1
|
Díaz-Marín CD, Masetti L, Roper MA, Hector KE, Zhong Y, Lu Z, Caylan OR, Graeber G, Grossman JC. Physics-based prediction of moisture-capture properties of hydrogels. Nat Commun 2024; 15:8948. [PMID: 39419983 PMCID: PMC11487083 DOI: 10.1038/s41467-024-53291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Moisture-capturing materials can enable potentially game-changing energy-water technologies such as atmospheric water production, heat storage, and passive cooling. Hydrogel composites recently emerged as outstanding moisture-capturing materials due to their low cost, high affinity for humidity, and design versatility. Despite extensive efforts to experimentally explore the large design space of hydrogels for high-performance moisture capture, there is a critical knowledge gap on our understanding behind the moisture-capture properties of these materials. This missing understanding hinders the fast development of novel hydrogels, material performance enhancements, and device-level optimization. In this work, we combine synthesis and characterization of hydrogel-salt composites to develop and validate a theoretical description that bridges this knowledge gap. Starting from a thermodynamic description of hydrogel-salt composites, we develop models that accurately capture experimentally measured moisture uptakes and sorption enthalpies. We also develop mass transport models that precisely reproduce the dynamic absorption and desorption of moisture into hydrogel-salt composites. Altogether, these results demonstrate the main variables that dominate moisture-capturing properties, showing a negligible role of the polymer in the material performance under all considered cases. Our insights guide the synthesis of next-generation humidity-capturing hydrogels and enable their system-level optimization in ways previously unattainable for critical water-energy applications.
Collapse
Affiliation(s)
- Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Lorenzo Masetti
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Miles A Roper
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kezia E Hector
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, US
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengmao Lu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, US
| | - Omer R Caylan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gustav Graeber
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, US
| |
Collapse
|
2
|
Graeber G, Díaz-Marín CD, Gaugler LC, Zhong Y, El Fil B, Liu X, Wang EN. Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling-Induced Salt Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211783. [PMID: 37201199 DOI: 10.1002/adma.202211783] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Hygroscopic hydrogels are emerging as scalable and low-cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel-salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross-linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg-1 at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal-organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt-vapor equilibria, the maximum leakage-free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption-based devices to tackle water scarcity and the global energy crisis.
Collapse
Affiliation(s)
- Gustav Graeber
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Leon C Gaugler
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Bachir El Fil
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
3
|
Boukair K, Salazar JM, Weber G, Badawi M, Ouaskit S, Simon JM. Toward the development of sensors for lung cancer: The adsorption of 1-propanol on hydrophobic zeolites. J Chem Phys 2023; 159:214712. [PMID: 38059548 DOI: 10.1063/5.0168230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
A healthy breath is mainly composed of water, carbon dioxide, molecular nitrogen, and oxygen and it contains many species, in small quantities, which are related to the ambient atmosphere and the metabolism. The breath of a person affected by lung cancer presents a concentration of 1-propanol higher than usual. In this context, the development of specific sensors to detect 1-propanol from breath is of high interest. The amount of propanol usually detected on the breath is of few ppb; this small quantity is a handicap for a reliable diagnostic. This limitation can be overcome if the sensor is equipped with a pre-concentrator. Our studies aim to provide an efficient material playing this role. This will contribute to the development of reliable and easy to use lung cancer detectors. For this, we investigate the properties of a few hydrophobic porous materials (chabazite, silicalite-1, and dealuminated faujasite). Hydrophobic structures are used to avoid saturation of materials by the water present in the exhaled breath. Our experimental and simulation results suggest that silicalite -1 (MFI) is the most suitable structure to be used as a pre-concentrator.
