1
|
Zanetti-Domingues LC, Hirsch M, Wang L, Eastwood TA, Baker K, Mulvihill DP, Radford S, Horne J, White P, Bateman B. Toward quantitative super-resolution methods for cryo-CLEM. Methods Cell Biol 2024; 187:249-292. [PMID: 38705627 DOI: 10.1016/bs.mcb.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cryogenic ultrastructural imaging techniques such as cryo-electron tomography have produced a revolution in how the structure of biological systems is investigated by enabling the determination of structures of protein complexes immersed in a complex biological matrix within vitrified cell and model organisms. However, so far, the portfolio of successes has been mostly limited to highly abundant complexes or to structures that are relatively unambiguous and easy to identify through electron microscopy. In order to realize the full potential of this revolution, researchers would have to be able to pinpoint lower abundance species and obtain functional annotations on the state of objects of interest which would then be correlated to ultrastructural information to build a complete picture of the structure-function relationships underpinning biological processes. Fluorescence imaging at cryogenic conditions has the potential to be able to meet these demands. However, wide-field images acquired at low numeric aperture (NA) using air immersion objective have a low resolving power and cannot provide accurate enough three-dimensional (3D) localization to enable the assignment of functional annotations to individual objects of interest or target sample debulking to ensure the preservation of the structures of interest. It is therefore necessary to develop super-resolved cryo-fluorescence workflows capable of fulfilling this role and enabling new biological discoveries. In this chapter, we present the current state of development of two super-resolution cryogenic fluorescence techniques, superSIL-STORM and astigmatism-based 3D STORM, show their application to a variety of biological systems and discuss their advantages and limitations. We further discuss the future applicability to cryo-CLEM workflows though examples of practical application to the study of membrane protein complexes both in mammalian cells and in Escherichia coli.
Collapse
Affiliation(s)
- Laura C Zanetti-Domingues
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom.
| | - Michael Hirsch
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Lin Wang
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | - Tara A Eastwood
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Karen Baker
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Sheena Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Jim Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds, United Kingdom
| | - Benji Bateman
- CLF Octopus Facility, UKRI-Science and Technology Facilities Council, R92, Rutherford Appleton Laboratory, Didcot, United Kingdom
| |
Collapse
|
2
|
Mazal H, Wieser FF, Sandoghdar V. Insights into protein structure using cryogenic light microscopy. Biochem Soc Trans 2023; 51:2041-2059. [PMID: 38015555 PMCID: PMC10754291 DOI: 10.1042/bst20221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Laorenza DW, Freedman DE. Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces? J Am Chem Soc 2022; 144:21810-21825. [DOI: 10.1021/jacs.2c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Daniel W. Laorenza
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Danna E. Freedman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
4
|
Xie M, Liu H, Wan S, Lu X, Hong D, Du Y, Yang W, Wei Z, Fang S, Tao CL, Xu D, Wang B, Lu S, Wu XJ, Xu W, Orrit M, Tian Y. Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence. Nat Commun 2022; 13:3330. [PMID: 35680880 PMCID: PMC9184529 DOI: 10.1038/s41467-022-30955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Sensitive detection of local acoustic vibrations at the nanometer scale has promising potential applications involving miniaturized devices in many areas, such as geological exploration, military reconnaissance, and ultrasound imaging. However, sensitive detection of weak acoustic signals with high spatial resolution at room temperature has become a major challenge. Here, we report a nanometer-scale system for acoustic detection with a single molecule as a probe based on minute variations of its distance to the surface of a plasmonic gold nanorod. This system can extract the frequency and amplitude of acoustic vibrations with experimental and theoretical sensitivities of 10 pm Hz−1/2 and 10 fm Hz−1/2, respectively. This approach provides a strategy for the optical detection of acoustic waves based on molecular spectroscopy without electromagnetic interference. Moreover, such a small nano-acoustic detector with 40-nm size can be employed to monitor acoustic vibrations or read out the quantum states of nanomechanical devices. .Sensitive detection of weak acoustic signals at nanometer scale is challenging. Here, the authors present an acoustic detection system based on a single molecule as a probe, where frequency and amplitude of acoustic vibrations can be extracted from its minute variations in distance to the surface of a plasmonic gold nanorod.
