1
|
Haeger G, Wirges J, Bongaerts J, Schörken U, Siegert P. Perspectives of aminoacylases in biocatalytic synthesis of N-acyl-amino acids surfactants. Appl Microbiol Biotechnol 2024; 108:495. [PMID: 39453420 PMCID: PMC11511702 DOI: 10.1007/s00253-024-13328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Many industrial processes are performed using harmful chemicals. The current technical synthesis of N-acyl-amino acids relies on acyl chlorides, which are typically obtained from phosgene chemistry. A greener alternative is the application of whole cells or enzymes to carry out synthesis in an environmentally friendly manner. Aminoacylases belong to the hydrolase family and the resolution of racemic mixtures of N-acetyl-amino acids is a well-known industrial process. Several new enzymes accepting long-chain fatty acids as substrates were discovered in recent years. This article reviews the synthetic potential of aminoacylases to produce biobased N-acyl-amino acid surfactants. The focus lays on a survey of the different types of aminoacylases available for synthesis and their reaction products. The enzymes are categorized according to their protein family classification and their biochemical characteristics including substrate spectra, reaction optima and process stability, both in hydrolysis and under process conditions suitable for synthesis. Finally, the benefits and future challenges of enzymatic N-acyl-amino acid synthesis with aminoacylases will be discussed. KEY POINTS: • Enzymatic synthesis of N-acyl-amino acids, biobased surfactants by aminoacylases.
Collapse
Affiliation(s)
- Gerrit Haeger
- Novo Nordisk, Novo Nordisk Park 1, 2760, Måløv, Denmark
| | - Jessika Wirges
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany
| | - Ulrich Schörken
- Faculty of Applied Natural Sciences, TH Köln University of Applied Sciences - Leverkusen Campus, 51379, Leverkusen, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Heinrich-Mussmannstr. 1, 52428, Jülich, Germany.
| |
Collapse
|
2
|
Liu Z, Ling JL, Liu YY, Zheng BH, Wu CD. Incorporation of enzyme-mimic species in porous materials for the construction of porous biomimetic catalysts. Chem Commun (Camb) 2024. [PMID: 39415700 DOI: 10.1039/d4cc04223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The unique catalytic properties of natural enzymes have inspired chemists to develop biomimetic catalyst platforms for the intention of retaining the unique functions and solving the application limitations of enzymes, such as high costs, instability and unrecyclable ability. Porous materials possess unique advantages for the construction of biomimetic catalysts, such as high surface areas, thermal stability, permanent porosity and tunability. These characteristics make them ideal porous matrices for the construction of biomimetic catalysts by immobilizing enzyme-mimic active sites inside porous materials. The developed porous biomimetic catalysts demonstrate high activity, selectivity and stability. In this feature article, we categorize and discuss the recently developed strategies for introducing enzyme-mimic active species inside porous materials, which are based on the type of employed porous materials, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), molecular sieves, porous metal silicate (PMS) materials and porous carbon materials. The advantages and limitations of these porous materials-based biomimetic catalysts are discussed, and the challenges and future directions in this field are also highlighted.
Collapse
Affiliation(s)
- Zikun Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Jia-Long Ling
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yang-Yang Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bu-Hang Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
3
|
Shah H, Zhang C, Khan S, Patil PJ, Li W, Xu Y, Ali A, Liang E, Li X. Comprehensive Insights into Microbial Lipases: Unveiling Structural Dynamics, Catalytic Mechanism, and Versatile Applications. Curr Microbiol 2024; 81:394. [PMID: 39375258 DOI: 10.1007/s00284-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency. The review delves into ML sources, spanning fungi, yeasts, bacteria, and actinomycetes, followed by a discussion on classification and characterization. Emphasizing the scattered findings in the literature, the paper consolidates the latest information on ML applications across various industries, from food and pharmaceuticals to biofuel production and the paper and pulp industry. The review captures the dynamic landscape of ML research, emphasizing their structure-function relationships and practical implications across diverse sectors.
Collapse
Affiliation(s)
- Haroon Shah
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Chengnan Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
| | - Sohail Khan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Prasanna Jagannath Patil
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Youqiang Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Akhtiar Ali
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Erhong Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, People's Republic of China.
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing, 100048, People's Republic of China.
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University (BTBU), Haidian District, No. 11 Fucheng Street, Beijing, 100048, People's Republic of China.
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China.
| |
Collapse
|
4
|
Patil PD, Kelkar RK, Patil NP, Pise PV, Patil SP, Patil AS, Kulkarni NS, Tiwari MS, Phirke AN, Nadar SS. Magnetic nanoflowers: a hybrid platform for enzyme immobilization. Crit Rev Biotechnol 2024; 44:795-816. [PMID: 37455411 DOI: 10.1080/07388551.2023.2230518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/04/2023] [Indexed: 07/18/2023]
Abstract
The use of organic-inorganic hybrid nanoflowers as a support material for enzyme immobilization has gained significant attention in recent years due to their high stability, ease of preparation, and enhanced catalytic activity. However, a major challenge in utilizing these hybrid nanoflowers for enzyme immobilization is the difficulty in handling and separating them due to their low density and high dispersion. To address this issue, magnetic nanoflowers have emerged as a promising alternative enzyme immobilization platform due to their easy separation, structural stability, and ability to enhance catalytic efficiency. This review focuses on different methods for designing magnetic nanoflowers, as well as future research directions. Additionally, it provides examples of enzymes immobilized in the form of magnetic nanoflowers and their applications in environmental remediation, biosensors, and food industries. Finally, the review discusses possible ways to improve the material for enhanced catalytic activity, structural stability, and scalability.
Collapse
Affiliation(s)
- Pravin D Patil
- Department of Basic Science & Humanities, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Radhika K Kelkar
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Neha P Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Pradnya V Pise
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gandhinagar, India
| | - Sadhana P Patil
- Department of Biotechnology, National Institute of Technology, Tadepalligudam, India
| | - Arundhatti S Patil
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Nishant S Kulkarni
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering (Autonomous), Kolhapur, India
| | - Manishkumar S Tiwari
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Ajay N Phirke
- Department of Chemical Engineering, SVKM'S NMIMS Mukesh Patel School of Technology Management & Engineering, Mumbai, Maharashtra, India
| | - Shamraja S Nadar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Papanikolaou A, Chatzikonstantinou AV, Fotiadou R, Tsakni A, Houhoula D, Polydera AC, Pavlidis IV, Stamatis H. A Study on the Regioselective Acetylation of Flavonoid Aglycons Catalyzed by Immobilized Lipases. Biomolecules 2024; 14:897. [PMID: 39199285 PMCID: PMC11352720 DOI: 10.3390/biom14080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to explore the capacity of immobilized lipases on the acetylation of six aglycon flavonoids, namely myricetin, quercetin, luteolin, naringenin, fisetin and morin. For this purpose, lipase B from Candida antarctica (CaLB) and lipase from Thermomyces lanuginosus (TLL) were immobilized onto the surface of ZnOFe nanoparticles derived from an aqueous olive leaf extract. Various factors affecting the conversion of substrates and the formation of monoesterified and diesterified products, such as the amount of biocatalyst and the molar ratio of the substrates and reaction solvents were investigated. Both CaLB and TLL-ZnOFe achieved 100% conversion yield of naringenin to naringenin acetate after 72 h of reaction time, while TLL-ZnOFe achieved higher conversion yields of quercetin, morin and fisetin (73, 85 and 72% respectively). Notably, CaLB-ZnOFe displayed significantly lower conversion yields for morin compared with TLL-ZnOFe. Molecular docking analysis was used to elucidate this discrepancy, and it was revealed that the position of the hydroxyl groups of the B ring on morin introduced hindrances on the active site of CaLB. Finally, selected flavonoid esters showed significantly higher antimicrobial activity compared with the original compound. This work indicated that these lipase-based nanobiocatalysts can be successfully applied to produce lipophilic derivatives of aglycon flavonoids with improved antimicrobial activity.