Collapse
Affiliation(s)
- K Boukair
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J M Salazar
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - G Weber
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| | - M Badawi
- Laboratoire de Physique et Chimie Théoriques, University of Lorraine, Nancy, France
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - S Ouaskit
- Laboratoire de Physique de la Matière Condensée, Hassan 2 University, Casablanca, Morroco
| | - J-M Simon
- ICB-UMR 6303 CNRS, Bourgogne Franche Comté University, Dijon, France
| |
Collapse
|
4
|
Ghojavand S, Dib E, Mintova S. Flexibility in zeolites: origin, limits, and evaluation. Chem Sci 2023; 14:12430-12446. [PMID: 38020361 PMCID: PMC10646982 DOI: 10.1039/d3sc03934j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous pieces of evidence in the literature suggest that zeolitic materials exhibit significant intrinsic flexibility as a consequence of the spring-like behavior of Si-O and Al-O bonds and the distortion ability of Si-O-Si and Al-O-Si angles. Understanding the origin of flexibility and how it may be tuned to afford high adsorption selectivity in zeolites is a big challenge. Zeolite flexibility may be triggered by changes in temperature, pressure, or chemical composition of the framework and extra-framework compounds, as well as by the presence of guest molecules. Therefore, zeolite flexibility can be classified into three categories: (i) temperature and pressure-induced flexibility; (ii) guest-induced flexibility; and (iii) compositionally-induced flexibility. An outlook on zeolite flexibility and the challenges met during the precise experimental evaluations of zeolites will be discussed. Overcoming these challenges will provide an important tool for designing novel selective adsorbents.
Collapse
Affiliation(s)
- Sajjad Ghojavand
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| | - Eddy Dib
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| | - Svetlana Mintova
- Normandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie (LCS) 14000 Caen France
| |
Collapse
|
5
|
Emelianova A, Balzer C, Reichenauer G, Gor GY. Adsorption-Induced Deformation of Zeolites 4A and 13X: Experimental and Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11388-11397. [PMID: 37539945 DOI: 10.1021/acs.langmuir.3c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Gas adsorption in zeolites leads to adsorption-induced deformation, which can significantly affect the adsorption and diffusive properties of the system. In this study, we conducted both experimental investigations and molecular simulations to understand the deformation of zeolites 13X and 4A during carbon dioxide adsorption at 273 K. To measure the sample's adsorption isotherm and strain simultaneously, we used a commercial sorption instrument with a custom-made sample holder equipped with a dilatometer. Our experimental data showed that while the zeolites 13X and 4A exhibited similar adsorption isotherms, their strain isotherms differed significantly. To gain more insight into the adsorption process and adsorption-induced deformation of these zeolites, we employed coupled Monte Carlo and molecular dynamics simulations with atomistically detailed models of the frameworks. Our modeling results were consistent with the experimental data and helped us identify the reasons behind the different deformation behaviors of the considered structures. Our study also revealed the sensitivity of the strain isotherm of zeolites to pore size and other structural and energetic features, suggesting that measuring adsorption-induced deformation could serve as a complementary method for material characterization and provide guidelines for related technical applications.
Collapse
Affiliation(s)
- Alina Emelianova
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | - Christian Balzer
- Center for Applied Energy Research, Magdalene-Schoch-Str. 3, Wuerzburg 97074, Germany
| | - Gudrun Reichenauer
- Center for Applied Energy Research, Magdalene-Schoch-Str. 3, Wuerzburg 97074, Germany
| | - Gennady Y Gor
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Madero-Castro R, Luna-Triguero A, Sławek A, Vicent-Luna JM, Calero S. On the Use of Water and Methanol with Zeolites for Heat Transfer. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:4317-4328. [PMID: 36970114 PMCID: PMC10031555 DOI: 10.1021/acssuschemeng.2c05369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Reducing carbon dioxide emissions has become a must in society, making it crucial to find alternatives to supply the energy demand. Adsorption-based cooling and heating technologies are receiving attention for thermal energy storage applications. In this paper, we study the adsorption of polar working fluids in hydrophobic and hydrophilic zeolites by means of experimental quasi-equilibrated temperature-programmed desorption and adsorption combined with Monte Carlo simulations. We measured and computed water and methanol adsorption isobars in high-silica HS-FAU, NaY, and NaX zeolites. We use the experimental adsorption isobars to develop a set of parameters to model the interaction between methanol and the zeolite and cations. Once we have the adsorption of these polar molecules, we use a mathematical model based on the adsorption potential theory of Dubinin-Polanyi to assess the performance of the adsorbate-working fluids for heat storage applications. We found that molecular simulations are an excellent tool for investigating energy storage applications since we can reproduce, complement, and extend experimental observations. Our results highlight the importance of controlling the hydrophilic/hydrophobic nature of the zeolites by changing the Al content to maximize the working conditions of the heat storage device.
