1
|
Mittal S, Prajapati KP, Ansari M, Joshi K, Mishra N, Mahato OP, Anand BG, Kar K. Cu(II) Specifically Disassembles Insulin Amyloid Nanostructures via Direct Interaction with Cross-β Fibrils. NANO LETTERS 2024; 24:9784-9792. [PMID: 38990555 DOI: 10.1021/acs.nanolett.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this work, we demonstrate direct evidence of the antiamyloid potential of Cu(II) ions against amyloid formation of insulin. The Cu(II) ions were found to efficiently disassemble the preformed amyloid nanostructures into soluble species and suppress monomer fibrillation under aggregation-prone conditions. The direct interaction of Cu(II) ions with the cross-β structure of amyloid fibrils causes substantial disruption of both the interchain and intrachain interactions, predominantly the H-bonds and hydrophobic contacts. Further, the Cu(II) ions show a strong affinity for the aggregation-prone conformers of the protein and inhibit their spontaneous self-assembly. These results reveal the possible molecular mechanism for the antiamyloidogenic potential of Cu(II) which could be important for the development of metal-ion specific therapeutic strategies against amyloid linked complications.
Collapse
Affiliation(s)
- Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kajal Joshi
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Rishisree A, Mallory B, Elena K, Teodora J, Gordana Z, Katarina Š, Aleksandar J. Pomegranate peel, chokeberry leaves and Ironwort extract as novel natural inhibitors of amylin aggregation and cellular toxicity in pancreatic β cells. Biophys Chem 2024; 304:107130. [PMID: 37952497 PMCID: PMC10841580 DOI: 10.1016/j.bpc.2023.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Impeding or reducing human amylin aggregation and/or its toxicity can be key to preventing pancreatic islet amyloidosis and β-cell loss in patients with Type 2 Diabetes Mellitus (T2DM). Here, Punica granatum (pomegranate) peel, Sideritis raeseri (ironwort) and Aronia melanocarpa (chokeberry) leaf extracts, were tested for their novel anti-aggregative and antitoxic properties in human amylin (hIAPP) treated rat pancreatic insulinoma (INS) cells. The protein aggregation (Th-T) assay revealed an inhibitory trend of all three plant extracts against amylin aggregates. In agreement with this finding, pomegranate peel and ironwort extracts effectively prevented the transition of hIAPP from disordered, random coil structures into aggregation prone β-sheet enriched molecular assemblies, revealed by CD spectroscopy. Consistent with their anti-aggregative action, all three extracts prevented, to various degrees, reactive oxygen species (ROS) accumulation, mitochondrial stress, and, ultimately, apoptosis of INS cells. Collectively, the results from this study demonstrate effectiveness of natural products to halt hIAPP aggregation, redox stress, and toxicity, which could be exploited as novel therapeutics against amylin-derived islet amyloidosis and β-cell stress in T2DM.
Collapse
Affiliation(s)
- Achanta Rishisree
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Brayer Mallory
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Karnaukhova Elena
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jankovic Teodora
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Zdunić Gordana
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Šavikin Katarina
- Institute for Medicinal Plant Research "Dr. Josif Pančić", 11000 Belgrade, Serbia
| | - Jeremic Aleksandar
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
3
|
Posadas Y, Sánchez-López C, Quintanar L. Copper binding and protein aggregation: a journey from the brain to the human lens. RSC Chem Biol 2023; 4:974-985. [PMID: 38033729 PMCID: PMC10685798 DOI: 10.1039/d3cb00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023] Open
Abstract
Metal ions have been implicated in several proteinopathies associated to degenerative and neurodegenerative diseases. While the molecular mechanisms for protein aggregation are still under investigation, recent findings from Cryo-EM point out to polymorphisms in aggregates obtained from patients, as compared to those formed in vitro, suggesting that several factors may impact aggregation in vivo. One of these factors could be the direct binding of metal ions to the proteins engaged in aggregate formation. In this opinion article, three case studies are discussed to address the question of how metal ion binding to a peptide or protein may impact its conformation, folding, and aggregation, and how this may be relevant in understanding the polymorphic nature of the aggregates related to disease. Specifically, the impact of Cu2+ ions in the amyloid aggregation of amyloid-β and amylin (or IAPP- islet amyloid polypeptide) are discussed and then contrasted to the case of Cu2+-induced non-amyloid aggregation of human lens γ-crystallin proteins. For the intrinsically disordered peptides amyloid-β and IAPP, the impact of Cu2+ ion binding is highly dependent on the relative location of the metal binding site and the hydrophobic regions involved in β-sheet folding and amyloid formation. Further structural studies of how Cu2+ binding impacts amyloid aggregation pathways and the molecular structure of the final amyloid fibril, both, in vitro and in vivo, will certainly shed light into the molecular origins of the polymorphisms observed in diseased tissue. Finally, contrasting these cases to that of Cu2+-induced non-amyloid aggregation of γ-crystallins, it is evident that, although the impact in aggregation - and the nature of the aggregate - may differ in each system, at the molecular level there is a competition between metal ion coordination and the stability of β-sheet structures. Considering the importance of the β-sheet fold in biology, it is fundamental to understand the energetics and molecular details behind such competition. This opinion article aims to highlight future research directions in the field that can help tackle the important question of how metal ion binding may impact protein folding and aggregation and how this relates to disease.
Collapse
Affiliation(s)
- Yanahi Posadas
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
| | - Carolina Sánchez-López
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
| | - Liliana Quintanar
- Center for Research in Aging, Center for Research and Advanced Studies (Cinvestav) Mexico City 14330 Mexico
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav) Mexico City 07350 Mexico
| |
Collapse
|
4
|
Meleleo D, Cibelli G, Valenzano A, Mastrodonato M, Mallamaci R. The Effect of Calcium Ions on hIAPP Channel Activity: Possible Implications in T2DM. MEMBRANES 2023; 13:878. [PMID: 37999364 PMCID: PMC10673357 DOI: 10.3390/membranes13110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The calcium ion (Ca2+) has been linked to type 2 diabetes mellitus (T2DM), although the role of Ca2+ in this disorder is the subject of intense investigation. Serum Ca2+ dyshomeostasis is associated with the development of insulin resistance, reduced insulin sensitivity, and impaired glucose tolerance. However, the molecular mechanisms involving Ca2+ ions in pancreatic β-cell loss and subsequently in T2DM remain poorly understood. Implicated in the decline in β-cell functions are aggregates of human islet amyloid polypeptide (hIAPP), a small peptide secreted by β-cells that shows a strong tendency to self-aggregate into β-sheet-rich aggregates that evolve toward the formation of amyloid deposits and mature fibrils. The soluble oligomers of hIAPP can permeabilize the cell membrane by interacting with bilayer lipids. Our study aimed to evaluate the effect of Ca2+ on the ability of the peptide to incorporate and form ion channels in zwitterionic planar lipid membranes (PLMs) composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) and on the aggregation process of hIAPP molecules in solution. Our results may help to clarify the link between Ca2+ ions, hIAPP peptide, and consequently the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Daniela Meleleo
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (G.C.); (A.V.)