Collapse
Affiliation(s)
- Angelos Papanikolaou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Renia Fotiadou
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Aliki Tsakni
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Dimitra Houhoula
- Department of Food Science and Technology, University of West Attica, 12243 Athens, Greece; (A.T.); (D.H.)
| | - Angeliki C. Polydera
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece;
| | - Haralambos Stamatis
- Laboratory of Biotechnology, Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (R.F.); (A.C.P.)
| |
Collapse
|
6
|
Song HM, Kim HK. Production of octyl butyrate using psychrophilic mutant lipase from Croceibacter atlanticus LipCA lipase developed by a molecular evolution technique. Enzyme Microb Technol 2024; 173:110370. [PMID: 38043250 DOI: 10.1016/j.enzmictec.2023.110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Lipases are used to synthesize a variety of industrially useful compounds. Among them, psychrophilic lipase can be used to synthesize thermo-labile compounds at low temperatures. In this study, random mutagenesis was introduced into Antarctic Croceibacter atlanticus lipase gene using error-prone PCR, resulting in changes in its protein sequence. Through two rounds of mutagenesis and screening, we found that a mutant R1 showed an enhanced activity at low temperatures. Mutant R1 had five mutations (F43L, S48G, S49G, D141K, and K297R) and higher kcat/KM value than the wild type (WT) at 10 °C. We immobilized this enzyme on methacrylate divinylbenzene resin and used it to synthesize octyl butyrate, a flavor compound. The esterification reaction proceeded even at 10 °C. Mutant R1 synthesized the ester compound faster than the WT. To determine which amino acids were responsible for the increase of activity, site-directed mutagenesis was performed to introduce five back mutations into mutant R1. Three back mutants (L43F, G48S, G49S) showed significant decreases of activity at low temperatures, indicating that these amino acids were closely related to the increase in activity. This psychrophilic mutant R1 is expected to be used in low-temperature enzyme conversion reactions in the food industry.
Collapse
Affiliation(s)
- Ha Min Song
- Division of Biotechnology, The Catholic University of Korea, Bucheon 420-743, Republic of Korea
| | - Hyung Kwoun Kim
- Division of Biotechnology, The Catholic University of Korea, Bucheon 420-743, Republic of Korea.
| |
Collapse
|
7
|
Ortega-Requena S, Montiel C, Máximo F, Gómez M, Murcia MD, Bastida J. Esters in the Food and Cosmetic Industries: An Overview of the Reactors Used in Their Biocatalytic Synthesis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:268. [PMID: 38204120 PMCID: PMC10779758 DOI: 10.3390/ma17010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Esters are versatile compounds with a wide range of applications in various industries due to their unique properties and pleasant aromas. Conventionally, the manufacture of these compounds has relied on the chemical route. Nevertheless, this technique employs high temperatures and inorganic catalysts, resulting in undesired additional steps to purify the final product by removing solvent residues, which decreases environmental sustainability and energy efficiency. In accordance with the principles of "Green Chemistry" and the search for more environmentally friendly methods, a new alternative, the enzymatic route, has been introduced. This technique uses low temperatures and does not require the use of solvents, resulting in more environmentally friendly final products. Despite the large number of studies published on the biocatalytic synthesis of esters, little attention has been paid to the reactors used for it. Therefore, it is convenient to gather the scattered information regarding the type of reactor employed in these synthesis reactions, considering the industrial field in which the process is carried out. A comparison between the performance of the different reactor configurations will allow us to draw the appropriate conclusions regarding their suitability for each specific industrial application. This review addresses, for the first time, the above aspects, which will undoubtedly help with the correct industrial implementation of these processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Josefa Bastida
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain; (S.O.-R.); (C.M.); (F.M.); (M.G.); (M.D.M.)
| |
Collapse
|
8
|
Singh B, Jana AK. Agri-residues and agro-industrial waste substrates bioconversion by fungal cultures to biocatalyst lipase for green chemistry: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119219. [PMID: 37852078 DOI: 10.1016/j.jenvman.2023.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Huge amounts of agri-residues generated from food crops and processing are discarded in landfills, causing environmental problems. There is an urgent need to manage them with a green technological approach. Agri-residues are rich in nutrients such as proteins, lipids, sugars, minerals etc., and provide an opportunity for bioconversion into value-added products. Considering the importance of lipase as a biocatalyst for various industrial applications and its growing need for economic production, a detailed review of bioconversion of agri-residues and agro-industrial substrate for the production of lipase from fungal species from a technological perspective has been reported for the first time. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram was used for the identification and selection of articles from ScienceDirect, Google Scholar, and Scopus databases from 2010 to 2023 (July), and 108 peer-reviewed journal articles were included based on the scope of the study. The composition of agri-residues/agro-industrial wastes, fungal species, lipase production, industrial/green chemistry applications, and the economic impact of using agri-residues on lipase costs have been discussed. Bioconversion procedure, process developments, and technology gaps required to be addressed before commercialization have also been discussed. This process expects to decrease the environmental pollution from wastes, and low-cost lipase can help in the growth of the bioeconomy.
Collapse
Affiliation(s)
- Bhim Singh
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India
| | - Asim Kumar Jana
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology Jalandhar, 144011, Punjab, India.
| |
Collapse
|
9
|
Costa JP, Custódio L, Reis CP. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar Drugs 2023; 21:620. [PMID: 38132941 PMCID: PMC10744737 DOI: 10.3390/md21120620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of "blue biotechnology" have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, "blue biotechnology", together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future's cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in "blue biotechnology" and its relevance to the sustainable development of innovative cosmetics.
Collapse
Affiliation(s)
- João Pedro Costa
- Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Campus of Gambelas, Ed. 7, 8005-139 Faro, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Pedro KCNR, da Silva JVV, Cipolatti EP, Manoel EA, Campisano ISP, Henriques CA, Langone MAP. Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech 2023; 13:380. [PMID: 37900269 PMCID: PMC10600090 DOI: 10.1007/s13205-023-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
This study deals with lipase immobilization on micro- and mesoporous silica-based materials. The effects of the type of support (silica MCM-41, zeolite HZSM-5 (SAR 25), zeolite HZSM-5 (SAR 280), and the silica-aluminas Siral 10, Siral 20, and Siral 40) were investigated on the immobilization of lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML). The supports that allowed the highest immobilization efficiencies for the CALB were Siral 40 (91.4%), HZSM-5 (SAR 280) (90.6%), and MCM-41 (89.4%). Siral 20 allowed the highest immobilization efficiency for RML (97.6%), followed by HZSM-5 (SAR 25) (77.1%) and HZSM-5 (SAR 280) (62.7%). The effect of protein concentration on lipase immobilization was investigated, and the results adjusted well on the Langmuir isotherm model (R2 > 0.9). The maximum protein adsorption capacity of the support determined by the Langmuir model was equal to 10.64 and 20.97 mgprotein gsupport-1 for CALB and RML, respectively. The effects of pH (pH 7.0 and pH 11.0) and phosphate buffer solution concentration (5 and 100 mmol L-1) were also investigated on lipase immobilization. The immobilization efficiency for both lipases was similar for the different pH values. The use of 100 mmol L-1 phosphate buffer decreased the lipase immobilization efficiency. The biocatalysts (CALB-Siral 40 and RML-Siral 20) were tested in the ethyl oleate synthesis. The conversion of 61.7% was obtained at 60 °C in the reaction catalyzed by CALB-Siral 40. Both heterogeneous biocatalysts showed increased thermal stability compared with their free form. Finally, the reuse of the biocatalysts was studied. CALB-Siral 40 and RML-Siral 20 maintained about 30% of the initial conversion after 3 batches of ethyl oleate synthesis. Silica-aluminas (Siral 20 and 40) proved to be a support that allowed a high efficiency of immobilization of lipases and activity for esterification reaction.