Collapse
Affiliation(s)
- Rafael
M. Madero-Castro
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km. 1, ES-41013 Seville, Spain
| | - Azahara Luna-Triguero
- Energy
Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven
Institute for Renewable Energy Systems (EIRES), Eindhoven University of Technology,
P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Andrzej Sławek
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kawiory 30, 30-055 Kraków, Poland
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - José Manuel Vicent-Luna
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Sofia Calero
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km. 1, ES-41013 Seville, Spain
- Materials
Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
da Silva GCQ, Simon JM, Salazar JM. When less is more: does more Na +-cations mean more adsorption sites for toluene in faujasites? Phys Chem Chem Phys 2023; 25:8028-8042. [PMID: 36876505 DOI: 10.1039/d2cp04644j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The unique properties of zeolites make them an interesting material to be used in separation processes. The possibility of tailoring some of their characteristics, like the Si/Al ratio, allows optimizing their synthesis for a given task. Concerning the adsorption of toluene by faujasites an understanding of the effect of cations is necessary to foster the elaboration of new materials, which can capture molecules with a high degree of selectivity and sensitivity. Undoubtedly, this knowledge is relevant for a wide range of applications going from the elaboration of technologies for improving the air-quality to diagnostic procedures to prevent health risks. The studies reported here using Grand Canonical Monte Carlo simulations elucidate the role of Na-cations in the adsorption of toluene by faujasites with different Si/Al ratios. They detail how the location of the cations inhibits or enhances the adsorption. The cations located at site II are shown to be those enhancing the adsorption of toluene on faujasites. Interestingly, the cations located at site III generate a hindrance at high loading. This becomes an impediment for the organization of toluene molecules inside faujasites.
Collapse
Affiliation(s)
- G C Q da Silva
- Laboratoire ICB UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, France.
| | - J M Simon
- Laboratoire ICB UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, France.
| | - J Marcos Salazar
- Laboratoire ICB UMR 6303, Université Bourgogne Franche-Comté, 21078 Dijon, France.
| |
Collapse
|
8
|
Zhakisheva B, José Gutiérrez-Sevillano J, Calero S. AMMONIA AND WATER IN ZEOLITES: EFFECT OF ALUMINUM DISTRIBUTION ON THE HEAT OF ADSORPTION. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Dods MN, Weston SC, Long JR. Prospects for Simultaneously Capturing Carbon Dioxide and Harvesting Water from Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204277. [PMID: 35980944 DOI: 10.1002/adma.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Mitigation of anthropogenic climate change is expected to require large-scale deployment of carbon dioxide removal strategies. Prominent among these strategies is direct air capture with sequestration (DACS), which encompasses the removal and long-term storage of atmospheric CO2 by purely engineered means. Because it does not require arable land or copious amounts of freshwater, DACS is already attractive in the context of sustainable development, but opportunities to improve its sustainability still exist. Leveraging differences in the chemistry of CO2 and water adsorption within porous solids, here, the prospect of simultaneously removing water alongside CO2 in direct air capture operations is investigated. In many cases, the co-adsorbed water can be desorbed separately from chemisorbed CO2 molecules, enabling efficient harvesting of water from air. Depending upon the material employed and process conditions, the desorbed water can be of sufficiently high purity for industrial, agricultural, or potable use and can thus improve regional water security. Additionally, the recovered water can offset a portion of the costs associated with DACS. In this Perspective, molecular- and process-level insights are combined to identify routes toward realizing this nascent yet enticing concept.
