral cation electron configuration. This highlights the role of structure in perovskite lattice dynamics, providing design rules for the emerging class of soft perovskite semiconductors.
Collapse
Affiliation(s)
- Sebastián Caicedo-Dávila
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Adi Cohen
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Silvia G Motti
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Kyle M McCall
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, EMPA - Swiss National Laboratories for Materials and Technology, Dübendorf, Switzerland
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Manuel Grumet
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, EMPA - Swiss National Laboratories for Materials and Technology, Dübendorf, Switzerland
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Laura M Herz
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- TUM Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Douglas H Fabini
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - David A Egger
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
35
|
Shanks BL, Sullivan HW, Shazed AR, Hoepfner MP. Accelerated Bayesian Inference for Molecular Simulations using Local Gaussian Process Surrogate Models. J Chem Theory Comput 2024; 20:3798-3808. [PMID: 38551198 DOI: 10.1021/acs.jctc.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
While Bayesian inference is the gold standard for uncertainty quantification and propagation, its use within physical chemistry encounters formidable computational barriers. These bottlenecks are magnified for modeling data with many independent variables, such as X-ray/neutron scattering patterns and electromagnetic spectra. To address this challenge, we employ local Gaussian process (LGP) surrogate models to accelerate Bayesian optimization over these complex thermophysical properties. The time-complexity of the LGPs scales linearly in the number of independent variables, in stark contrast to the computationally expensive cubic scaling of conventional Gaussian processes. To illustrate the method, we trained a LGP surrogate model on the radial distribution function of liquid neon and observed a 1,760,000-fold speed-up compared to molecular dynamics simulation, beating a conventional GP by three orders-of-magnitude. We conclude that LGPs are robust and efficient surrogate models poised to expand the application of Bayesian inference in molecular simulations to a broad spectrum of experimental data.
Collapse
Affiliation(s)
- Brennon L Shanks
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112-9202, United States
| | - Harry W Sullivan
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112-9202, United States
| | - Abdur R Shazed
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112-9202, United States
| | - Michael P Hoepfner
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112-9202, United States
| |
Collapse
|
36
|
Xu N, Rosander P, Schäfer C, Lindgren E, Österbacka N, Fang M, Chen W, He Y, Fan Z, Erhart P. Tensorial Properties via the Neuroevolution Potential Framework: Fast Simulation of Infrared and Raman Spectra. J Chem Theory Comput 2024; 20:3273-3284. [PMID: 38572734 PMCID: PMC11044275 DOI: 10.1021/acs.jctc.3c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Infrared and Raman spectroscopy are widely used for the characterization of gases, liquids, and solids, as the spectra contain a wealth of information concerning, in particular, the dynamics of these systems. Atomic scale simulations can be used to predict such spectra but are often severely limited due to high computational cost or the need for strong approximations that limit the application range and reliability. Here, we introduce a machine learning (ML) accelerated approach that addresses these shortcomings and provides a significant performance boost in terms of data and computational efficiency compared with earlier ML schemes. To this end, we generalize the neuroevolution potential approach to enable the prediction of rank one and two tensors to obtain the tensorial neuroevolution potential (TNEP) scheme. We apply the resulting framework to construct models for the dipole moment, polarizability, and susceptibility of molecules, liquids, and solids and show that our approach compares favorably with several ML models from the literature with respect to accuracy and computational efficiency. Finally, we demonstrate the application of the TNEP approach to the prediction of infrared and Raman spectra of liquid water, a molecule (PTAF-), and a prototypical perovskite with strong anharmonicity (BaZrO3). The TNEP approach is implemented in the free and open source software package gpumd, which makes this methodology readily available to the scientific community.