Collapse
Affiliation(s)
- Kelly C. N. R. Pedro
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - João V. V. da Silva
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Eliane P. Cipolatti
- Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 07- Zona Rural, 23890-000 Seropédica, RJ Brasil
| | - Evelin A. Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro (UFRJ), 21941-170 Rio de Janeiro, RJ Brasil
| | - Ivone S. P. Campisano
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Cristiane A. Henriques
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Marta A. P. Langone
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro, Rua Senador Furtado, 121, 20260-100 Rio de Janeiro, RJ Brasil
| |
Collapse
|
11
|
Amari JAA, Sangiorgio S, Pargoletti E, Rabuffetti M, Zaccheria F, Usuelli F, Quaranta V, Speranza G, Cappelletti G. Chemically vs Enzymatically Synthesized Polyglycerol-Based Esters: A Comparison between Their Surfactancy. ACS OMEGA 2023; 8:26405-26413. [PMID: 37521610 PMCID: PMC10373213 DOI: 10.1021/acsomega.3c02922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/09/2023] [Indexed: 08/01/2023]
Abstract
Polyglycerol fatty acid esters (PGFAEs) are gaining interest in several industrial sectors due to their excellent surfactant properties and their wide range of hydrophilic-lipophilic balance (HLB) values. Moreover, they can be prepared from renewable resources, i.e., fatty acids and glycerol. In this study, polyglycerol-2 stearic acid esters (PG2SAEs) were synthesized by the enzymatic esterification of polyglycerol-2 (PG2) and stearic acid (SA) using the immobilized lipase Novozym 435 as a biocatalyst in a solvent-free system. Reaction conditions, i.e., temperature (80 °C), reactant ratio (1:1.8), and enzyme loading (2.7% w/w), were finely optimized; furthermore, biocatalyst recycling was studied by assessing the residual activity of the lipase after each reaction cycle, up to 20 times. The composition of the enzymatically synthesized products (E) was roughly evaluated by chromatographic methods and mass spectrometry and compared with that of the esters obtained by acid-catalyzed esterification (C). Then, the surfactant properties of the prepared polyglycerol-based surfactants were investigated by interfacial tension studies. Specifically, the emulsifying capacity and stability and the rheological behavior of O/W emulsions prepared in the presence of E were deeply investigated in comparison with those of the chemically synthesized and commercially available product C.
Collapse
Affiliation(s)
| | - Sara Sangiorgio
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Eleonora Pargoletti
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Marco Rabuffetti
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Federica Zaccheria
- CNR,
Istituto di Scienze e Tecnologie Chimiche “G. Natta”
(SCITEC), Via Golgi 19, 20133 Milan, Italy
| | - Fabio Usuelli
- Res
Novare S.r.l., via Italia
197, Int.10 c/o Centro comm. Globo, 20874 Busnago, Italy
| | - Valeria Quaranta
- Res
Novare S.r.l., via Italia
197, Int.10 c/o Centro comm. Globo, 20874 Busnago, Italy
| | - Giovanna Speranza
- Department
of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | | |
Collapse
|
12
|
Pintor A, Lavandera I, Volkov A, Gotor-Fernández V. Chemoselective Lipase-Catalyzed Synthesis of Amido Derivatives from 5-Hydroxymethylfurfurylamine. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:10284-10292. [PMID: 37476422 PMCID: PMC10354804 DOI: 10.1021/acssuschemeng.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/15/2023] [Indexed: 07/22/2023]
Abstract
The acylations of furfurylamine and 5-hydroxymethylfurfurylamine (HMFA) have been studied finding immobilized Candida antarctica lipase B (CALB) as an ideal biocatalyst. CALB was used immobilized on two different supports (Novozyme 435 and EziG-CALB), with the polymer-coated controlled porosity glass carrier material from EnginZyme being an excellent carrier to yield an active and stable enzymatic preparation for the acylation of the primary amine group. The amount of the acyl donor in the reaction was a key factor to achieve the mono- and chemoselective N-protection of HMFA with large excess of ethyl acetate leading to the formation of the N,O-diacetylated product. Thus, a series of 16 nonactivated esters were used to selectively modify the amine group of HMFA, obtaining 9 hydroxy amides under mild reaction conditions and with quantitative yields through chromatography-free transformations. The influence of substrate concentration was studied, resulting in complete conversions in all cases after 22 h (100-1000 mM). Excellent results were observed at 100 and 200 mM of HMFA, while higher concentrations led to longer reaction times and, to some extent, the formation of the diacetylated product (up to 7% after 22 h at 1 M). After this optimization, a metric analysis was performed to confirm the high sustainability of the presented process (E-factor of 1.1 excluding solvents) upon intensification of the biotransformation to 1 g at 200 mM HMFA concentration. The possibility of obtaining orthogonally protected HMFA-derived amido esters has been achieved through a clean and sequential one-pot process using EziG-CALB, which involved the use of ethyl methoxy acetate as the nonactivated ester for N-acylation and the activated vinyl acetate for O-protection.
Collapse
Affiliation(s)
- Antía Pintor
- Organic
and Inorganic Chemistry Department, University
of Oviedo, Avenida Julián Clavería 8, Oviedo 33006, Spain
- EnginZyme
AB, Tomtebodavägen
6, 171 65 Solna, Sweden
| | - Iván Lavandera
- Organic
and Inorganic Chemistry Department, University
of Oviedo, Avenida Julián Clavería 8, Oviedo 33006, Spain
| | - Alexey Volkov
- EnginZyme
AB, Tomtebodavägen
6, 171 65 Solna, Sweden
| | - Vicente Gotor-Fernández
- Organic
and Inorganic Chemistry Department, University
of Oviedo, Avenida Julián Clavería 8, Oviedo 33006, Spain
| |
Collapse
|
13
|
Balogh-Weiser D, Molnár A, Tóth GD, Koplányi G, Szemes J, Decsi B, Katona G, Salamah M, Ender F, Kovács A, Berkó S, Budai-Szűcs M, Balogh GT. Combined Nanofibrous Face Mask: Co-Formulation of Lipases and Antibiotic Agent by Electrospinning Technique. Pharmaceutics 2023; 15:pharmaceutics15041174. [PMID: 37111659 PMCID: PMC10143802 DOI: 10.3390/pharmaceutics15041174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The application of enzyme-based therapies has received significant attention in modern drug development. Lipases are one of the most versatile enzymes that can be used as therapeutic agents in basic skin care and medical treatment related to excessive sebum production, acne, and inflammation. The traditional formulations available for skin treatment, such as creams, ointments or gels, are widely applied; however, their use is not always accompanied by good drug penetration properties, stability, or patient adherence. Nanoformulated drugs offer the possibility of combining enzymatic and small molecule formulations, making them a new and exciting alternative in this field. In this study polymeric nanofibrous matrices made of polyvinylpyrrolidone and polylactic acid were developed, entrapping lipases from Candida rugosa and Rizomucor miehei and antibiotic compound nadifloxacin. The effect of the type of polymers and lipases were investigated, and the nanofiber formation process was optimized to provide a promising alternative in topical treatment. Our experiments have shown that entrapment by electrospinning induced two orders of magnitude increase in the specific enzyme activity of lipases. Permeability investigations indicated that all lipase-loaded nanofibrous masks were capable of delivering nadifloxacin to the human epidermis, confirming the viability of electrospinning as a formulation method for topical skin medications.