Collapse
Affiliation(s)
- Mingcai Xie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hanyu Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Sushu Wan
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xuxing Lu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Daocheng Hong
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Du
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhihong Wei
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Susu Fang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen-Lei Tao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dan Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Boyang Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Jun Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA, Leiden, The Netherlands.
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Adhikari S, Orrit M. Progress and perspectives in single-molecule optical spectroscopy. J Chem Phys 2022; 156:160903. [PMID: 35489995 DOI: 10.1063/5.0087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review some of the progress of single-molecule optical experiments in the past 20 years and propose some perspectives for the coming years. We particularly focus on methodological advances in fluorescence, super-resolution, photothermal contrast, and interferometric scattering and briefly discuss a few of the applications. These advances have enabled the exploration of new emitters and quantum optics; the chemistry and biology of complex heterogeneous systems, nanoparticles, and plasmonics; and the detection and study of non-fluorescing and non-absorbing nano-objects. We conclude by proposing some ideas for future experiments. The field will move toward more and better signals of a broader variety of objects and toward a sharper view of the surprising complexity of the nanoscale world of single (bio-)molecules, nanoparticles, and their nano-environments.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| | - Michel Orrit
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2333 CA Leiden, The Netherlands
| |
Collapse
|
6
|
Serrano D, Kuppusamy SK, Heinrich B, Fuhr O, Hunger D, Ruben M, Goldner P. Ultra-narrow optical linewidths in rare-earth molecular crystals. Nature 2022; 603:241-246. [PMID: 35264757 DOI: 10.1038/s41586-021-04316-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Rare-earth ions (REIs) are promising solid-state systems for building light-matter interfaces at the quantum level1,2. This relies on their potential to show narrow optical and spin homogeneous linewidths, or, equivalently, long-lived quantum states. This enables the use of REIs for photonic quantum technologies such as memories for light, optical-microwave transduction and computing3-5. However, so far, few crystalline materials have shown an environment quiet enough to fully exploit REI properties. This hinders further progress, in particular towards REI-containing integrated nanophotonics devices6,7. Molecular systems can provide such capability but generally lack spin states. If, however, molecular systems do have spin states, they show broad optical lines that severely limit optical-to-spin coherent interfacing8-10. Here we report on europium molecular crystals that exhibit linewidths in the tens of kilohertz range, orders of magnitude narrower than those of other molecular systems. We harness this property to demonstrate efficient optical spin initialization, coherent storage of light using an atomic frequency comb, and optical control of ion-ion interactions towards implementation of quantum gates. These results illustrate the utility of rare-earth molecular crystals as a new platform for photonic quantum technologies that combines highly coherent emitters with the unmatched versatility in composition, structure and integration capability of molecular materials.
Collapse
Affiliation(s)
- Diana Serrano
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, Strasbourg, France
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - David Hunger
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. .,Centre Européen de Sciences Quantiques (CESQ), Institut de Science et d'Ingénierie Supramoléculaire (ISIS), Université de Strasbourg, Strasbourg, France.
| | - Philippe Goldner
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France.
| |
Collapse
|
7
|
Schofield RC, Burdekin P, Fasoulakis A, Devanz L, Bogusz DP, Hoggarth RA, Major KD, Clark AS. Narrow and Stable Single Photon Emission from Dibenzoterrylene in para-Terphenyl Nanocrystals. Chemphyschem 2022; 23:e202100809. [PMID: 34905640 PMCID: PMC9302619 DOI: 10.1002/cphc.202100809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/13/2021] [Indexed: 11/13/2022]
Abstract
Single organic molecules are promising photon sources for quantum technologies. In this work we show photon emission from dibenzoterrylene, a widely used organic emitter, in a new host matrix, para-terphenyl. We present a reprecipitation growth method that produces para-terphenyl nanocrystals which are ideal for integration into nanophotonic devices due to their small size. We characterise the optical properties of dibenzoterrylene in nanocrystals at room and cryogenic temperatures, showing bright, narrow emission from a single molecule. Spectral data on the vibrational energies is presented and a further 25 additional molecules are characterised. This emitter-host combination has potential for quantum technology purposes with wavelengths suitable for interfacing with quantum memories.