Collapse
Affiliation(s)
- Nan Xu
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Petter Rosander
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Christian Schäfer
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Eric Lindgren
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Nicklas Österbacka
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Mandi Fang
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wei Chen
- State
Key Laboratory of Multiphase Complex Systems, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi He
- Institute
of Zhejiang University-Quzhou, Quzhou 324000, P. R. China
- College
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Department
of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Zheyong Fan
- College
of Physical Science and Technology, Bohai
University, Jinzhou 121013, P. R. China
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
37
|
Li C. High-pressure structures of solid hydrogen: Insights from ab initio molecular dynamics simulations. J Chem Phys 2024; 160:144302. [PMID: 38587224 DOI: 10.1063/5.0198080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the structural behavior of solid hydrogen under high pressures is crucial for uncovering its unique properties and potential applications. In this study, starting from the phase I of solid hydrogen-free-rotator hcp structure, we conduct extensive ab initio molecular dynamics calculations to simulate the cooling, heating, and equilibrium processes within a pressure range of 80-260 GPa. Without relying on any structure previously predicted, we identify the high-pressure phase structures of solid hydrogen as P21/c for phase II, P6522 for phase III, and BG1BG2BG3 six-layer structure for phase IV, which are different from those proposed previously using the structure-search method. The reasonability of these structures are validated by Raman spectra and x-ray diffraction patterns by comparison with the experimental results. Our results actually show pronounced changes in the c/a ratio between phases I, III, and IV, which hold no brief for the experimental interpretation of an isostructural hcp transformations for phases I-III-IV.
Collapse
Affiliation(s)
- Cong Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China and Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
38
|
R de Moraes B, Paschoal VH, Keppeler N, El Seoud OA, Ando RA. The Coiling Effect in Ether Ionic Liquids: Exploiting Acetate as a Probe for Transport Properties and Microenvironment Analysis. J Phys Chem B 2024. [PMID: 38608137 DOI: 10.1021/acs.jpcb.3c08162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The inherently high viscosity of ionic liquids (ILs) can limit their potential applications. One approach to address this drawback is to modify the cation side chain with ether groups. Herein, we assessed the structure-property relationship by focusing on acetate (OAc), a strongly coordinating anion, with 1,3-dialkylimidazolium cations with different side chains, including alkyl, ether, and hydroxyl functionalized, as well as their combinations. We evaluated their viscosity, thermal stabilities, and microstructure using Raman and infrared (IR) spectroscopies, allied to density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. The viscosity data showed that the ether insertion significantly enhances the fluidity of the ILs, consistent with the coiling effect of the cation chain. Through a combined experimental and theoretical approach, we analyzed how the OAc anion interacts with ether ILs, revealing a characteristic bidentate coordination, particularly in hydroxyl functionalized ILs due to specific hydrogen bonding with the OH group. IR spectroscopy showed subtle shifts in the acidic hydrogens of imidazolium ring C(2)-H and C(4,5)-H, suggesting weaker interactions between OAc and the imidazolium ring in ether-functionalized ILs. Additionally, spatial distribution functions (SDF) and dihedral angle distribution obtained via AIMD confirmed the intramolecular hydrogen bonding due to the coiling effect of the ether side chain.
Collapse
Affiliation(s)
- Beatriz R de Moraes
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Vitor H Paschoal
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Nicolas Keppeler
- Grupo de polímero e surfactantes, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Omar A El Seoud
- Grupo de polímero e surfactantes, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Rômulo A Ando
- Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
39
|
Unke OT, Stöhr M, Ganscha S, Unterthiner T, Maennel H, Kashubin S, Ahlin D, Gastegger M, Medrano Sandonas L, Berryman JT, Tkatchenko A, Müller KR. Biomolecular dynamics with machine-learned quantum-mechanical force fields trained on diverse chemical fragments. SCIENCE ADVANCES 2024; 10:eadn4397. [PMID: 38579003 PMCID: PMC11809612 DOI: 10.1126/sciadv.adn4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
The GEMS method enables molecular dynamics simulations of large heterogeneous systems at ab initio quality.