| | - Anna Valenzano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (G.C.); (A.V.)
| | - Maria Mastrodonato
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.M.); (R.M.)
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.M.); (R.M.)
| |
Collapse
|
5
|
Moracci L, Crotti S, Traldi P, Agostini M, Cosma C, Lapolla A. Role of mass spectrometry in the study of interactions between amylin and metal ions. MASS SPECTROMETRY REVIEWS 2023; 42:984-1007. [PMID: 34558100 DOI: 10.1002/mas.21732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Amylin (islet amyloid polypeptide [IAPP]) is a neuroendocrine hormone synthesized with insulin in the beta cells of pancreatic islets. The two hormones act in different ways: in fact insulin triggers glucose uptake in muscle and liver cells, removing glucose from the bloodstream and making it available for energy use and storage, while amylin regulates glucose homeostasis. Aside these positive physiological aspects, human amyloid polypeptide (hIAPP) readily forms amyloid in vitro. Amyloids are aggregates of proteins and in the human body amyloids are considered responsible of the development of various diseases. These aspects have been widely described and discussed in literature and to give a view of the highly complexity of this biochemical behavior the different physical, chemical, biological and medical aspects are shortly described in this review. It is strongly affected by the presence on metal ions, responsible for or inhibiting the formation of fibrils. Mass spectrometry resulted (and still results) to be a particularly powerful tool to obtain valid and effective experimental data to describe the hIAPP behavior. Aside classical approaches devoted to investigation on metal ion-hIAPP structures, which reflects on the identification of metal-protein interaction site(s) and of possible metal-induced conformational changes of the protein, interesting results have been obtained by ion mobility mass spectrometry, giving, on the basis of collisional cross-section data, information on both the oligomerization processes and the conformation changes. Laser ablation electrospray ionization-ion mobility spectrometry-mass spectrometry (LAESI-IMS-MS), allowed to obtain information on the binding stoichiometry, complex dissociation constant, and the oxidation state of the copper for the amylin-copper interaction. Alternatively to inorganic ions, small organic molecules have been tested by ESI-IMS-MS as inhibitor of amyloid assembly. Also in this case the obtained data demonstrate the validity of the ESI-IMS-MS approach as a high-throughput screen for inhibitors of amyloid assembly, providing valid information concerning the identity of the interacting species, the nature of binding and the effect of the ligand on protein aggregation. Effects of Cu2+ and Zn2+ ions in the degradation of human and murine IAPP by insulin-degrading enzyme were studied by liquid chromatography/mass spectrometry (LC/MS). The literature data show that mass spectrometry is a highly valid and effective tool in the study of the amylin behavior, so to individuate medical strategies to avoid the undesired formation of amyloids in in vivo conditions.
Collapse
Affiliation(s)
- Laura Moracci
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sara Crotti
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Pietro Traldi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marco Agostini
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Chiara Cosma
- Department of Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
Suh JM, Kim M, Yoo J, Han J, Paulina C, Lim MH. Intercommunication between metal ions and amyloidogenic peptides or proteins in protein misfolding disorders. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Marciniak A, Pacini L, Papini AM, Brasuń J. Bicyclopeptides: a new class of ligands for Cu(II) ions. Dalton Trans 2022; 51:13368-13375. [PMID: 35984441 DOI: 10.1039/d2dt01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is growing interest in bicyclic peptides among scientists. This group of compounds has more advantageous properties than monocyclic ligands and their application in medicine and biological sciences is possible. It is known that sometimes the presence of metal ions is crucial for the activity of peptides in biological systems, like in the case of oxytocin or vasopressin. Therefore, in this study, we performed a series of experiments with the new bicyclic peptide c(PKKHP-c(CFWKTC)-PKKH) (BCL) that was designed and synthesized by a fully automated induction-assisted solid phase synthesizer. We analyzed the coordination abilities of BCL relative to copper(II) ions. The new bicyclic peptide contains two histidine moieties, separated by proline residues, with two distinct sites for metal ion coordination. The obtained results showed that in all analyzed systems both mono- and dinuclear complexes are formed.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 13, 50019 Sesto Fiorentino, Italy. .,MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 13, 50019 Sesto Fiorentino, Italy. .,MoD&LS Laboratory, University of Florence, Centre of Competences RISE, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Justyna Brasuń
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| |
Collapse
|
8
|
Evidence of the different effect of mercury and cadmium on the hIAPP aggregation process. Biophys Chem 2022; 290:106880. [DOI: 10.1016/j.bpc.2022.106880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022]
|
9
|
Zhai J, Zhu Y, Wu Y, Li N, Cao Y, Guo Y, Xu L. Antioxidant Effect of Tyr-Ala Extracted from Zein on INS-1 Cells and Type 2 Diabetes High-Fat-Diet-Induced Mice. Antioxidants (Basel) 2022; 11:antiox11061111. [PMID: 35740008 PMCID: PMC9219942 DOI: 10.3390/antiox11061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with an oxidative milieu that often leads to adverse health problems. Bioactive peptides of zein possess outstanding antioxidant activity; however, their effects on hyperglycemia-related oxidative stress remain elusive. In the present study, the dipeptide Tyr-Ala (YA), a functional peptide with typical health benefits, was applied to alleviate oxidative stress in pancreatic islets under hyperglycemic conditions. By detecting viability, antioxidant ability, and insulin secretion in INS-1 cells, YA showed excellent protection of INS-1 cells from H2O2 oxidative stress, erasing reactive oxygen species (ROS) and promoting insulin secretion. Moreover, by Western blotting, we found that YA can regulate the PI3K/Akt signaling pathway associated with glycometabolism. After establishing a T2DM mice model, we treated mice with YA and measured glucose, insulin, hemoglobin A1C (HbA1c), total cholesterol (TC), triglyceride (TG), and malonaldehyde (MDA) levels and activities of superoxide dismutase (SOD) and glutathione (GSH) from blood samples. We observed that YA could reduce the production of glucose, insulin, HbA1c, TC, TG, and MDA, in addition to enhancing the activities of SOD and GSH. YA could also repair the function of the kidneys and pancreas of T2DM mice. Along with the decline in fasting blood glucose, the oxidative stress in islets was alleviated in T2DM mice after YA administration. This may improve the health situation of diabetic patients in the future.