Collapse
Affiliation(s)
- Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Alexandra Molnár
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gergő D Tóth
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Koplányi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - József Szemes
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Balázs Decsi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ferenc Ender
- Department of Electron Devices, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
- SpinSplit LLC, Vend u. 17, H-1025 Budapest, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - György T Balogh
- Istitute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
14
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|
16
|
Snoch W, Jarek E, Milivojevic D, Nikodinovic-Runic J, Guzik M. Physicochemical studies of novel sugar fatty acid esters based on ( R)-3-hydroxylated acids derived from bacterial polyhydroxyalkanoates and their potential environmental impact. Front Bioeng Biotechnol 2023; 11:1112053. [PMID: 36845180 PMCID: PMC9947713 DOI: 10.3389/fbioe.2023.1112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Sugar fatty acids esters are popular compounds widely used in both the nutritional, cosmetic and pharmaceutical industries due to their amphiphilic structure and consequent ability to reduce the surface tension of solutions. Furthermore, an important aspect in the implementation of any additives and formulations is their environmental impact. The properties of the esters depend on the type of sugar used and the hydrophobic component. In this work, selected physicochemical properties of new sugar esters based on lactose, glucose and galactose and hydroxy acids derived from bacterial polyhydroxyalkanoates are shown for the first time. Values for critical aggregation concentration, surface activity and pH make it possible that these esters could compete with other commercially used esters of similar chemical structure. The investigated compounds showed moderate emulsion stabilization abilities presented on the example of water-oil systems containing squalene and body oil. Their potential environmental impact appears to be low, as the esters are not toxic to Caenorhabditis elegans even at concentrations much higher than the critical aggregation concentration.
Collapse
Affiliation(s)
- Wojciech Snoch
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Jarek
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Maciej Guzik
- Jerzy Haber Institute of Catalysis, Surface Chemistry Polish Academy of Sciences, Kraków, Poland,*Correspondence: Maciej Guzik,
| |
Collapse
|
17
|
Butyl-esters synthesis from palm fatty acid distillate catalyzed by immobilized lipases in solvent-free system – optimization using a simplified method (SER). Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
18
|
Technical–Economic Assessment—The Missing Piece for Increasing the Attractiveness of Applied Biocatalysis in Ester Syntheses? Catalysts 2023. [DOI: 10.3390/catal13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although the current literature describes significant advances in biocatalytic ester syntheses, few industrial plants worldwide are currently producing esters using biocatalysts. Green and sustainable esters can be obtained via a biocatalytic route, including some operational advantages over conventional syntheses. An analysis of the literature revealed that most articles neglect or describe the economic issues generically, without quantitative information. Scaling-up studies are also scarce in this field. The main disadvantage of biocatalysis using immobilized lipases—their cost—has not been studied at the same level of depth as other technical aspects. This gap in the literature is less intense in enzymatic biodiesel production studies and, despite the lack of a strict correlation, enzymatic biodiesel commercial plants are relatively more common. Preliminary techno-economic assessments are crucial to identify and circumvent the economic drawbacks of biocatalytic ester syntheses, opening the way to broader application of this technology in a large-scale context.
Collapse
|
19
|
Qiao J, Yang D, Feng Y, Wei W, Liu X, Zhang Y, Zheng J, Ying X. Engineering a Bacillus subtilis esterase for selective hydrolysis of d, l-menthyl acetate in an organic solvent-free system †. RSC Adv 2023; 13:10468-10475. [PMID: 37021103 PMCID: PMC10068921 DOI: 10.1039/d3ra00490b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses. However, the activity and l-enantioselectivity of the biocatalyst are not sufficient for meeting the industrial requirements. Herein, a highly active para-nitrobenzyl esterase from Bacillus subtilis 168 (pnbA-BS) was cloned and then engineered to enhance its l-enantioselectivity. On the basis of the strategy tailoring the steric exclusion effect and structural flexibility of the region adjacent to the substrate, the substitution of Ala400 to Pro caused a remarkable improvement in the E value from 1.0 to 466.6. The variant A400P was purified and further confirmed with strict l-enantioselectivity in the selective hydrolysis of d, l-menthyl acetate, whereas the improved l-enantioselectivity caused decreased activity. To develop an efficient, easy-to-use, and green methodology, organic solvent was omitted and substrate constant feeding was integrated into the whole-cell catalyzed system. During the catalytic process, the selective hydrolysis of 1.0 M d, l-menthyl acetate in 14 h offered a conversion of 48.9%, e.e.p value of >99%, and space-time yield of 160.52 g (l d)−1. Esterase/lipase-catalyzed selective hydrolysis of d, l-menthyl esters has become one of the promising approaches for producing l-menthol, one of the most important flavoring chemicals with extensive uses.![]()
Collapse
Affiliation(s)
- Jingjing Qiao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Duxia Yang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yingting Feng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Wan Wei
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Xun Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Yinjun Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of TechnologyHangzhou 310014China
| | | |
Collapse
|
20
|
Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK. Industrial applications of fungal lipases: a review. Front Microbiol 2023; 14:1142536. [PMID: 37187537 PMCID: PMC10175645 DOI: 10.3389/fmicb.2023.1142536] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Fungal lipases (triacylglycerol acyl hydrolases EC 3.1.1.3) are significant industrial enzymes and have several applications in a number of industries and fields. Fungal lipases are found in several species of fungi and yeast. These enzymes are carboxylic acid esterases, categorized under the serine hydrolase family, and do not require any cofactor during the catalyzing of the reactions. It was also noticed that processes including the extraction and purification of lipases from fungi are comparatively easier and cheaper than other sources of lipases. In addition, fungal lipases have been classified into three chief classes, namely, GX, GGGX, and Y. Fungal lipases have applications not only in the hydrolysis of fats and oils (triglycerides) but are also involved in synthetic reactions such as esterification, acidolysis, alcoholysis, interesterification, and aminolysis. The production and activity of fungal lipases are highly affected by the carbon source, nitrogen source, temperature, pH, metal ions, surfactants, and moisture content. Therefore, fungal lipases have several industrial and biotechnological applications in many fields such as biodiesel production, ester synthesis, production of biodegradable biopolymers, formulations of cosmetics and personal care products, detergent manufacturing, degreasing of leather, pulp and paper production, textile industry, biosensor development, and drug formulations and as a diagnostic tool in the medical sector, biodegradation of esters, and bioremediation of wastewater. The immobilization of fungal lipases onto different carriers also helps in improving the catalytic activities and efficiencies of lipases by increasing thermal and ionic stability (in organic solvents, high pH, and temperature), being easy to recycle, and inducing the volume-specific loading of the enzyme onto the support, and thus, these features have proved to be appropriate for use as biocatalysts in different sectors.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vinita Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vimal Kumar Dubey
- College of Agriculture Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Pankaj Kumar Arora
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- *Correspondence: Pankaj Kumar Arora
| |
Collapse
|
21
|
Ishiguro T, Obata A, Nagata K, Kasuga T, Mizuno T. Core-shell fibremats comprising a poly(AM/DAAM)/ADH nanofibre core and nylon6 shell layer are an attractive immobilization platform for constructing immobilised enzymes. RSC Adv 2022; 12:34931-34940. [PMID: 36540265 PMCID: PMC9727829 DOI: 10.1039/d2ra06620c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 10/13/2023] Open
Abstract
Core-shell fibremats, comprising poly(acrylamide)-co-poly(diacetone-acrylamide)/adipic dihydrazide [poly(AM/DAAM)/ADH] core-nanofibres and hydrophobic polymer shell layers, are a new class of platforms for constructing various immobilised enzymes. In this study, to elucidate the impacts of the shell-layer material on fibremat properties and enzymatic activities, we synthesised core-shell fibremats with shell layers comprising nylon6 or acetyl cellulose (AcCel) instead of poly(ε-caprolactone) (PCL), as in our previous study. Transmission and scanning electron microscopy images revealed that the lactase-encapsulated poly(AM/DAAM)/ADH-nylon6 and -AcCel fibremats were both constructed like the poly(AM/DAAM)/ADH-PCL one. Leakage measurements of the beforehand loaded molecules inside the core-nanofibres revealed that both fibremats exhibited efficient permeability for low-molecular-weight molecules and stable retention of enzyme molecules inside the core-nanofibres. Meanwhile, the fibremats' mechanical properties considerably depended on the choice of shell-layer material. The thermal analyses of the lactase-encapsulated fibremats revealed residual water inside the core nanofibres. The core-shell fibremats fabricated with a nylon6 or PCL shell exhibited excellent enzymatic activities (102 and 114%, respectively, compared to that of free lactase), superior to that of the same amount of free enzyme in a buffer. Furthermore, both core-shell fibremats retained over 95% of their initial enzymatic activities, even after they were re-used 10 times.