Collapse
Affiliation(s)
- Oliver T. Unke
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
| | - Martin Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Stefan Ganscha
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
| | - Thomas Unterthiner
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
| | - Hartmut Maennel
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
| | - Sergii Kashubin
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
| | - Daniel Ahlin
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
| | - Michael Gastegger
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat), Technische Universität Berlin, 10623 Berlin, Germany
- BASLEARN — TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität Berlin, 10587 Berlin, Germany
| | - Leonardo Medrano Sandonas
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Joshua T. Berryman
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Klaus-Robert Müller
- Google DeepMind, Tucholskystraße 2, 10117 Berlin, Germany and Brandschenkestrasse 110, 8002 Zürich, Switzerland
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea
- Max Planck Institute for Informatics, Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
- BIFOLD — Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| |
Collapse
|
40
|
Khanifaev J, Schrader T, Perlt E. The effect of machine learning predicted anharmonic frequencies on thermodynamic properties of fluid hydrogen fluoride. J Chem Phys 2024; 160:124302. [PMID: 38516969 DOI: 10.1063/5.0195386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Anharmonic effects play a crucial role in determining thermochemical properties of liquids and gases. For such extended phases, the inclusion of anharmonicity in reliable electronic structure methods is computationally extremely demanding, and hence, anharmonic effects are often lacking in thermochemical calculations. In this study, we apply the quantum cluster equilibrium method to transfer density functional theory calculations at the cluster level to the macroscopic, liquid, and gaseous phase of hydrogen fluoride. This allows us to include anharmonicity, either via vibrational self-consistent field calculations for smaller clusters or using a regression model for larger clusters. We obtain the structural composition of the fluid phases in terms of the population of different clusters as well as isobaric heat capacities as an example for thermodynamic properties. We study the role of anharmonicities for these analyses and observe that, in particular, the dominating structural motifs are rather sensitive to the anharmonicity in vibrational frequencies. The regression model proves to be a promising way to get access to anharmonic features, and the extension to more sophisticated machine-learning models is promising.
Collapse
Affiliation(s)
- Jamoliddin Khanifaev
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tim Schrader
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
41
|
Coppola F, Cimino P, Petrone A, Rega N. Evidence of Excited-State Vibrational Mode Governing the Photorelaxation of a Charge-Transfer Complex. J Phys Chem A 2024; 128:1620-1633. [PMID: 38381887 DOI: 10.1021/acs.jpca.3c08366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Modern, nonlinear, time-resolved spectroscopic techniques have opened new doors for investigating the intriguing but complex world of photoinduced ultrafast out-of-equilibrium phenomena and charge dynamics. The interaction between light and matter introduces an additional dimension, where the complex interplay between electronic and vibrational dynamics needs the most advanced theoretical-computational protocols to be fully understood on the molecular scale. In this study, we showcase the capabilities of ab initio molecular dynamics simulation integrated with a multiresolution wavelet protocol to carefully investigate the excited-state relaxation dynamics in a noncovalent complex involving tetramethylbenzene (TMB) and tetracyanoquinodimethane (TCNQ) undergoing charge transfer (CT) upon photoexcitation. Our protocol provides an accurate description that facilitates a direct comparison between transient vibrational analysis and time-resolved spectroscopic signals. This molecular level perspective enhances our understanding of photorelaxation processes confined in the adiabatic regime and offers an improved interpretation of vibrational spectra. Furthermore, it enables the quantification of anharmonic vibrational couplings between high- and low-frequency modes, specifically the TCNQ "rocking" and "bending" modes. Additionally, it identifies the primary vibrational mode that governs the adiabaticity between the ground state and the CT state. This comprehensive understanding of photorelaxation processes holds significant importance in the rational design and precise control of more efficient photovoltaic and sensor devices.