Collapse
Affiliation(s)
- Jinghui Zhai
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
- Department of Pharmacy, First Hospital of Jilin University, Changchun 130021, China
| | - Yuhua Zhu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
| | - Yi Wu
- College of Pharmacy, Jilin University, Changchun 130033, China;
| | - Na Li
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
| | - Yue Cao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
- Correspondence: (Y.G.); (L.X.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (J.Z.); (Y.Z.); (N.L.); (Y.C.)
- Correspondence: (Y.G.); (L.X.)
| |
Collapse
|
10
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas. Molecules 2022; 27:molecules27031021. [PMID: 35164285 PMCID: PMC8838401 DOI: 10.3390/molecules27031021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed.
Collapse
|
12
|
Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab Syndr Obes 2022; 15:695-711. [PMID: 35264864 PMCID: PMC8901420 DOI: 10.2147/dmso.s346648] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Ceruloplasmin (CP) is a multicopper oxidase and antioxidant that is mainly produced in the liver. CP not only plays a crucial role in the metabolic balance of copper and iron through its oxidase function but also exhibits antioxidant activity. In addition, CP is an acute-phase protein. In addition to being associated with aceruloplasminemia and neurodegenerative diseases such as Wilson's disease, Alzheimer's disease, and Parkinson's disease, CP also plays an important role in metabolic diseases, which are caused by metabolic disorders and vigorous metabolism, mainly including diabetes, obesity, hyperlipidemia, etc. Based on the physiological functions of CP, we provide an overview of the association of type 2 diabetes, obesity, hyperlipidemia, coronary heart disease, CP oxidative stress, inflammation, and metabolism of copper and iron. Studies have shown that metabolic diseases are closely related to systemic inflammation, oxidative stress, and disorders of copper and iron metabolism. Therefore, we conclude that CP, which can reduce the formation of free radicals in tissues, can be induced during inflammation and infection, and can correct the metabolic disorder of copper and iron, has protective and diagnostic effects on metabolic diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shigao Zhou
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
- Correspondence: Guang Ji, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, People’s Republic of China, Tel +86 18156416071, Fax +86 21-64385700, Email
| |
Collapse
|
13
|
Yuan K, Wang D, Ye X, Li Q, Wu D, Huang C, Yu Z, Chen Z, Lu C. Investigation of antidiabetic effect of a new dicarboxylic acid coordination polymer with Zn(II). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wang HJ, Yang GG, Wu SS, Meng ZF, Zhang JM, Cao Y, Zhang YP. Toxicity of CuS/CdS semiconductor nanocomposites to liver cells and mice liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147221. [PMID: 34088078 DOI: 10.1016/j.scitotenv.2021.147221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Semiconductor nanomaterials not only bring great convenience to peoples lives but also become a potential hazard to human health. The purpose of this study was to evaluate the toxicity of CuS/CdS nanocomposites in hepatocytes and mice liver. The CuS/CdS semiconductor nanocomposites were synthesized by a biomimetic synthesis - ion exchange strategy. Nanosize was confirmed by high-resolution transmission electron microscopy and dynamic light scattering. The composition and physical properties were measured by powder X-ray diffraction, Fourier transform infrared spectra, atomic absorption spectroscopy, thermogravimetry-differential scanning calorimetry and zeta potential analysis. The results revealed that CuS/CdS nanocomposites had 8.7 nm diameter and negative potential. Ion exchange time could adjust the ratio of CuS and CdS in nanocomposites. The toxicological study revealed that CuS/CdS nanocomposites could be internalized into liver cells, inhibited endogenous defense system (e.g. GSH and SOD), induced the accumulation of oxidation products (e.g. ROS, GSSG and MDA), and caused hepatocyte apoptosis. The in vivo experiments in Balb/c mice showed that the experimental dose (4 mg/kg) didn't cause observable changes in mice behavior, physical activity and pathological characteristics, but the continuous accumulation of Cd2+ in the liver and kidney might be responsible for its long-term toxicity.