Collapse
Affiliation(s)
- Taira Ishiguro
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Akiko Obata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Toshihiro Kasuga
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho, Showa-ku Nagoya Aichi 466-8555 Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology Gokiso-cho Showa-ku Nagoya Aichi 466-8555 Japan
| |
Collapse
|
22
|
Cross-linked lipase particles with improved activity; application of a non-toxic linker for cross-linking. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Ge R, Zhang P, Dong X, Li Y, Sun Z, Zeng Y, Chen B, Zhang W. Photobiocatalytic Decarboxylation for the Synthesis of Fatty Epoxides from Renewable Fatty Acids. CHEMSUSCHEM 2022; 15:e202201275. [PMID: 36036214 DOI: 10.1002/cssc.202201275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Fatty epoxides are unique building blocks in organic transformations and materials production; however, their synthetic methodologies are currently not accessible from renewable fatty acids. Herein, a photoenzymatic decarboxylation of epoxy fatty acids into fatty epoxides was demonstrated using fatty acid photodecarboxylase (FAP) from Chlorella variabilis NC64A (CvFAP). Various fatty epoxides were synthesized in excellent selectivity by wild-type CvFAP. The decarboxylation reaction was also achieved with four new FAP homologues, potentially suggesting a broad availability of the biocatalysts for this challenging decarboxylation reaction. By combining CvFAP with lipase and peroxygenase, a multienzymatic cascade to transform oleic acid and its triglyceride into the corresponding fatty epoxides was established. The obtained fatty epoxides were further converted into rather unusual fatty compounds including diol, alcohol, ether, and chain-shortened carboxylic acids. The present photobiocatalytic synthesis of fatty epoxides from natural starting materials excels by its intrinsic selectivity, mild conditions, and independence of nicotinamide cofactors.
Collapse
Affiliation(s)
- Ran Ge
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Pengpeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Xuetian Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Yuanying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Yongyi Zeng
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519080, P. R. China
| | - Bishuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519080, P. R. China
| | - Wuyuan Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
24
|
Lipase and Its Unique Selectivity: A Mini-Review. J CHEM-NY 2022. [DOI: 10.1155/2022/7609019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contrary to other solid catalysts, enzymes facilitate more sophisticated chemical reactions because most enzymes specifically interact with substrates and release selective products. Lipases (triacylglycerol hydrolase, EC 3.1.1.3), which can catalyze the cleavage and formation of various acyl compounds, are one of the best examples of enzymes with a unique substrate selectivity. There are already several commercialized lipases that have become important tools for various lipid-related studies, although there is still a need to discover novel lipases with unique substrate selectivity to facilitate more innovative reactions in human applications such as household care, cosmetics, foods, and pharmaceuticals. In this mini-review, we focus on concisely demonstrating not only the general information of lipases but also their substate selectivities: typoselectivity, regioselectivity, and stereoselectivity. We highlight the essential studies on selective lipases in terms of enzymology. Furthermore, we introduce several examples of analysis methodology and experimental requirements to determine each selectivity of lipases. This work would stress the importance of integrating our understanding of lipase chemistry to make further advances in the relevant fields.
Collapse
|
25
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
26
|
Todea A, Fortuna S, Ebert C, Asaro F, Tomada S, Cespugli M, Hollan F, Gardossi L. Rational Guidelines for the Two-Step Scalability of Enzymatic Polycondensation: Experimental and Computational Optimization of the Enzymatic Synthesis of Poly(glycerolazelate). CHEMSUSCHEM 2022; 15:e202102657. [PMID: 35199480 PMCID: PMC9320960 DOI: 10.1002/cssc.202102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The lipase-catalyzed polycondensation of azelaic acid and glycerol is investigated according to a Design-of-Experiment approach that helps to elucidate the effect of experimental variables on monomer conversion, Mn and regioselectivity of acylation of glycerol. Chemometric analysis shows that after 24 h the reaction proceeds regardless of the presence of the enzyme. Accordingly, the biocatalyst was removed after a first step of synthesis and the chain elongation continued at 80 °C. That allowed the removal of the biocatalyst and the preservation of its activity: pre-requites for efficient applicability at industrial scale. The experimental study, combined with docking-based computational analysis, provides rational guidelines for the optimization of the regioselective acylation of glycerol. The process is scaled up to 73.5 g of monomer. The novelty of the present study is the rigorous control of the reaction conditions and of the integrity of the immobilized biocatalyst, which serve to avoiding any interference of free enzyme or fines released in the reaction mixture. The quantitative analysis of the effect of experimental conditions and the overcoming of some major technical bottlenecks for the scalability of enzymatic polycondensation opens new scenarios for industrial exploitation.
Collapse
Affiliation(s)
- Anamaria Todea
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Sara Fortuna
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
- Current address: CONCEPT Lab, Istituto Italiano di Tecnologia (IIT)I-16152GenovaItaly
| | - Cynthia Ebert
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Stefano Tomada
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Marco Cespugli
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Fabio Hollan
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| | - Lucia Gardossi
- Department of Chemical and Pharmaceutical SciencesInstitution University of TriesteAddress 1 Via L. Giorgieri 134127TriesteItaly
| |
Collapse
|
27
|
Nagy F, Sánta-Bell E, Jipa M, Hornyánszky G, Szilágyi A, László K, Katona G, Paizs C, Poppe L, Balogh-Weiser D. Cross-Linked Enzyme-Adhered Nanoparticles (CLEANs) for Continuous-Flow Bioproduction. CHEMSUSCHEM 2022; 15:e202102284. [PMID: 34913608 DOI: 10.1002/cssc.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.
Collapse
Affiliation(s)
- Flóra Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Evelin Sánta-Bell
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Monica Jipa
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - András Szilágyi
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Krisztina László
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gabriel Katona
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - Csaba Paizs
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
| | - László Poppe
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Biocatalysis and Biotransformation Research Center, Babeş-Bolyai University of Cluj-Napoca, Arany János str. 11, 400028, Cluj-Napoca, Romania
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
- SynBiocat LLC, Szilasliget u 3, 1072, Budapest, Hungary
| |
Collapse
|
28
|
Abstract
Lipases are versatile enzymes widely used in the pharmaceutical, cosmetic, and food industries. They are green biocatalysts with a high potential for industrial use compared to traditional chemical methods. In recent years, lipases have been used to synthesize a wide variety of molecules of industrial interest, and extraordinary results have been reported. In this sense, this review describes the important role of lipases in the synthesis of phytosterol esters, which have attracted the scientific community’s attention due to their beneficial effects on health. A systematic search for articles and patents published in the last 20 years with the terms “phytosterol AND esters AND lipase” was carried out using the Scopus, Web of Science, Scielo, and Google Scholar databases, and the results showed that Candida rugosa lipases are the most relevant biocatalysts for the production of phytosterol esters, being used in more than 50% of the studies. The optimal temperature and time for the enzymatic synthesis of phytosterol esters mainly ranged from 30 to 101 °C and from 1 to 72 h. The esterification yield was greater than 90% for most analyzed studies. Therefore, this manuscript presents the new technological approaches and the gaps that need to be filled by future studies so that the enzymatic synthesis of phytosterol esters is widely developed.