Collapse
Affiliation(s)
- Federico Coppola
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
| | - Paola Cimino
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
| | - Alessio Petrone
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| | - Nadia Rega
- Scuola Superiore Meridionale, Largo San Marcellino 10, I-80138 Napoli, Italy
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo, 80126 Napoli, Italy
- Istituto Nazionale Di Fisica Nucleare, sezione di Napoli, Complesso Universitario di Monte S. Angelo ed. 6, 80126 Napoli, Italia
| |
Collapse
|
42
|
Jiao S, Li J, Qin X, Wan L, Hu W, Yang J. Complex-Valued K-Means Clustering of Interpolative Separable Density Fitting Algorithm for Large-Scale Hybrid Functional Enabled Ab Initio Molecular Dynamics Simulations within Plane Waves. J Phys Chem A 2024. [PMID: 38430107 DOI: 10.1021/acs.jpca.3c07172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
K-means clustering, as a classic unsupervised machine learning algorithm, is the key step to select the interpolation sampling points in interpolative separable density fitting (ISDF) decomposition for hybrid functional electronic structure calculations. Real-valued K-means clustering for accelerating the ISDF decomposition has been demonstrated for large-scale hybrid functional enabled ab initio molecular dynamics (hybrid AIMD) simulations within plane-wave basis sets where the Kohn-Sham orbitals are real-valued. However, it is unclear whether such K-means clustering works for complex-valued Kohn-Sham orbitals. Here, we propose an improved weight function defined as the sum of the square modulus of complex-valued Kohn-Sham orbitals in K-means clustering for hybrid AIMD simulations. Numerical results demonstrate that the K-means algorithm with a new weight function yields smoother and more delocalized interpolation sampling points, resulting in smoother energy potential, smaller energy drift, and longer time steps for hybrid AIMD simulations compared to the previous weight function used in the real-valued K-means algorithm. In particular, we find that this improved algorithm can obtain more accurate oxygen-oxygen radial distribution functions in liquid water molecules and a more accurate power spectrum in crystal silicon dioxide compared to the previous K-means algorithm. Finally, we describe a massively parallel implementation of this ISDF decomposition to accelerate large-scale complex-valued hybrid AIMD simulations containing thousands of atoms (2,744 atoms), which can scale up to 5,504 CPU cores on modern supercomputers.
Collapse
Affiliation(s)
- Shizhe Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jielan Li
- Hefei National Research Center for Physical Sciences at the Microscale, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinming Qin
- Hefei National Research Center for Physical Sciences at the Microscale, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lingyun Wan
- Hefei National Research Center for Physical Sciences at the Microscale, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
43
|
Cordero-Lanzac T, Capel Berdiell I, Airi A, Chung SH, Mancuso JL, Redekop EA, Fabris C, Figueroa-Quintero L, Navarro de Miguel JC, Narciso J, Ramos-Fernandez EV, Svelle S, Van Speybroeck V, Ruiz-Martínez J, Bordiga S, Olsbye U. Transitioning from Methanol to Olefins (MTO) toward a Tandem CO 2 Hydrogenation Process: On the Role and Fate of Heteroatoms (Mg, Si) in MAPO-18 Zeotypes. JACS AU 2024; 4:744-759. [PMID: 38425934 PMCID: PMC10900493 DOI: 10.1021/jacsau.3c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
The tandem CO2 hydrogenation to hydrocarbons over mixed metal oxide/zeolite catalysts (OXZEO) is an efficient way of producing value-added hydrocarbons (platform chemicals and fuels) directly from CO2via methanol intermediate in a single reactor. In this contribution, two MAPO-18 zeotypes (M = Mg, Si) were tested and their performance was compared under methanol-to-olefins (MTO) conditions (350 °C, PCH3OH = 0.04 bar, 6.5 gCH3OH h-1 g-1), methanol/CO/H2 cofeed conditions (350 °C, PCH3OH/PCO/PH2 = 1:7.3:21.7 bar, 2.5 gCH3OH h-1 g-1), and tandem CO2 hydrogenation-to-olefin conditions (350 °C, PCO2/PH2 = 7.5:22.5 bar, 1.4-12.0 gMAPO-18 h molCO2-1). In the latter case, the zeotypes were mixed with a fixed amount of ZnO:ZrO2 catalyst, well-known for the conversion of CO2/H2 to methanol. Focus was set on the methanol conversion activity, product selectivity, and performance stability with time-on-stream. In situ and ex situ Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), solid-state nuclear magnetic resonance (NMR), sorption experiments, and ab initio molecular dynamics (AIMD) calculations were performed to correlate material performance with material characteristics. The