Collapse
Affiliation(s)
- Hua-Jie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Gang-Gang Yang
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No 1111 Xianxia Rd, Shanghai 200336, China
| | - Sha-Sha Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi-Fen Meng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jia-Min Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ying Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yu-Ping Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
15
|
Wang Y, Meng F, Lu T, Wang C, Li F. Regulation of divalent metal ions to the aggregation and membrane damage of human islet amyloid polypeptide oligomers. RSC Adv 2021; 11:12815-12825. [PMID: 35423832 PMCID: PMC8697352 DOI: 10.1039/d1ra00354b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/21/2021] [Indexed: 11/21/2022] Open
Abstract
The accumulation of human islet amyloid polypeptide (hIAPP) on the surface of pancreatic β cells is closely related to the death of the cells. Divalent metal ions play a significant role in the cytotoxicity of hIAPP. In this study, we examined the roles played by the divalent metal ions of zinc, copper and calcium in the aggregation of both hIAPP18-27 fragment and full-length hIAPP and the ability of their oligomers to damage the membrane of POPC/POPG 4 : 1 LUVs using the ThT fluorescence, TEM, AFM, CD, ANS binding fluorescence and dye leakage experiments. We prepared metal-free and metal-associated oligomers that are similar in size and aggregate slowly using the short peptide and confirmed that the ability of the peptide oligomers to damage the lipid membrane is reduced by the binding to the metal ions, which is closely linked to the reducing hydrophobic exposure of the metal-associated oligomers. The study on the full-length hIAPP showed that the observed membrane damage induced by hIAPP oligomers is either mitigated at a peptide-to-metal ratio of 1 : 0.33 or aggravated at a peptide-to-metal ratio of 1 : 1 in the presence of Zn(ii) and Cu(ii), while the surface hydrophobicity of hIAPP oligomers was reduced at both peptide-to-metal ratios. The observed results of the membrane damage were attributed to the counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the binding of the metal ions to hIAPP oligomers. The former could play a predominant role in reducing the membrane damage at a peptide-to-metal ratio of 1 : 0.33, while the latter could play a predominant role in enhancing the membrane damage at a peptide-to-metal ratio of 1 : 1. This study shows that an enhanced membrane damage could be caused by the oligomer species with a decreased instead of an increased disruptive ability, given that the abundance of the oligomer species is high enough. Their is a counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the metal binding in the activity of hIAPP induced membrane damage.![]()
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Feihong Meng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyun Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
16
|
Patrick S, Corrigan R, Grizzanti J, Mey M, Blair J, Pallas M, Camins A, Lee HG, Casadesus G. Neuroprotective Effects of the Amylin Analog, Pramlintide, on Alzheimer's Disease Are Associated with Oxidative Stress Regulation Mechanisms. J Alzheimers Dis 2020; 69:157-168. [PMID: 30958347 DOI: 10.3233/jad-180421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Administration of the recombinant analog of the pancreatic amyloid amylin, Pramlintide, has shown therapeutic benefits in aging and Alzheimer's disease (AD) models, both on cognition and amyloid-β (Aβ) pathology. However, the neuroprotective mechanisms underlying the benefits of Pramlintide remain unclear. Given the early and critical role of oxidative stress in AD pathogenesis and the known reactive oxygen species (ROS) modulating function of amyloids, we sought to determine whether Pramlintide's neuroprotective effects involve regulation of oxidative stress mechanisms. To address this, we treated APP/PS1 transgenic mice with Pramlintide for 3 months, starting at 5.5 months prior to widespread AD pathology onset, and measured cognition (Morris Water Maze), AD pathology, and oxidative stress-related markers and enzymes in vivo. In vitro, we determined the ability of Pramlintide to modulate H2O2-induced oxidative stress levels. Our data show that Pramlintide improved cognitive function, altered amyloid-processing enzymes, reduced plaque burden in the hippocampus, and regulated endogenous antioxidant enzymes (MnSOD and GPx1) and the stress marker HO-1 in a location specific manner. In vitro, Pramlintide treatment in neuronal models reduced H2O2-induced endogenous ROS production and lipid peroxidation in a dose-dependent manner. Together, these results indicate that Pramlintide's benefits on cognitive function and pathology may involve antioxidant-like properties of this compound.
Collapse
Affiliation(s)
- Sarah Patrick
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Rachel Corrigan
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Megan Mey
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Jeff Blair
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Merce Pallas
- Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Antonio Camins
- Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Hyoung-Gon Lee
- Department of Biology, The University of Texas San Antonio, San Antonio, TX, USA
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
17
|
Huo G, Chen W, Wang J, Chu X, Xu W, Li B, Zhang Y, Xu B, Zhou X. His18 promotes reactive oxidative stress production in copper-ion mediated human islet amyloid polypeptide aggregation. RSC Adv 2020; 10:5566-5571. [PMID: 35497413 PMCID: PMC9049296 DOI: 10.1039/c9ra09943c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
Copper ions play a critical role in human islet amyloid polypeptide (hIAPP) aggregation, which has been found in more than 90% of patients with type-2 diabetes (T2D). The role of Cu(ii) in the cell cytotoxicity with hIAPP has been explored in two aspects: inhibiting the formation of fibrillar structures and stimulating the generation of reactive oxygen species (ROS). In this work, we carried out spectroscopic studies of Cu(ii) interacting with several hIAPP fragments and their variants as well. Electron paramagnetic resonance (EPR) measurements and Amplex Red analysis showed that the amount of H2O2 generated in hIAPP(11-28) solution co-incubated with Cu(ii) was remarkably more than hIAPP(1-11) and hIAPP(28-37). Furthermore, the H2O2 level was seriously reduced when His18 of hIAPP(11-28) was replaced by Arg(R) or Ser(S), indicating that His18 is the key residue of Cu(ii) binding to hIAPP(11-28) to promote H2O2 generation. This is likely because the donation of electrons from the peptide to Cu(ii) ions would result in the formation of the redox-active complexes, which could stimulate the formation of H2O2. Overall, this study provides further insight into the molecular mechanism of Cu(ii) induced ROS generation. His18 promotes H2O2 production in copper-ion mediated hIAPP aggregation.![]()
Collapse
Affiliation(s)
- Gengyang Huo
- School of Physics Science and Technology
- Ningbo University
- China
| | - Wenyong Chen
- School of Physics Science and Technology
- Ningbo University
- China
| | - Jianhua Wang
- School of Physics Science and Technology
- Ningbo University
- China
| | - Xinxing Chu
- School of Physics Science and Technology
- Ningbo University
- China
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
| | - Wei Xu
- School of Physics Science and Technology
- Ningbo University
- China
| | - Bin Li
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Yi Zhang
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- China
| | - Binqian Xu
- Single Molecule Study Laboratory
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Xingfei Zhou
- School of Physics Science and Technology
- Ningbo University
- China
| |
Collapse
|
18
|
Shi L, Liu P, Wu J, Ma L, Zheng H, Antosh MP, Zhang H, Wang B, Chen W, Wang X. The effectiveness and safety of X-PDT for cutaneous squamous cell carcinoma and melanoma. Nanomedicine (Lond) 2019; 14:2027-2043. [PMID: 31165659 DOI: 10.2217/nnm-2019-0094] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: To clarify the effectiveness and safety of x-ray-activated photodynamic therapy (X-PDT) for cutaneous squamous cell carcinoma (SCC) and melanoma. Materials & methods: Copper-cysteamine nanoparticles were used as a photosensitizer of X-PDT. The dark toxicity and cytotoxicity were studied in vitro. Tumor volume, microvessel density and acute toxicity of mice were evaluated in vivo. Results: Without x-ray irradiation, copper-cysteamine nanoparticles were nontoxic for keratinocyte cells. XL50 cells (SCC) were more sensitive to X-PDT than B16F10 cells (melanoma). X-PDT successfully inhibited the growth of SCC in vivo (p < 0.05), while the B16F10 melanoma was resistant. Microvessel density in SCC tissue was remarkably reduced (p < 0.05). No obvious acute toxicity reaction was observed. Conclusion: X-PDT is a safe and effective treatment for SCC.