Collapse
Affiliation(s)
- Matthew N Dods
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Simon C Weston
- ExxonMobil Technology and Engineering Company, Annandale, NJ, 08801, USA
| | - Jeffrey R Long
- Departments of Chemistry and Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Pahari S, Dorneles de Mello M, Shah MS, Josephson TR, Ren L, Nguyen HGT, Van Zee RD, Tsapatsis M, Siepmann JI. Ethanol and Water Adsorption in Conventional and Hierarchical All-Silica MFI Zeolites. ACS PHYSICAL CHEMISTRY AU 2022; 2:79-88. [PMID: 36855513 PMCID: PMC9718309 DOI: 10.1021/acsphyschemau.1c00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hierarchical zeolites containing both micro- (<2 nm) and mesopores (2-50 nm) have gained increasing attention in recent years because they combine the intrinsic properties of conventional zeolites with enhanced mass transport rates due to the presence of mesopores. The structure of the hierarchical self-pillared pentasil (SPP) zeolite is of interest because all-silica SPP consists of orthogonally intergrown single-unit-cell MFI nanosheets and contains hydrophilic surface silanol groups on the mesopore surface while its micropores are nominally hydrophobic. Therefore, the distribution of adsorbed polar molecules, like water and ethanol, in the meso- and micropores is of fundamental interest. Here, molecular simulation and experiment are used to investigate the adsorption of water and ethanol on SPP. Vapor-phase single-component adsorption shows that water occupies preferentially the mesopore corner and surface regions of the SPP material at lower pressures (P/P 0 < 0.5) while loading in the mesopore interior dominates adsorption at higher pressures. In contrast, ethanol does not exhibit a marked preference for micro- or mesopores at low pressures. Liquid-phase adsorption from binary water-ethanol mixtures demonstrates a 2 orders of magnitude lower ethanol/water selectivity for the SPP material compared to bulk MFI. For very dilute aqueous solutions of ethanol, the ethanol molecules are mostly adsorbed inside the SPP micropore region due to stronger dispersion interactions and the competition from water for the surface silanols. At high ethanol concentrations (C EtOH > 700 g L-1), the SPP material becomes selective for water over ethanol.
Collapse
Affiliation(s)
- Swagata Pahari
- Department
of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Matheus Dorneles de Mello
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Mansi S. Shah
- Department
of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Tyler R. Josephson
- Department
of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Limin Ren
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Huong Giang T. Nguyen
- Facility
for Adsorbent Characterization and Testing, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Roger D. Van Zee
- Facility
for Adsorbent Characterization and Testing, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael Tsapatsis
- Department
of Chemical Biomolecular Engineering and Institute for NanoBiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Applied
Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland 20723-6099, United States
| | - J. Ilja Siepmann
- Department
of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department
of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| |
Collapse
|
11
|
Díaz-Marín CD, Zhang L, Lu Z, Alshrah M, Grossman JC, Wang EN. Kinetics of Sorption in Hygroscopic Hydrogels. NANO LETTERS 2022; 22:1100-1107. [PMID: 35061401 DOI: 10.1021/acs.nanolett.1c04216] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hygroscopic hydrogels hold significant promise for high-performance atmospheric water harvesting, passive cooling, and thermal management. However, a mechanistic understanding of the sorption kinetics of hygroscopic hydrogels remains elusive, impeding an optimized design and broad adoption. Here, we develop a generalized two-concentration model (TCM) to describe the sorption kinetics of hygroscopic hydrogels, where vapor transport in hydrogel micropores and liquid transport in polymer nanopores are coupled through the sorption at the interface. We show that the liquid transport due to the chemical potential gradient in the hydrogel plays an important role in the fast kinetics. The high water uptake is attributed to the expansion of hydrogel during liquid transport. Moreover, we identify key design parameters governing the kinetics, including the initial porosity, hydrogel thickness, and shear modulus. This work provides a generic framework of sorption kinetics, which bridges the knowledge gap between the fundamental transport and practical design of hygroscopic hydrogels.