catalytic tests demonstrated the better performance of MgAPO-18 versus SAPO-18 at MTO conditions, the much superior performance of MgAPO-18 under methanol/CO/H2 cofeeds, and yet the increasingly similar performance of the two materials under tandem conditions upon increasing the zeotype-to-oxide ratio in the tandem catalyst bed. In situ FT-IR measurements coupled with AIMD calculations revealed differences in the MTO initiation mechanism between the two materials. SAPO-18 promoted initial CO2 formation, indicative of a formaldehyde-based decarboxylation mechanism, while CO and ketene were the main constituents of the initiation pool in MgAPO-18, suggesting a decarbonylation mechanism. Under tandem CO2 hydrogenation conditions, the presence of high water concentrations and low methanol partial pressure in the reaction medium led to lower, and increasingly similar, methanol turnover frequencies for the zeotypes. Despite both MAPO-18 zeotypes showing signs of activity loss upon storage due to the interaction of the sites with ambient humidity, they presented a remarkable stability after reaching steady state under tandem reaction conditions and after steaming and regeneration cycles at high temperatures. Water adsorption experiments at room temperature confirmed this observation. The faster activity loss observed in the Mg version is assigned to its harder Mg2+-ion character and the higher concentration of CHA defects in the AEI structure, identified by solid-state NMR and XRD. The low stability of a MgAPO-34 zeotype (CHA structure) upon storage corroborated the relationship between CHA defects and instability.
Collapse
Affiliation(s)
- Tomás Cordero-Lanzac
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Izar Capel Berdiell
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Alessia Airi
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Sang-Ho Chung
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jenna L. Mancuso
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, B-9052 Zwijnaarde, Belgium
| | - Evgeniy A. Redekop
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Claudia Fabris
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | - Leidy Figueroa-Quintero
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Juan C. Navarro de Miguel
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Narciso
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Enrique V. Ramos-Fernandez
- Inorganic
Chemistry Department, Laboratory of Advanced Materials, University Materials Institute of Alicante, University
of Alicante, Apartado 99, Alicante 03080, Spain
| | - Stian Svelle
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| | | | - Javier Ruiz-Martínez
- KAUST
Catalysis Center (KCC), King Abdullah University
of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Silvia Bordiga
- Department
of Chemistry, NIS Center and INSTM Reference Center, University of Turin, Turin 10125, Italy
| | - Unni Olsbye
- Department
of Chemistry, SMN Centre for Materials Science and Nanotechnology, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
44
|
Bai X, Chen C, Zhao X, Zhang Y, Zheng Y, Jiao Y. Accelerating the Reaction Kinetics of CO 2 Reduction to Multi-Carbon Products by Synergistic Effect between Cation and Aprotic Solvent on Copper Electrodes. Angew Chem Int Ed Engl 2024; 63:e202317512. [PMID: 38168478 DOI: 10.1002/anie.202317512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Improving the selectivity of electrochemical CO2 reduction to multi-carbon products (C2+ ) is an important and highly challenging topic. In this work, we propose and validate an effective strategy to improve C2+ selectivity on Cu electrodes, by introducing a synergistic effect between cation (Na+ ) and aprotic solvent (DMSO) to the electrolyte. Based on constant potential ab initio molecular dynamics simulations, we first revealed that Na+ facilitates C-C coupling while inhibits CH3 OH/CH4 products via reducing the water network connectivity near the electrode. Furthermore, the water network connectivity was further decreased by introducing an aprotic solvent DMSO, leading to suppression of both C1 production and hydrogen evolution reaction with minimal effect on *OCCO* hydrogenation. The synergistic effect enhancing C2 selectivity was also experimentally verified through electrochemical measurements. The results showed that the Faradaic efficiency of C2 increases from 9.3 % to 57 % at 50 mA/cm2 under a mixed electrolyte of NaHCO3 and DMSO compared to a pure NaHCO3 , which can significantly enhance the selectivity of the C2 product. Therefore, our discovery provides an effective electrolyte-based strategy for tuning CO2 RR selectivity through modulating the microenvironment at the electrode-electrolyte interface.