Collapse
Affiliation(s)
- Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Jing Wu
- Department of Computer Science & Statistics, University of Rhode Island, 9 Greenhouse Rd, Kingston, RI 02881, USA
| | - Lun Ma
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Han Zheng
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Michael P Antosh
- Physics Department, University of Rhode Island, 2 Lippitt Rd, Kingston, RI 02881, USA.,Institute for Brain & Neural Systems, Brown University, 184 Hope St, Providence, RI 02912, USA
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Bo Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| | - Wei Chen
- Department of Physics, the University of Texas at Arlington, Arlington, TX 76019-0059, USA
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, PR China
| |
Collapse
|
19
|
Poudel K, Gautam M, Jin SG, Choi HG, Yong CS, Kim JO. Copper sulfide: An emerging adaptable nanoplatform in cancer theranostics. Int J Pharm 2019; 562:135-150. [PMID: 30904728 DOI: 10.1016/j.ijpharm.2019.03.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Copper sulfide nanoparticles (CuS NPs), emerging nanoplatforms with dual diagnostic and therapeutic applications, are being actively investigated in this era of "war on cancer" owing to their versatility and adaptability. This article discusses the pros and cons of using CuS NPs in diagnostics, therapeutics, and theranostics. The first section introduces CuS NPs and discusses the features that render them more advantageous than other established nanoplatforms in cancer management. Subsequent sections include specific in vitro and in vivo results of different studies showing the potential of CuS NPs as nanoplatforms. Methods used for visualization (photoacoustic imaging and magnetic resonance imaging) of CuS NPs and treatment (phototherapy and combinatorial therapy) have also been discussed. Furthermore, the challenges and opportunities associated with using CuS NPs have been elucidated. Further investigations on CuS NPs are required to translate it for clinical applications.
Collapse
Affiliation(s)
- Kishwor Poudel
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
20
|
Alghrably M, Czaban I, Jaremko Ł, Jaremko M. Interaction of amylin species with transition metals and membranes. J Inorg Biochem 2019; 191:69-76. [DOI: 10.1016/j.jinorgbio.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
|
21
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
22
|
Atrián-Blasco E, Gonzalez P, Santoro A, Alies B, Faller P, Hureau C. Cu and Zn coordination to amyloid peptides: From fascinating chemistry to debated pathological relevance. Coord Chem Rev 2018; 375:38-55. [PMID: 30262932 DOI: 10.1016/j.ccr.2018.04.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Several diseases share misfolding of different peptides and proteins as a key feature for their development. This is the case of important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and type II diabetes mellitus. Even more, metal ions such as copper and zinc might play an important role upon interaction with amyloidogenic peptides and proteins, which could impact their aggregation and toxicity abilities. In this review, the different coordination modes proposed for copper and zinc with amyloid-β, α-synuclein and IAPP will be reviewed as well as their impact on the aggregation, and ROS production in the case of copper. In addition, a special focus will be given to the mutations that affect metal binding and lead to familial cases of the diseases. Different modifications of the peptides that have been observed in vivo and could be relevant for the coordination of metal ions are also described.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Paulina Gonzalez
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Bruno Alies
- Université de Bordeaux, ChemBioPharm INSERM U1212 CNRS UMR 5320, Bordeaux, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
23
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
24
|
Archer JJ, Karki S, Shi F, Sistani H, Levis RJ. Quantification of Protein-Ligand Interactions by Laser Electrospray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1484-1492. [PMID: 29654537 DOI: 10.1007/s13361-018-1935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Laser electrospray mass spectrometry (LEMS) measurement of the dissociation constant (Kd) for hen egg white lysozyme (HEWL) and N,N',N″-triacetylchitotriose (NAG3) revealed an apparent Kd value of 313.2 ± 25.9 μM for the ligand titration method. Similar measurements for N,N',N″,N″'-tetraacetylchitotetraose (NAG4) revealed an apparent Kd of 249.3 ± 13.6 μM. An electrospray ionization mass spectrometry (ESI-MS) experiment determined a Kd value of 9.8 ± 0.6 μM. In a second LEMS approach, a calibrated measurement was used to determine a Kd value of 6.8 ± 1.5 μM for NAG3. The capture efficiency of LEMS was measured to be 3.6 ± 1.8% and is defined as the fraction of LEMS sample detected after merging with the ESI plume. When the dilution is factored into the ligand titration measurement, the adjusted Kd value was 11.3 μM for NAG3 and 9.0 μM for NAG4. The calibration method for measuring Kd developed in this study can be applied to solutions containing unknown analyte concentrations. Graphical Abstract.
Collapse
Affiliation(s)
- Jieutonne J Archer
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Santosh Karki
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Fengjian Shi
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Habiballah Sistani
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA
| | - Robert J Levis
- Department of Chemistry and Center for Advanced Photonics Research, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
25
|
Singh S, Bhowmick DC, Pany S, Joe M, Zaghlula N, Jeremic AM. Apoptosis signal regulating kinase-1 and NADPH oxidase mediate human amylin evoked redox stress and apoptosis in pancreatic beta-cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1721-1733. [PMID: 29627323 DOI: 10.1016/j.bbamem.2018.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 01/20/2023]
Abstract
Misfolded toxic human islet amyloid polypeptide or amylin (hA) and plasma membrane-associated redox complex, NADPH oxidase (NOX), have been implicated in the islet β-cell demise associated with type-2 diabetes mellitus (T2DM). Studies show that hA accumulation is stressful to β-cells and that misfolding of human amylin evokes redox stress and activates mitogen activated protein (MAP) kinases, p38 MAPK and c-Jun N-terminal (JNK) kinase. However, the molecular link and causality between hA-evoked redox stress, NOX activity and MAP kinases signaling in pancreatic β-cells is incompletely understood. Here, we show that in the process of activating JNK, aggregation prone hA also activates an upstream apoptosis signal regulating kinase-1 (ASK1) with concomitant decrease in intracellular levels of reduced glutathione. Inhibition of ASK1 kinase activity, either by specific ASK1 inhibitor, NQDI1 or by thiol antioxidants reduces human amylin-evoked ASK1 and JNK activation and consequently human amylin toxicity in rat insulinoma Rin-m5F cells and human islets. β-cell specific overexpression of human amylin in mouse islets elicited ASK1 phosphorylation and activation in β-cells but not in other rodent's islet or exocrine cells. This ASK1 activation strongly correlated with islet amyloidosis and diabetes progression. Cytotoxic human amylin additionally stimulated pro-oxidative activity and expressions of plasma membrane bound NADPH oxidase (NOX) and its regulatory subunits. siRNA mediated NOX1 knockdown and selective NOX inhibitors, ML171 and apocynin, significantly reduced hA-induced mitochondrial stress in insulinoma beta-cells. However, NOX inhibitors were largely ineffective against hA-evoked redox stress and activation of cytotoxic ASK1/JNK signaling complex. Thus, our studies suggest that NOX1 and ASK1 autonomously mediate human amylin-evoked redox and mitochondrial stress in pancreatic β-cells.