Collapse
Affiliation(s)
- Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lenan Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zhengmao Lu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammed Alshrah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Ramezani Shabolaghi K, Irani M. Ethanol adsorption in cation-exchanged linde type L zeolite, studied by molecular simulations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Qiu C, Deng S, Sun X, Gao Y, Yao Z, Zhuang G, Wang S, Wang JG. Meso-scale simulation on mechanism of Na+-gated water-conducting nanochannels in zeolite NaA. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Randrianandraina J, Badawi M, Cardey B, Grivet M, Groetz JE, Ramseyer C, Anzola FT, Chambelland C, Ducret D. Adsorption of water in Na-LTA zeolites: an ab initio molecular dynamics investigation. Phys Chem Chem Phys 2021; 23:19032-19042. [PMID: 34612441 DOI: 10.1039/d1cp02624k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The very wide range of applications of LTA zeolites, including the storage of tritiated water, implies that a detailed and accurate atomic-scale description of the adsorption processes taking place in their structure is crucial. To unravel with an unprecedented accuracy the mechanisms behind the water filling in NaA, we have conducted a systematic ab initio molecular dynamics investigation. Two LTA structural models, the conventional Z4A and the reduced one ZK4, have been used for static and dynamic ab initio calculations, respectively. After assessing this reduced model with comparative static DFT calculations, we start the filling of the α and β cages by water, molecule by molecule. This allowed us to thoroughly study the interaction of water molecules with the zeolite structure and between water molecules, progressively forming H-bond chains and ring patterns as the cage is being filled. The adsorption energies could then be calculated with an unprecedented accuracy, which showed that the interaction of the molecules with the zeolite weakens as their number increases. By these methods, we have been able to highlight the primary role of Na+ cations in the interaction of water with zeolite, and inversely, the role of water in the displacement of cations when it is sufficiently solvated, allowing the passage between the α and β cages. This phenomenon is possible thanks to the inhomogeneous distribution of water molecules on the cationic sites, as shown by our AIMD simulations, which allows the formation of water clusters. These results are important because they help in understanding how the coverage of cationic sites by water will affect the adsorption of other molecules inside the Na-LTA zeolite.
Collapse
Affiliation(s)
- Joharimanitra Randrianandraina
- Laboratoire Chrono-Environnement UMR 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Effects of the zeolite concentration on the microstructure of high internal phase emulsions stabilized by surfactant-coated zeolite particles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
18
|
Zagho MM, Hassan MK, Khraisheh M, Al-Maadeed MAA, Nazarenko S. A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
19
|
Erdős M, Geerdink DF, Martin-Calvo A, Pidko EA, van den Broeke LJP, Calero S, Vlugt TJH, Moultos OA. In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8383-8394. [PMID: 33566563 PMCID: PMC7908017 DOI: 10.1021/acsami.0c20892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
According to the ISO 14687-2:2019 standard, the water content of H2 fuel for transportation and stationary applications should not exceed 5 ppm (molar). To achieve this water content, zeolites can be used as a selective adsorbent for water. In this work, a computational screening study is carried out for the first time to identify potential zeolite frameworks for the drying of high-pressure H2 gas using Monte Carlo (MC) simulations. We show that the Si/Al ratio and adsorption selectivity have a negative correlation. 218 zeolites available in the database of the International Zeolite Association are considered in the screening. We computed the adsorption selectivity of each zeolite for water from the high-pressure H2 gas having water content relevant to vehicular applications and near saturation. It is shown that due to the formation of water clusters, the water content in the H2 gas has a significant effect on the selectivity of zeolites with a helium void fraction larger than 0.1. Under each operating condition, five most promising zeolites are identified based on the adsorption selectivity, the pore limiting diameter, and the volume of H2 gas that can be dried by 1 dm3 of zeolite. It is shown that at 12.3 ppm (molar) water content, structures with helium void fractions smaller than 0.07 are preferred. The structures identified for 478 ppm (molar) water content have helium void fractions larger than 0.26. The proposed zeolites can be used to dry 400-8000 times their own volume of H2 gas depending on the operating conditions. Our findings strongly indicate that zeolites are potential candidates for the drying of high-pressure H2 gas.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Daan F. Geerdink