Collapse
|
29
|
Parveen A, Devika R. Fibrinolytic Enzyme - An Overview. Curr Pharm Biotechnol 2022; 23:1336-1345. [PMID: 34983344 DOI: 10.2174/1389201023666220104143113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases, like coronary heart disease or artery disorders (arteriosclerosis, including artery solidification), heart failure (myocardial infarction), arrhythmias, congestive heart condition, stroke, elevated vital signs (hypertension), rheumatic heart disorder, and other circulatory system dysfunctions are the most common causes of death worldwide. Cardiovascular disorders are treated with stenting, coronary bypass surgery grafting, anticoagulants, antiplatelet agents, and other pharmacological and surgical procedures; however, these have limitations due to their adverse effects. Fibrinolytic agents degrade fibrin through enzymatic and biochemical processes. There are various enzymes that are currently used as a treatment for CVDs, like Streptokinase, Nattokinase, Staphylokinase, Urokinase, etc. These enzymes are derived from various sources like bacteria, fungi, algae, marine organisms, plants, snakes, and other organisms. This review deals with the fibrinolytic enzymes, their mechanisms, sources, and their therapeutic potential.
Collapse
Affiliation(s)
- Parveen A
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| | - Devika R
- Department of Biotechnology, Biotechnology, Aarupadai Institute of Technology, Vinayaka Missions University, Chennai, India
| |
Collapse
|
30
|
Vilas Bôas RN, de Castro HF. A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases. Biotechnol Bioeng 2021; 119:725-742. [PMID: 34958126 DOI: 10.1002/bit.28024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
The esterification reactions catalyzed by lipases are among the most significant biochemical processes of industrial relevance. The lipases have the function of versatility by catalyzing a diversity of reactions with extreme ease, obtaining quality products with high yield. Therefore, enzyme-catalyzed esterification has gained increasing attention in many applications, due to the importance of derived products. More specifically, lipase-catalyzed esterification reactions have attracted interest in research over the past decade, due to the increased use of organic esters in the chemical and biotechnology industry. These esters can be obtained by three techniques: extraction from natural sources, chemical and enzymatic syntheses. Biotechnological processes have offered several advantages and are shown as a competitive alternative to chemical methods due to high catalytic efficiency, mild operating conditions, and selectivity of natural catalysts. These an industrial point of view, reactions catalyzed by enzymes are the most economical approach to achieve green products with no toxicity and no harm to human health. Thus, this review presents a descriptive evaluation of the trends and perspectives applied to enzymatic esterification, mainly for the synthesis of esters with different properties, such as aromatics, emulsifiers, and lubricants using the esterification process. An emphasis is given to essential factors, which affect the lipase-catalyzed esterification reaction. In which, the parameters dependent on the lipase source, a form of the biocatalyst (free or immobilized), the polarity of the reaction medium, the molar ratio between alcohol and acid, among other variables, are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Renata N Vilas Bôas
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Heizir F de Castro
- Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
31
|
Effect of oil–water interface and payload-DNA interactions on payload-encapsulated DNA nanogels. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Todea A, Deganutti C, Spennato M, Asaro F, Zingone G, Milizia T, Gardossi L. Azelaic Acid: A Bio-Based Building Block for Biodegradable Polymers. Polymers (Basel) 2021; 13:4091. [PMID: 34883592 PMCID: PMC8659112 DOI: 10.3390/polym13234091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Azelaic acid is a dicarboxylic acid containing nine C atoms, industrially obtained from oleic acid. Besides its important properties and pharmacological applications, as an individual compound, azelaic acid has proved to be a valuable bio-based monomer for the synthesis of biodegradable and sustainable polymers, plasticizers and lubricants. This review discusses the studies and the state of the art in the field of the production of azelaic acid from oleic acid, the chemical and enzymatic synthesis of bio-based oligo and polyester and their properties, including biodegradability and biocompostability.
Collapse
Affiliation(s)
- Anamaria Todea
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Caterina Deganutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Mariachiara Spennato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | - Guglielmo Zingone
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| | | | - Lucia Gardossi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (A.T.); (C.D.); (M.S.); (F.A.); (G.Z.)
| |
Collapse
|
33
|
Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts 2021. [DOI: 10.3390/catal11111357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.
Collapse
|
34
|
Ingenbosch KN, Vieyto-Nuñez JC, Ruiz-Blanco YB, Mayer C, Hoffmann-Jacobsen K, Sanchez-Garcia E. Effect of Organic Solvents on the Structure and Activity of a Minimal Lipase. J Org Chem 2021; 87:1669-1678. [PMID: 34706196 DOI: 10.1021/acs.joc.1c01136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipases are ubiquitously used in chemo-enzymatic synthesis and industrial applications. Nevertheless, the modulation of the activity of lipases by organic solvents still is not fully understood at the molecular level. We systematically investigated the activity and structure of lipase A from Bacillus subtilis in binary water-organic solvent mixtures of dimethyl sulfoxide (DMSO), acetonitrile (ACN), and isopropyl alcohol (IPA) using activity assays, fluorescence spectroscopy, molecular dynamics (MD) simulations, and FRET/MD analysis. The enzymatic activity strongly depended on the type and amount of organic solvent in the reaction media. Whereas IPA and ACN reduced the activity of the enzyme, small concentrations of DMSO led to lipase activation via an uncompetitive mechanism. DMSO molecules did not directly interfere with the binding of the substrate in the active site, contrary to what is known for other solvents and enzymes. We propose that the His156-Asp133 interaction, the binding of organic molecules to the active site, and the water accessibility of the substrate are key factors modulating the catalytic activity. Furthermore, we rationalized the role of solvent descriptors on the regulation of enzymatic activity in mixtures with low concentrations of the organic molecule, with prospective implications for the optimization of biocatalytic processes via solvent tuning.
Collapse
Affiliation(s)
- Kim N Ingenbosch
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstrasse 32, 47798 Krefeld, Germany.,Institute for Physical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Julio Cesar Vieyto-Nuñez
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, University Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and Institute for Coatings and Surface Chemistry, Niederrhein University of Applied Sciences, Adlerstrasse 32, 47798 Krefeld, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| |
Collapse
|
35
|
de Sousa RR, Pinto MCC, Aguieiras ECG, Cipolatti EP, Manoel EA, da Silva AS, Pinto JC, Freire DMG, Ferreira-Leitão VS. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst Eng 2021; 45:131-145. [PMID: 34605995 DOI: 10.1007/s00449-021-02646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
A suitable immobilized lipase for esters syntheses should be selected considering not only its cost. We evaluated five biocatalysts in syntheses of octyl caprylate, octyl caprate, and octyl laurate, in which conversions higher than 90% were achieved. Novozym® 435 and non-commercial preparations (including a dry fermented solid) were selected for short-term octyl laurate syntheses using different biocatalysts loadings. By increasing the biocatalyst's loading the lipase's reusability also raised, but without strict proportionality, which resulted in a convergence between the lowest biocatalyst loading and the lowest cost per batch. The use of a dry fermented solid was cost-effective, even using loadings as high as 20.0% wt/wt due to its low obtaining cost, although exhibiting low productiveness. The combination of biocatalyst's cost, esterification activity, stability, and reusability represents proper criteria for the choice. This kind of assessment may help to establish quantitative goals to improve or to develop new biocatalysts.