Collapse
Affiliation(s)
- Xiaowan Bai
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chaojie Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xunhua Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yehui Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
45
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
46
|
Dral PO, Ge F, Hou YF, Zheng P, Chen Y, Barbatti M, Isayev O, Wang C, Xue BX, Pinheiro Jr M, Su Y, Dai Y, Chen Y, Zhang L, Zhang S, Ullah A, Zhang Q, Ou Y. MLatom 3: A Platform for Machine Learning-Enhanced Computational Chemistry Simulations and Workflows. J Chem Theory Comput 2024; 20:1193-1213. [PMID: 38270978 PMCID: PMC10867807 DOI: 10.1021/acs.jctc.3c01203] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
Machine learning (ML) is increasingly becoming a common tool in computational chemistry. At the same time, the rapid development of ML methods requires a flexible software framework for designing custom workflows. MLatom 3 is a program package designed to leverage the power of ML to enhance typical computational chemistry simulations and to create complex workflows. This open-source package provides plenty of choice to the users who can run simulations with the command-line options, input files, or with scripts using MLatom as a Python package, both on their computers and on the online XACS cloud computing service at XACScloud.com. Computational chemists can calculate energies and thermochemical properties, optimize geometries, run molecular and quantum dynamics, and simulate (ro)vibrational, one-photon UV/vis absorption, and two-photon absorption spectra with ML, quantum mechanical, and combined models. The users can choose from an extensive library of methods containing pretrained ML models and quantum mechanical approximations such as AIQM1 approaching coupled-cluster accuracy. The developers can build their own models using various ML algorithms. The great flexibility of MLatom is largely due to the extensive use of the interfaces to many state-of-the-art software packages and libraries.
Collapse
Affiliation(s)
- Pavlo O. Dral
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Fuchun Ge
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Yi-Fan Hou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Peikun Zheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Yuxinxin Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Mario Barbatti
- Aix
Marseille University, CNRS, ICR, Marseille 13013, France
- Institut
Universitaire de France, Paris 75231, France
| | - Olexandr Isayev
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Cheng Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- iChem, Xiamen University, Xiamen, Fujian 361005, China
| | - Bao-Xin Xue
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Max Pinheiro Jr
- Aix
Marseille University, CNRS, ICR, Marseille 13013, France
| | - Yuming Su
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- iChem, Xiamen University, Xiamen, Fujian 361005, China
| | - Yiheng Dai
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- iChem, Xiamen University, Xiamen, Fujian 361005, China
| | - Yangtao Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- iChem, Xiamen University, Xiamen, Fujian 361005, China
| | - Lina Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Shuang Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Arif Ullah
- School
of Physics and Optoelectronic Engineering, Anhui University, Hefei230601, China
| | - Quanhao Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| | - Yanchi Ou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, and Innovation Laboratory for
Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China
| |
Collapse
|
47
|
Bellucci L, Cassetta M, Skogby H, Nazzareni S. Pure and Sc-doped diopside (CaMgSi 2O 6) vibrational spectra: modelling and experiments. Phys Chem Chem Phys 2024; 26:4029-4038. [PMID: 38224174 DOI: 10.1039/d3cp02324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
We investigated the structure of pure and Sc-doped synthetic diopside (a monoclinic single-chain silicate nominally CaMgSi2O6); in Sc-doped diopside, Sc3+ substitutes Mg2+ in the structure and, to achieve charge balance, vacancies form at the expense of Ca2+. We compared the structure obtained from ab initio modelling techniques at the density functional theory (DFT) level with the structure solved by employing single crystal X-ray diffraction. Furthermore, we compared IR and Raman spectroscopy experiments with vibrational density of states (VDOS) calculated from the Fourier transform of the velocity autocorrelation function obtained using ab initio (DFT) molecular dynamics simulations. In this framework, we developed a computational tool to assign the vibrational mode associated with a specific frequency. This method consists of projecting velocities along a specific set of internal coordinates such as stretching or bending, in cases involving defects or vacancies, to calculate a partial VDOS (pVDOS) that takes into account only the vibrations associated with selected internal modes, aiding the interpretation of the total VDOS and the experimental spectra in a relevant way. The computed data were validated with the experiments and we observed that doping the diopside structure with Sc produces peak broadening and the occurrence of new peaks in the Raman spectra and that site vacancies are associated with the nearby Sc site. The present work constitutes an interesting starting point to exploit the calculated VDOS/pVDOS to characterize experimental vibrational spectra of complex systems containing local vacancies, substitutions or defects as the Sc-doped diopside.