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ana Martin-Calvo
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km, 1, ES-41013 Seville, Spain
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Chemical Engineering Department, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofia Calero
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
20
|
Randrianandraina J, Grivet M, Ramseyer C, Groetz JE, Cardey B, Torrealba Anzola F, Ducret D, Chambelland C. Adsorption Study of Main Gas Products from Water Radiolysis on 4A Zeolite by Numerical Simulations. FUSION SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/15361055.2020.1842680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Manuel Grivet
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Christophe Ramseyer
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Jean-Emmanuel Groetz
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Bruno Cardey
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Freddy Torrealba Anzola
- Université de Franche-Comté, Laboratoire Chrono-Environnement, 16 Route de Gray, 25030 Besançon CEDEX, France
| | - Didier Ducret
- Centre d’études de Valduc, CEA/DAM, 21120 Is-Sur-Tille, France
| | | |
Collapse
|
21
|
Heard CJ, Grajciar L, Uhlík F, Shamzhy M, Opanasenko M, Čejka J, Nachtigall P. Zeolite (In)Stability under Aqueous or Steaming Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003264. [PMID: 32780912 DOI: 10.1002/adma.202003264] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Zeolites are among the most environmentally friendly materials produced industrially at the Megaton scale. They find numerous commercial applications, particularly in catalysis, adsorption, and separation. Under ambient conditions aluminosilicate zeolites are stable when exposed to water or water vapor. However, at extreme conditions as high temperature, high water vapor pressure or increased acidity/basicity, their crystalline framework can be destroyed. The stability of the zeolite framework under aqueous conditions also depends on the concentration and character of heteroatoms (other than Al) and the topology of the zeolite. The factors critical for zeolite (in)stability in the presence of water under various conditions are reviewed from the experimental as well as computational sides. Nonreactive and reactive interactions of water with zeolites are addressed. The goal of this review is to provide a comparative overview of all-silica zeolites, aluminosilicates and zeolites with other heteroatoms (Ti, Sn, and Ge) when contacted with water. Due attention is also devoted to the situation when partial zeolite hydrolysis is used beneficially, such as the formation of hierarchical zeolites, synthesis of new zeolites or fine-tuning catalytic or adsorption characteristics of zeolites.
Collapse
Affiliation(s)
- Christopher James Heard
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Mariya Shamzhy
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry & Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, Prague 2, Prague, 128 43, Czech Republic
| |
Collapse
|
22
|
Ahsan SAMS, Durani S, Reddy G, Subramanian Y. Shared hydrogen bonds: water in aluminated faujasite. Phys Chem Chem Phys 2020; 22:1632-1639. [PMID: 31894781 DOI: 10.1039/c9cp04972j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water confined in faujasite, a zeolite, with aluminium content, exhibits properties different from those of bulk water as well as water confined in siliceous faujasite. The RDF between oxygen of water (OW) and oxygen of aluminium (OAl) shows a prominent first peak near to 2.9 Å similar to any oxygen-oxygen RDF seen in bulk water and unlike water confined in siliceous faujasite. Further, HW-OAl shows a peak near 1.9 Å suggesting hydrogen bonding between hydrogen of water and OAl. The water satisfies the hydrogen bond criteria with both O1Al and O2Al indicating that it is participating in a shared hydrogen bond. The hydrogen bond exchange between such a water forming a shared hydrogen bond to OAl and another water molecule H2Ob is investigated through the changes in the distances and appropriate angles. The O-Al-O angle of the zeolite increases by about 7 degrees on the formation of the shared hydrogen bond. The jump dynamics of the shared hydrogen bond when the two bonds break simultaneously has been obtained and this is reported. This jump reorientation dynamics is different compared to normal hydrogen bonding reported by Laage and Hynes: it has a short lifetime, around 50-100 fs computed from SHB(t). The intermittent and continuous hydrogen bond correlation functions are also reported.