Collapse
Affiliation(s)
- Sanghamitra Singh
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | | | - Satyabrata Pany
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Myungkuk Joe
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Noor Zaghlula
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
| | - Aleksandar M Jeremic
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
26
|
Dávid Á, Hartman ÉT, Lihi N, Sóvágó I, Várnagy K. Complex formation of nickel(ii) and zinc(ii) ions with peptide fragments of rat amylin. NEW J CHEM 2018. [DOI: 10.1039/c7nj04605g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For nickel(ii)-SSNX-NH2 an equilibrium between the common (NH2,3N−(peptide)) and (NH2,2N−(peptide),N−(asparagine)) coordination modes was observed in a basic solution resulting in an increased stability of the complexes.
Collapse
Affiliation(s)
- Ágnes Dávid
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Éva Tünde Hartman
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Norbert Lihi
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| | - Katalin Várnagy
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Egyetem tér 1
- Hungary
| |
Collapse
|
27
|
Seal M, Dey SG. Active-Site Environment of Copper-Bound Human Amylin Relevant to Type 2 Diabetes. Inorg Chem 2017; 57:129-138. [DOI: 10.1021/acs.inorgchem.7b02266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
28
|
Magrì A, Pietropaolo A, Tabbì G, La Mendola D, Rizzarelli E. From Peptide Fragments to Whole Protein: Copper(II) Load and Coordination Features of IAPP. Chemistry 2017; 23:17898-17902. [PMID: 29111583 DOI: 10.1002/chem.201704910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 12/28/2022]
Abstract
The copper-binding features of rat islet amyloid polypeptide (r-IAPP) are herein disclosed through the determination of the stability constants and spectroscopic properties of its copper complex species. To mimic the metal binding sites of the human IAPP (h-IAPP), a soluble, single-point mutated variant of r-IAPP, having a histidine residue in place of Arg18, was synthesized, that is, r-IAPP(1-37; R18H). The peptide IAPP(1-8) was also characterized to have deeper insight into the N-terminus copper(II)-binding features of r-IAPP as well as of its mutated form. A combined experimental (thermodynamic and spectroscopic) and computational approach allowed us to assess the metal loading and the coordination features of the whole IAPP. At physiological pH, the N-terminal amino group is the Cu2+ main binding site both of entire r-IAPP and of its mutated form that mimics h-IAPP. The histidine residue present in this mutated polypeptide accounts for the second Cu2+ binding. We can speculate that the copper driven toxicity of h-IAPP in comparison to that of r-IAPP can be attributed to the different metal loading and the presence of a second metal anchoring site, the His18 , whose role is usually invoked in the process of h-IAPP aggregation.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Campus Universitario, Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini-CNR, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria, 5, 95125, Catania, Italy
| |
Collapse
|
29
|
Li L, Rashidi LH, Yao M, Ma L, Chen L, Zhang J, Zhang Y, Chen W. CuS nanoagents for photodynamic and photothermal therapies: Phenomena and possible mechanisms. Photodiagnosis Photodyn Ther 2017; 19:5-14. [DOI: 10.1016/j.pdpdt.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
|
30
|
A moderate metal-binding hydrazone meets the criteria for a bioinorganic approach towards Parkinson's disease: Therapeutic potential, blood-brain barrier crossing evaluation and preliminary toxicological studies. J Inorg Biochem 2017; 170:160-168. [DOI: 10.1016/j.jinorgbio.2017.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/14/2023]
|
31
|
Zhai JH, Wu Y, Wang XY, Cao Y, Xu K, Xu L, Guo Y. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro. Med Sci Monit 2016; 22:3792-3797. [PMID: 27752033 PMCID: PMC5081232 DOI: 10.12659/msm.901068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background It is well known that cerium oxide nanoparticles (CeNPs) have intense antioxidant activity. The antioxidant property of CeNPs are widely used in different areas of research, but little is known about the oxidative damage of Cu2+ associated with Type II diabetes mellitus (T2DM). Material/Methods In our research, the function of CeNPs was tested for its protection of β-cells from the damage of Cu2+ or H2O2. We detected hydroxyl radicals using terephthalic acid assay, hydrogen peroxide using Amplex Ultra Red assay, and cell viability using MTT reduction. Results We found that CeNPs can persistently inhibit Cu2+/H2O2 evoked hydroxyl radicals and hydrogen peroxide in oxidative stress of β-cells. Conclusions CeNPs will be useful in developing strategies for the prevention of T2DM.