Collapse
Affiliation(s)
- Luca Bellucci
- NEST, Istituto-Nanoscienze del Consiglio Nazionale delle Ricerche (CNR-NANO) and Scuola Normale Superiore (SNS), Piazza San Silvestro 12, Pisa, I-56127, Italy.
| | - Michele Cassetta
- Department of Industrial Engineering, University of Trento, Trento, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Italy
| | - Henrik Skogby
- Department of Geosciences, Swedish Museum of Natural History, Stockholm, Sweden
| | - Sabrina Nazzareni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy.
| |
Collapse
|
48
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
49
|
Le DPN, Hastings G, Gozem S. How Aqueous Solvation Impacts the Frequencies and Intensities of Infrared Absorption Bands in Flavin: The Quest for a Suitable Solvent Model. Molecules 2024; 29:520. [PMID: 38276598 PMCID: PMC10818357 DOI: 10.3390/molecules29020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
FTIR spectroscopy accompanied by quantum chemical simulations can reveal important information about molecular structure and intermolecular interactions in the condensed phase. Simulations typically account for the solvent either through cluster quantum mechanical (QM) models, polarizable continuum models (PCM), or hybrid quantum mechanical/molecular mechanical (QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models successfully reproduced the relative frequencies of four prominent stretching modes of flavin's isoalloxazine ring in the diagnostic 1450-1750 cm-1 range but poorly reproduced the relative band intensities. Here, we extend our studies on this system and account for solvation through a series of increasingly sophisticated models. Only by combining elements of QM clusters, QM/MM, and PCM approaches do we obtain an improved agreement with the experiment. The study sheds light more generally on factors that can impact the computed frequencies and intensities of IR bands in solution.
Collapse
Affiliation(s)
- D. P. Ngan Le
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| | - Gary Hastings
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA; (D.P.N.L.); (G.H.)
| |
Collapse
|
50
|
Gao L, Prokhorenko S, Nahas Y, Bellaiche L. Dynamical Control of Topology in Polar Skyrmions via Twisted Light. PHYSICAL REVIEW LETTERS 2024; 132:026902. [PMID: 38277608 DOI: 10.1103/physrevlett.132.026902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/23/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
Twisted light carries a nonzero orbital angular momentum, that can be transferred from light to electrons and particles ranging from nanometers to micrometers. Up to now, the interplay between twisted light with dipolar systems has scarcely been explored, though the latter bear abundant forms of topologies such as skyrmions and embrace strong light-matter coupling. Here, using first-principles-based simulations, we show that twisted light can excite and drive dynamical polar skyrmions and transfer its nonzero winding number to ferroelectric ultrathin films. The skyrmion is successively created and annihilated alternately at the two interfaces, and experiences a periodic transition from a markedly "Bloch" to "Néel" character, accompanied with the emergence of a "Bloch point" topological defect with vanishing polarization. The dynamical evolution of skyrmions is connected to a constant jump of topological number between "0" and "1" over time. These intriguing phenomena are found to have an electrostatic origin. Our study thus demonstrates that, and explains why this unique light-matter interaction can be very powerful in creating and manipulating topological solitons in functional materials.
Collapse
Affiliation(s)
- Lingyuan Gao
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Sergei Prokhorenko
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yousra Nahas
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|