Collapse
Affiliation(s)
- S A M Shamimul Ahsan
- Atomic Mineral Directorate For Exploration & Research, Nagarbhavi, Bangalore-560072, India
| | - Smeer Durani
- Atomic Mineral Directorate For Exploration & Research, R. K. Puram, New Delhi-110066, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.
| | - Yashonath Subramanian
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
23
|
Pimentel ES, Brito-Pereira R, Marques-Almeida T, Ribeiro C, Vaz F, Lanceros-Mendez S, Cardoso VF. Tailoring Electrospun Poly(l-lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:60-69. [PMID: 31808332 DOI: 10.1021/acsami.9b12461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel microfluidic substrates based on electrospun poly(l-lactic acid) (PLLA) membranes were developed to increase the limited range of commercially available paper substrates, commonly used for the fabrication of microfluidic paper-based analytical devices. PLLA's advantageous properties include biodegradability, biocompatibility, ease of being processed in various tailored morphologies, and cost effectiveness, among others. Oriented and nonoriented electrospun PLLA membranes were fabricated using electrospinning and the influence of fiber orientation, addition of hydrophilic additives, and plasma treatments on the morphology, physicochemical properties, and capillary flow rates were evaluated and compared with the commercial Whatman paper. In addition, a proof-of-concept application based on the colorimetric detection of glucose in printed PLLA and paper-based microfluidic systems was also performed. The results show the potential of PLLA substrates for the fabrication of portable, disposable, eco-friendly, and cost-effective microfluidic systems with controllable properties that can be tailored according to specific biotechnological application requirements, being a suitable alternative to conventional paper-based substrates.
Collapse
Affiliation(s)
| | - Ricardo Brito-Pereira
- CMEMS-UMinho , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| | | | | | | | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures , UPV/EHU Science Park , 48940 Leioa , Spain
- IKERBASQUE, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Vanessa F Cardoso
- CMEMS-UMinho , Universidade do Minho , Campus de Azurém , 4800-058 Guimarães , Portugal
| |
Collapse
|
24
|
Gossard A, Fabrègue N, Hertz A, Grandjean A. High Internal Phase Emulsions Stabilized by a Zeolite-Surfactant Combination in a Composition-Dependent Manner. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17114-17121. [PMID: 31818101 DOI: 10.1021/acs.langmuir.9b03053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a step toward synthesizing zeolite-based porous materials, this study demonstrates for the first time the feasibility of stabilizing oil-in-water (O/W) high internal phase emulsions (HIPEs) using a cationic surfactant (tetradecyltrimethylammonium bromide, TTAB) and "homemade" submicronic Linde type A zeolite particles. The zeolite particles are hydrophilic and therefore do not attach to dodecane-water interfaces, but surface tension measurements and electrochemical data show that their surface can be activated by the electrostatic and subsequent hydrophobic adsorption of TTAB. Comparing the adsorption isotherm of TTAB and zeta potential of the particles with the droplet sizes and rheological properties of the emulsion shows that the stabilization mechanism depends on the TTAB/zeolite weight ratio. At low TTAB/zeolite weight ratios (≤0.2 wt %), gel-like O/W Pickering HIPEs form, but at intermediate TTAB concentrations, the zeolite particles become more hydrophobic, leading to phase inversion and the stabilization of W/O emulsions. At high TTAB/zeolite weight ratios (>1.25 wt %), a second phase inversion occurs and creamy O/W HIPEs form through a different stabilization mechanism. In this case indeed, the zeolite particles are fully covered by a bilayer of TTAB and remain dispersed in the aqueous phase with no adsorption to the dodecane-water interface. The emulsion is stabilized by electrostatic repulsion between the highly positively charged zeolite particles and the cationic surfactant adsorbed at the dodecane-water interface.