Collapse
Affiliation(s)
- Ronaldo Rodrigues de Sousa
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Martina Costa Cerqueira Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Erika Cristina Gonçalves Aguieiras
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Federal University of Rio de Janeiro Campus, UFRJ - Duque de Caxias, Prof. Geraldo Cidade, Duque de Caxias, RJ, 25240-005, Brazil
| | - Eliane Pereira Cipolatti
- Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.,Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Evelin Andrade Manoel
- Pharmaceutical Biotechnology Program, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Ayla Sant'Ana da Silva
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil.,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - José Carlos Pinto
- Federal University of Rio de Janeiro, Chemical Engineering Program, COPPE, Rio de Janeiro, RJ, 21941-972, Brazil
| | | | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, Ministry of Science, Technology, and Innovations, National Institute of Technology, Rio de Janeiro, RJ, 20081-312, Brazil. .,Department of Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
36
|
Decyl oleate production by enzymatic esterification using Geotrichum candidum lipase immobilized on a support prepared from rice husk. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Adetunji AI, Olaniran AO. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 2021; 52:1257-1269. [PMID: 33904151 PMCID: PMC8324693 DOI: 10.1007/s42770-021-00503-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However, lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review provides insights into strategies for production of microbial lipases for potential biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa.
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville campus), Private Bag X54001, Durban, 4000, Republic of South Africa
| |
Collapse
|
38
|
Industrial biotransformations catalyzed by microbial lipases: screening platform and commercial aspects. Folia Microbiol (Praha) 2021; 66:1009-1022. [PMID: 34318446 DOI: 10.1007/s12223-021-00900-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
The successfulness of a lipase-catalyzed industrial process depends on a proper lipase selection. In this work, an alternative screening platform for industrially important biotransformations catalyzed by microbial lipases was proposed. Thus, the reactivity of sixty lipase activities from spore-forming microorganisms towards hydrolytic and transesterification reactions by using p-nitrophenyl palmitate as a chromogenic acyl donor substrate was explored. Only three biocatalysts were capable of catalyzing all reactions tested. Fourteen biocatalysts did not show hydrolytic activity at all; however, they displayed transesterification activities using ethanol, starch, low-methoxyl (LM) pectin, high-methoxyl (HM) pectin, or vitamin C as acyl acceptors. Using heat-treated biocatalysts, hydrolytic activities were not highly correlated with the corresponding transesterification activities using ethanol (r = -0.058, p = 0.660), starch (r = 0.431, p = 0.001), LM pectin (r = -0.010, p = 0.938), HM pectin (r = 0.167, p = 0.202), and vitamin C (r = -0.048, p = 0.716) as acyl acceptor. In addition, to the best of our knowledge, several transesterification activities produced from microorganisms of the genus Bacillus, Brevibacillus, Lysinibacillus, Geobacillus, or Sporosarcina were reported for first time. Finally, the global lipase market was presented and segmented by date, application, geography and player highlighting the commercial contribution of microbial lipases.
Collapse
|
39
|
Rational Design Method Based on Techno-Economic Principles for Integration of Organic/Organic Pervaporation with Lipase Catalyzed Transesterification. MEMBRANES 2021; 11:membranes11060407. [PMID: 34071677 PMCID: PMC8229130 DOI: 10.3390/membranes11060407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022]
Abstract
An engineering foundation is developed in this manuscript to allow the rational design of enzymatic transesterifications integrated with organic–organic pervaporation for the removal of methanol. In the first part, enzyme kinetics are elucidated for the solventless transesterification of two monoterpene alcohols with methyl acetate catalyzed by Novozym 435. Nonlinear regression revealed that three parameters (enzyme loading, forward and backward second-order reaction rate) sufficed to describe the entire conversion as a function of time. In the second part, a mathematical model for acetate ester production, integrated with organic–organic pervaporation, was developed based on a set of ordinary differential equations. To this end, empirical formulae for the pervaporation performance (of a PERVAP 2255-30 membrane and a standard HybSi® membrane) were established, relating methyl acetate and methanol flux to the methanol concentration in the reactor. The resulting digital twin, “PervApp”, allows us to study the influence of the key design parameters “enzyme loading” and “membrane surface” on, e.g., catalyst productivity. Finally, a techno-economic assessment is made for an annual production of 100 tons of geranyl acetate. The described methodology allows producers to shift from laborious, expensive and often disappointing trial-and-error approaches to the rational design of such integrated units.
Collapse
|
40
|
Broadening the Catalytic Role of Enzymes in Cosmeceutical Sector: A Robust Tool from White Biotechnology. Catal Letters 2021. [DOI: 10.1007/s10562-021-03678-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
41
|
Delavault A, Opochenska O, Laneque L, Soergel H, Muhle-Goll C, Ochsenreither K, Syldatk C. Lipase-Catalyzed Production of Sorbitol Laurate in a "2-in-1" Deep Eutectic System: Factors Affecting the Synthesis and Scalability. Molecules 2021; 26:2759. [PMID: 34067126 PMCID: PMC8124474 DOI: 10.3390/molecules26092759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Surfactants, such as glycolipids, are specialty compounds that can be encountered daily in cleaning agents, pharmaceuticals or even in food. Due to their wide range of applications and, more notably, their presence in hygiene products, the demand is continuously increasing worldwide. The established chemical synthesis of glycolipids presents several disadvantages, such as lack of specificity and selectivity. Moreover, the solubility of polyols, such as sugars or sugar alcohols, in organic solvents is rather low. The enzymatic synthesis of these compounds is, however, possible in nearly water-free media using inexpensive and renewable building blocks. Using lipases, ester formation can be achieved under mild conditions. We propose, herein, a "2-in-1" system that overcomes solubility problems, as a Deep Eutectic System (DES) made of sorbitol and choline chloride replaces either a purely organic or aqueous medium. For the first time, 16 commercially available lipase formulations were compared, and the factors affecting the conversion were investigated to optimize this process, owing to a newly developed High-Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) method for quantification. Thus, using 50 g/L of lipase formulation Novozym 435® at 50 °C, the optimized synthesis of sorbitol laurate (SL) allowed to achieve 28% molar conversion of 0.5 M of vinyl laurate to its sugar alcohol monoester when the DES contained 5 wt.% water. After 48h, the de novo synthesized glycolipid was separated from the media by liquid-liquid extraction, purified by flash-chromatography and characterized thoroughly by one- and two-dimensional Nuclear Magnetic Resonance (NMR) experiments combined to Mass Spectrometry (MS). In completion, we provide initial proof of scalability for this process. Using a 2.5 L stirred tank reactor (STR) allowed a batch production reaching 25 g/L in a highly viscous two-phase system.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Oleksandra Opochenska
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Laura Laneque
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Hannah Soergel
- Institute for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.S.); (C.M.-G.)
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4 and Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany; (H.S.); (C.M.-G.)