Collapse
Affiliation(s)
- Jing-Hui Zhai
- College of Pharmacy, Jilin University, Changchun, Jilin, China (mainland)
| | - Yi Wu
- College of Pharmacy, Jilin University, Changchun, Jilin, China (mainland)
| | - Xiao-Ying Wang
- Jilin Province People's Hospital, Jilin Province People's Hospital, Changchun, Jilin, China (mainland)
| | - Yue Cao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| | - Kan Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
32
|
Magrì A, La Mendola D, Nicoletti VG, Pappalardo G, Rizzarelli E. New Insight in Copper-Ion Binding to Human Islet Amyloid: The Contribution of Metal-Complex Speciation To Reveal the Polypeptide Toxicity. Chemistry 2016; 22:13287-300. [PMID: 27493030 DOI: 10.1002/chem.201602816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 01/05/2023]
Abstract
Type-2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace-element serum level is significantly influenced during the development of diabetes. In particular, the dys-homeostasis of Cu(2+) ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu(2+) ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal-ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17-29 and 14-22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17-29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu(2+) ions with Ac-PEG-hIAPP(17-29)-NH2 , Ac-rIAPP(17-29)R18H-NH2 , and Ac-PEG-hIAPP(14-22)-NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu(2+) ions starting from the His18 imidazole nitrogen atom toward the N-terminus domain. The stability constants of copper(II) complexes with Ac-PEG-hIAPP(14-22)-NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu(2+) ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu(2+) ions present in phosphate-buffered saline (PBS), and 3) a reducing fluorogenic probe on H2 O2 production attributed to the polypeptide alone.
Collapse
Affiliation(s)
- Antonio Magrì
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano, 6, 56126, Pisa, Italy.
| | - Vincenzo Giuseppe Nicoletti
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Pappalardo
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy
| | - Enrico Rizzarelli
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini, Via P. Gaifami 18, 95126, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
33
|
Proteasome regulates turnover of toxic human amylin in pancreatic cells. Biochem J 2016; 473:2655-70. [PMID: 27340132 DOI: 10.1042/bcj20160026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Toxic human amylin (hA) oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Although recent studies demonstrated a causal connection between hA uptake and toxicity in pancreatic cells, the mechanism of amylin's clearance following its internalization and its relationship to toxicity is yet to be determined, and hence was investigated here. Using pancreatic rat insulinoma β-cells and human islets as model systems, we show that hA, following its internalization, first accumulates in the cytosol followed by its translocation into nucleus, and to a lesser extent lysosomes, keeping the net cytosolic amylin content low. An increase in hA accumulation in the nucleus of pancreatic cells correlated with its cytotoxicity, suggesting that its excessive accumulation in the nucleus is detrimental. hA interacted with 20S core and 19S lid subunits of the β-cell proteasomal complex, as suggested by immunoprecipitation and confocal microscopy studies, which subsequently resulted in a decrease in the proteasome's proteolytic activity in these cells. In vitro binding and activity assays confirmed an intrinsic and potent ability of amylin to interact with the 20S core complex thereby modulating its proteolytic activity. Interestingly, less toxic and aggregation incapable rat amylin (rA) showed a comparable inhibitory effect on proteasome activity and protein ubiquitination, decoupling amylin aggregation/ toxicity and amylin-induced protein stress. In agreement with these studies, inhibition of proteasomal proteolytic activity significantly increased intracellular amylin content and toxicity. Taken together, our results suggest a pivotal role of proteasomes in amylin's turnover and detoxification in pancreatic cells.
Collapse
|
34
|
Li H, Ha E, Donaldson RP, Jeremic AM, Vertes A. Rapid assessment of human amylin aggregation and its inhibition by copper(II) ions by laser ablation electrospray ionization mass spectrometry with ion mobility separation. Anal Chem 2016; 87:9829-9837. [PMID: 26352401 DOI: 10.1021/acs.analchem.5b02217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin-copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the -HSSNN- residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin-copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of amylin oligomerization and fibril formation. More generally, this rapid technique opens the door for high-throughput screening of potential inhibitors of amyloid protein aggregation.
Collapse
Affiliation(s)
- Hang Li
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C. 20052, United States
| | - Emmeline Ha
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C. 20052, United States
| | - Robert P Donaldson
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, United States
| | - Aleksandar M Jeremic
- Department of Biological Sciences, The George Washington University, Washington, D.C. 20052, United States
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
35
|
Wineman-Fisher V, Miller Y. Structural Insights into the Polymorphism of Self-Assembled Amylin Oligomers. Isr J Chem 2016. [DOI: 10.1002/ijch.201500091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Vered Wineman-Fisher
- Department of Chemistry
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; 84105 Beer-Sheva Israel
| | - Yifat Miller
- Department of Chemistry
- Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; 84105 Beer-Sheva Israel
| |
Collapse
|
36
|
Pilkington EH, Gurzov EN, Kakinen A, Litwak SA, Stanley WJ, Davis TP, Ke PC. Pancreatic β-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species. Sci Rep 2016; 6:21274. [PMID: 26880502 PMCID: PMC4754679 DOI: 10.1038/srep21274] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/20/2016] [Indexed: 01/22/2023] Open
Abstract
Aggregation of human islet amyloid polypeptide (hIAPP) into fibrils and plaques is associated with pancreatic β-cell loss in type 2 diabetes (T2D). However, due to the rapidness of hIAPP conversion in aqueous phase, exactly which hIAPP species is responsible for the observed toxicity and through what mechanisms remains ambiguous. In light of the importance of understanding hIAPP toxicity for T2D here we show a biophysical scheme based on the use of a lipophilic Laurdan dye for examining MIN6 cell membranes upon exposure to fresh and oligomeric hIAPP as well as mature amyloid. It has been found that all three hIAPP species, especially fresh hIAPP, enhanced membrane fluidity and caused losses in cell viability. The cell generation of reactive oxygen species (ROS), however, was the most pronounced with mature amyloid hIAPP. The correlation between changes in membrane fluidity and cell viability and their lack of correlation with ROS production suggest hIAPP toxicity is elicited through both physical and biochemical means. This study offers a new insight into β-cell toxicity induced by controlled hIAPP species, as well as new biophysical methodologies that may prove beneficial for the studies of T2D as well as neurological disorders.
Collapse
Affiliation(s)
- Emily H. Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Esteban N. Gurzov
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Sara A. Litwak
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | - William J. Stanley
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
37
|
Pithadia A, Brender JR, Fierke CA, Ramamoorthy A. Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives. J Diabetes Res 2016; 2016:2046327. [PMID: 26649317 PMCID: PMC4662995 DOI: 10.1155/2016/2046327] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/15/2015] [Indexed: 01/10/2023] Open
Abstract
Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity.