Collapse
Affiliation(s)
- Alban Gossard
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Nicolas Fabrègue
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Audrey Hertz
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| | - Agnès Grandjean
- DE2D, SEAD, Laboratoire des Procédés Supercritiques et de Décontamination , CEA, DEN, Univ Montpellier , Marcoule, F-30207 Bagnols-sur-Cèze , France
| |
Collapse
|
25
|
Manufacturing and Assessment of Electrospun PVP/TEOS Microfibres for Adsorptive Heat Transformers. COATINGS 2019. [DOI: 10.3390/coatings9070443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new adsorbent coating for the adsorber unit of an adsorption heat pump made of hybrid, organic–inorganic microfibres was prepared and characterized. Different coatings were obtained by the electrospinning of polyvinylpyrrolidone (PVP) solutions added with different quantities of tetraethyl orthosilicate (TEOS). PVP is a polymer with water adsorption capability and the TEOS addition allowed to increase the thermal stability of microfibres. The aim, indeed, was to preserve the polymeric structure of microfibres in order to obtain coatings with high flexibility and mechanical strength. The results demonstrated that TEOS concentrations in the range of 5–13 wt.% produced microfibre coatings of non-woven textile structure with both good water affinity and good thermal stability. SEM images of coatings showed that the deposited microfibre layers have both a high surface area and a high permeability representing a significant advantage in adsorption systems.
Collapse
|
26
|
Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1547824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Guo X, Wu L, Navrotsky A. Thermodynamic evidence of flexibility in H2O and CO2 absorption of transition metal ion exchanged zeolite LTA. Phys Chem Chem Phys 2018; 20:3970-3978. [DOI: 10.1039/c7cp08188j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorption thermodynamics on the framework flexibility of TMI-exchanged zeolite LTA driven by water/CO2 molecules.
Collapse
Affiliation(s)
- Xin Guo
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU
- University of California Davis
- Davis
- USA
| | - Lili Wu
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU
- University of California Davis
- Davis
- USA
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU
- University of California Davis
- Davis
- USA
| |
Collapse
|
28
|
Pakdehi SG, Babaee S, Azizi HR. Kinetic Study and Optimization of Dehydration of Dimethyl Amino Ethyl Azide (DMAZ) Using Response Surface Methodology. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shahram Ghanbari Pakdehi
- Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Saeed Babaee
- Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | - Hamid Reza Azizi
- Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| |
Collapse
|
29
|
Thermodynamic Study and Optimization a Nano-Zeolite for Dehydration Liquid Fuel (DMAZ) Using Taguchi
$$\hbox {L}_{16}$$
L
16
Orthogonal Array. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2891-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell RG, Catlow CRA. Advances in theory and their application within the field of zeolite chemistry. Chem Soc Rev 2015; 44:7044-111. [PMID: 25976164 DOI: 10.1039/c5cs00029g] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Zeolites are versatile and fascinating materials which are vital for a wide range of industries, due to their unique structural and chemical properties, which are the basis of applications in gas separation, ion exchange and catalysis. Given their economic impact, there is a powerful incentive for smart design of new materials with enhanced functionalities to obtain the best material for a given application. Over the last decades, theoretical modeling has matured to a level that model guided design has become within reach. Major hurdles have been overcome to reach this point and almost all contemporary methods in computational materials chemistry are actively used in the field of modeling zeolite chemistry and applications. Integration of complementary modeling approaches is necessary to obtain reliable predictions and rationalizations from theory. A close synergy between experimentalists and theoreticians has led to a deep understanding of the complexity of the system at hand, but also allowed the identification of shortcomings in current theoretical approaches. Inspired by the importance of zeolite characterization which can now be performed at the single atom and single molecule level from experiment, computational spectroscopy has grown in importance in the last decade. In this review most of the currently available modeling tools are introduced and illustrated on the most challenging problems in zeolite science. Directions for future model developments will be given.
Collapse
|
31
|
Zhang H, Yuan Y, Yang F, Zhang N, Cao X. Inorganic composite adsorbent CaCl2/MWNT for water vapor adsorption. RSC Adv 2015. [DOI: 10.1039/c5ra05860k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Gómez-Álvarez P, Calero S. Insights into the microscopic behaviour of nanoconfined water: host structure and thermal effects. CrystEngComm 2015. [DOI: 10.1039/c4ce01335b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Calero S, Gómez-Álvarez P. Hydrogen bonding of water confined in zeolites and their zeolitic imidazolate framework counterparts. RSC Adv 2014. [DOI: 10.1039/c4ra01508h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|