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.O.); (L.L.); (K.O.); (C.S.)
| |
Collapse
|
42
|
Tsouko E, Papadaki A, Papanikolaou S, Danezis GP, Georgiou CA, Freire DM, Koutinas A. Enzymatic production of isopropyl and 2-ethylhexyl esters using γ-linolenic acid rich fungal oil produced from spent sulphite liquor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Chen Z, Xie HY, Chen GE, Xu SJ, Xu ZL, Li YJ, Mao HF. Self-adhesive PMIA membranes with virus-like silica immobilized lipase for efficient biological aging of Chinese liquor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Arana-Peña S, Rios NS, Carballares D, Gonçalves LR, Fernandez-Lafuente R. Immobilization of lipases via interfacial activation on hydrophobic supports: Production of biocatalysts libraries by altering the immobilization conditions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Savickaite A, Sadauskas M, Gudiukaite R. Immobilized GDEst-95, GDEst-lip and GD-95RM lipolytic enzymes for continuous flow hydrolysis and transesterification reactions. Int J Biol Macromol 2021; 173:421-434. [PMID: 33493559 DOI: 10.1016/j.ijbiomac.2021.01.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022]
Abstract
In this study lipolytic biocatalysts GD-95RM, GDEst-95 and GDEst-lip were immobilized by encapsulation in calcium alginate beads. All three immobilized biocatalysts demonstrated significantly increased thermal stability at 60-70 °C temperatures and the activity of GD-95RM lipase increased by 50% at 70-80 °C following the immobilization. Moreover, encapsulated GDEst-95 esterase retained higher than 50% lipolytic activity after 3 months of incubation with butanol (25%) and ethanol (50%); GDEst-lip enzyme possessed 50% activity after 2 months of treatment with ethanol (25%) and methanol (25%); and GD-95RM lipase displayed higher that 50% activity after two-week incubation with methanol (50%). All three immobilized enzymes displayed long-term storage capability (>50% activity) at least until 3 months at 4 °C. It was also detected that immobilized GD-95RM and GDEst-lip can perform flow hydrolysis of both avocado oil and p-NP dodecanoate in prototype packed-bed column reactor. The analysis of continuous transesterification of avocado or sunflower oil with ethanol or methanol as substrates confirmed that encapsulated GD-95RM and GDEst-lip enzymes is a useful approach to produce fatty acid alkyl esters.
Collapse
Affiliation(s)
- Agne Savickaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Mikas Sadauskas
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania
| | - Renata Gudiukaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis avenue 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
46
|
Molina-Gutiérrez M, Rodríguez-Sánchez L, Doñoro C, Martínez MJ, Prieto A. Sustainable and Green Synthesis of Stanol Esters from Oil Wastes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:286-293. [PMID: 33375783 DOI: 10.1021/acs.jafc.0c06581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The recombinant lipase ofOphiostoma piceae (OPEr) is characterized by its prominent sterol esterase activity. The protein was immobilized on magnetic nanoparticles, giving four enzyme variants that have been tested in solvent-free transesterification of methyl oleate and sitostanol. The yields of stanol esters reached 85%, and the catalysts can be reused. Stanol esters were also obtained in a two-step cascade reaction; a mixture of fatty acid methyl esters was enzymatically synthesized from cooking oil wastes and then used for stanol transesterification. An 85% conversion was achieved in 2 h from the second cycle onward, maintaining the activity over 5 cycles. The biocatalysts can be safely used since they don't release toxic compounds for HeLa and A549 cell lines. These procedures comply with the principles of green chemistry and contribute to the sustainable production of these nutraceuticals from secondary raw materials, like the lipid fraction from industrial or agricultural residues.
Collapse
Affiliation(s)
- María Molina-Gutiérrez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Leonor Rodríguez-Sánchez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Doñoro
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - M Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
47
|
Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS. Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00696g] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Esters are a highly relevant class of compounds in the industrial context, and biocatalysis applied to ester syntheses is already a reality for some chemical companies.
Collapse
Affiliation(s)
- Ronaldo Rodrigues Sousa
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
| | - Ayla Sant'Ana Silva
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Roberto Fernandez-Lafuente
- Biocatalysis Department, ICP-CSIC, Campus UAM-CSIC, Madrid 28049, Spain
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Viridiana Santana Ferreira-Leitão
- Biocatalysis Laboratory, National Institute of Technology, Ministry of Science, Technology, and Innovations, 20081-312, Rio de Janeiro, RJ, Brazil
- Federal University of Rio de Janeiro, Department of Biochemistry, 21941-909, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
48
|
Sheldon RA, Basso A, Brady D. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem Soc Rev 2021; 50:5850-5862. [DOI: 10.1039/d1cs00015b] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This tutorial review focuses on recent advances in technologies for enzyme immobilisation, enabling their cost-effective use in the bio-based economy and continuous processing in general.
Collapse
Affiliation(s)
- Roger A. Sheldon
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg
- South Africa
| | | | - Dean Brady
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg
- South Africa
| |
Collapse
|
49
|
Saikia K, Rathankumar AK, Vaithyanathan VK, Cabana H, Vaidyanathan VK. Preparation of highly diffusible porous cross-linked lipase B from Candida antarctica conjugates: Advances in mass transfer and application in transesterification of 5-Hydroxymethylfurfural. Int J Biol Macromol 2020; 170:583-592. [PMID: 33385453 DOI: 10.1016/j.ijbiomac.2020.12.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
The present work pronounces the three phase partitioning (TPP)-facilitated preparation of porous cross-linked Candida antarctica lipase B (CaLB) aggregates (pCLEAs) for 5-Hydroxymethylfurfural (HMF) esters synthesis. CLEAs and pCLEAs of CaLB were prepared with eupergit as the support under the optimized conditions of pH 8.0, eupergit/protein ratio of 3.0:1.0, 50 mM cross-linker concentration and 3.3 mg/mL BSA concentration in 4 h. The optimum starch concentration for pCLEAs was 0.20%, m/v. The maximum biocatalytic load was 650 U/g (CLEAs) and 721 U/g (pCLEAs), and the immobilized biocatalysts were stable over a pH range of 6.0-9.0 and temperature range of (40-60)°C. The BET surface area of CLEAs and pCLEAs were 21.3 and 29.1 m2/g, respectively, and the catalytic efficiency of pCLEAs was 2.2-fold higher than that of CLEAs. Subsequently, the pCLEAs of CaLB were utilized for the manufacturing of industrially significant HMF esters. Under the optimized transesterification conditions, HMF conversion with pCLEAs CaLB was 1.41- and 1.25-fold higher than with free and CLEAs CaLB, respectively. The pCLEAs were reused upto 8 consecutive transesterification cycles and the produced HMF esters reduced the surface tension of water from 72 mN/m to 32.6 mN/m, proving its potential application as surface-active compounds.
Collapse
Affiliation(s)
- Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vasanth Kumar Vaithyanathan
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Hubert Cabana
- Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Tamil Nadu 603 203, India; Laboratoire de génie de l'environnement, Faculté de génie, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
| |
Collapse
|
50
|
Cordeiro EDS, Henriques RO, Deucher EM, de Oliveira D, Lerin LA, Furigo A. Optimization, kinetic, and scaling-up of solvent-free lipase-catalyzed synthesis of ethylene glycol oleate emollient ester. Biotechnol Appl Biochem 2020; 68:1469-1478. [PMID: 33135247 DOI: 10.1002/bab.2067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/27/2020] [Indexed: 11/09/2022]
Abstract
The use of enzymatic catalysts is an alternative to chemical catalysts as they can help to obtain products with less environmental impact, considered sustainable within the concept of green chemistry. The optimization, kinetic, lipase reuse, and scale-up of enzymatic production of ethylene glycol oleate in the batch mode were carried out using the NS 88011 lipase in a solvent-free system. For the optimization step, a 23 Central Composite Design was used and the optimized condition for the ethylene glycol oleate production, with conversions above 99%, was at 70 °C, 600 rpm, substrates molar ratio of 1:2, 1 wt% of NS 88011 in 32 H of reaction. Kinetic tests were also carried out with different amounts of enzyme, and it showed that by decreasing the amount of the enzyme, the conversion also decreases. The lipase reuse showed good conversions until the second cycle of use, after which it had a progressive reduction reaching 83% in the fourth cycle of use. The scale-up (ninefold increase) showed promising results, with conversion above 99%, achieving conversions similar to small-scale reactions. Therefore, this work proposed an environmentally safe route to produce an emollient ester using a low-cost biocatalyst in a solvent-free system.
Collapse
Affiliation(s)
- Eloise de Sousa Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Eduardo Monteiro Deucher
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | | | - Agenor Furigo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| |
Collapse
|