Collapse
Affiliation(s)
- Amit Pithadia
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jeffrey R. Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carol A. Fierke
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- *Ayyalusamy Ramamoorthy:
| |
Collapse
|
38
|
Sun Q, Zhao J, Zhang Y, Yang H, Zhou P. A natural hyperbranched proteoglycan inhibits IAPP amyloid fibrillation and attenuates β-cell apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra23429a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A natural amphiphilic hyperbranched proteoglycan efficiently inhibits IAPP fibrillation and attenuates β-cell apoptosis for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Qing Sun
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Juan Zhao
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Yuan Zhang
- Department of Medicine
- St Vincent's Hospital
- The University of Melbourne
- Fitzroy
- Australia
| | - Hongjie Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Ping Zhou
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| |
Collapse
|
39
|
Electrochemical quantification of the Alzheimer’s disease amyloid-β (1–40) using amyloid-β fibrillization promoting peptide. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Jeong HR, An SSA. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus. Clin Interv Aging 2015; 10:1873-9. [PMID: 26604727 PMCID: PMC4655906 DOI: 10.2147/cia.s95297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human islet amyloid polypeptide (h-IAPP) is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM). Since the causative factors of IAPP (or amylin) oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin) will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.
Collapse
Affiliation(s)
- Hye Rin Jeong
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
41
|
Dávid Á, Kállay C, Sanna D, Lihi N, Sóvágó I, Várnagy K. Potentiometric and spectroscopic studies on the copper(II) complexes of rat amylin fragments. The anchoring ability of specific non-coordinating side chains. Dalton Trans 2015; 44:17091-9. [PMID: 26369733 DOI: 10.1039/c5dt02445e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copper(ii) complexes of peptides modelling the sequence of the 17-22 residues of rat amylin have been studied by potentiometric, UV-Vis, CD and ESR spectroscopic methods. The peptides were synthesized in N-terminally free forms, NH2-VRSSNN-NH2, NH2-VRSSAA-NH2, NH2-VRAANN-NH2, NH2-VRSS-NH2, NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2, providing a possibility for the comparison of the metal binding abilities of the amino terminus and the -SSNN- domain. The amino terminus was the primary ligating site in all cases and the formation of only mononuclear complexes was obtained for the tetrapeptides. The thermodynamic stability of the (NH2, N(-), N(-)) coordinated complexes was, however, enhanced by the asparaginyl moiety in the case of NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2. Among the hexapeptides the formation of dinuclear complexes was characteristic for NH2-VRSSNN-NH2 demonstrating the anchoring ability of the -SSNN- (SerSerAsnAsn) domain. The complexes of the heptapeptide NH2-GGHSSNN-NH2 were also studied and the data supported the above mentioned anchoring ability of the -SSNN- site.
Collapse
Affiliation(s)
- Ágnes Dávid
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4010, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
42
|
Rivillas-Acevedo L, Sánchez-López C, Amero C, Quintanar L. Structural Basis for the Inhibition of Truncated Islet Amyloid Polypeptide Aggregation by Cu(II): Insights into the Bioinorganic Chemistry of Type II Diabetes. Inorg Chem 2015; 54:3788-96. [DOI: 10.1021/ic502945k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Lina Rivillas-Acevedo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), México, D.F., México
- Centro de Investigaciones Químicas,
Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos México
| | - Carolina Sánchez-López
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), México, D.F., México
| | - Carlos Amero
- Centro de Investigaciones Químicas,
Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos México
| | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), México, D.F., México
| |
Collapse
|
43
|
Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease. Metallomics 2015; 7:395-404. [DOI: 10.1039/c4mt00339j] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of different metals with the Parkinson's disease-associated protein alpha-synuclein results in oxidative stress, protein aggregation and pathology progression.
Collapse
Affiliation(s)
- Eleonora Carboni
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| | - Paul Lingor
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| |
Collapse
|
44
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
45
|
Tomasello MF, Sinopoli A, Pappalardo G. On the Environmental Factors Affecting the Structural and Cytotoxic Properties of IAPP Peptides. J Diabetes Res 2015; 2015:918573. [PMID: 26582441 PMCID: PMC4637107 DOI: 10.1155/2015/918573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 02/05/2015] [Indexed: 12/18/2022] Open
Abstract
Pancreatic islets in type 2 diabetes mellitus (T2DM) patients are characterized by reduced β-cells mass and diffuse extracellular amyloidosis. Amyloid deposition involves the islet amyloid polypeptide (IAPP), a neuropancreatic hormone cosecreted with insulin by β-cells. IAPP is physiologically involved in glucose homeostasis, but it may turn toxic to β-cells owing to its tendency to misfold giving rise to oligomers and fibrils. The process by which the unfolded IAPP starts to self-assemble and the overall factors promoting this conversion are poorly understood. Other open questions are related to the nature of the IAPP toxic species and how exactly β-cells die. Over the last decades, there has been growing consensus about the notion that early molecular assemblies, notably small hIAPP oligomers, are the culprit of β-cells decline. Numerous environmental factors might affect the conformational, aggregation, and cytotoxic properties of IAPP. Herein we review recent progress in the field, focusing on the influences that membranes, pH, and metal ions may have on the conformational conversion and cytotoxicity of full-length IAPP as well as peptide fragments thereof. Current theories proposed for the mechanisms of toxicity will be also summarized together with an outline of the underlying molecular links between IAPP and amyloid beta (Aβ) misfolding.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- International PhD Program in Translational Biomedicine, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Pappalardo
- CNR Institute of Biostructures and Bioimaging, Via P. Gaifami 18, 95126 Catania, Italy
- *Giuseppe Pappalardo:
| |
Collapse
|
46
|
Bellia F, Grasso G. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:274-279. [PMID: 24719342 DOI: 10.1002/jms.3338] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/20/2013] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.
Collapse
Affiliation(s)
- Francesco Bellia
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy
| | | |
Collapse
|
47
|
Trikha S, Jeremic AM. Distinct internalization pathways of human amylin monomers and its cytotoxic oligomers in pancreatic cells. PLoS One 2013; 8:e73080. [PMID: 24019897 PMCID: PMC3760900 DOI: 10.1371/journal.pone.0073080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023] Open
Abstract
Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤ 100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin's molecular forms, thereby serving a cyto-protective role in these cells.
Collapse
Affiliation(s)
- Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Aleksandar M. Jeremic
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|