Collapse
Affiliation(s)
- Ross C. Schofield
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Paul Burdekin
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Anastasios Fasoulakis
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| | - Louise Devanz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Dominika P. Bogusz
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Rowan A. Hoggarth
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Kyle D. Major
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
| | - Alex S. Clark
- Centre for Cold MatterBlackett LaboratoryImperial College LondonPrince Consort RoadSW7 2AZLondonUnited Kingdom
- Quantum Engineering Technology LabsH. H. Wills Physics Laboratory and Department of Electrical and Electronic EngineeringUniversity of BristolBS8 1FDBristolUnited Kingdom
| |
Collapse
|
8
|
Zirkelbach J, Mirzaei M, Deperasinska I, Kozankiewicz B, Gurlek B, Shkarin A, Utikal T, Götzinger S, Sandoghdar V. High-resolution vibronic spectroscopy of a single molecule embedded in a crystal. J Chem Phys 2022; 156:104301. [DOI: 10.1063/5.0081297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Boleslaw Kozankiewicz
- Radiation Physics and Spectroscopy, Institute of Physics Polish Academy of Sciences, Poland
| | - Burak Gurlek
- Sandoghdar Division, Max Planck Institute for the Science of Light, Germany
| | | | - Tobias Utikal
- Max Planck Institute for the Science of Light, Germany
| | | | - Vahid Sandoghdar
- Division Sandoghdar, Max Planck Institute for the Science of Light, Germany
| |
Collapse
|
9
|
Jaiswal S, He Y, Lu HP. Probing functional conformation-state fluctuation dynamics in recognition binding between calmodulin and target peptide. J Chem Phys 2022; 156:055102. [DOI: 10.1063/5.0074277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sunidhi Jaiswal
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Yufan He
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - H. Peter Lu
- Department of Chemistry and Center for Photochemical Science, Bowling Green State University, Bowling Green, Ohio 43403, USA
| |
Collapse
|
10
|
Toninelli C, Gerhardt I, Clark AS, Reserbat-Plantey A, Götzinger S, Ristanović Z, Colautti M, Lombardi P, Major KD, Deperasińska I, Pernice WH, Koppens FHL, Kozankiewicz B, Gourdon A, Sandoghdar V, Orrit M. Single organic molecules for photonic quantum technologies. NATURE MATERIALS 2021; 20:1615-1628. [PMID: 33972762 DOI: 10.1038/s41563-021-00987-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/17/2021] [Indexed: 05/24/2023]
Abstract
Isolating single molecules in the solid state has allowed fundamental experiments in basic and applied sciences. When cooled down to liquid helium temperature, certain molecules show transition lines that are tens of megahertz wide, limited by only the excited-state lifetime. The extreme flexibility in the synthesis of organic materials provides, at low costs, a wide palette of emission wavelengths and supporting matrices for such single chromophores. In the past few decades, their controlled coupling to photonic structures has led to an optimized interaction efficiency with light. Molecules can hence be operated as single-photon sources and as nonlinear elements with competitive performance in terms of coherence, scalability and compatibility with diverse integrated platforms. Moreover, they can be used as transducers for the optical read-out of fields and material properties, with the promise of single-quanta resolution in the sensing of charges and motion. We show that quantum emitters based on single molecules hold promise to play a key role in the development of quantum science and technologies.
Collapse
Affiliation(s)
- C Toninelli
- CNR-INO, Sesto Fiorentino, Italy.
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy.
| | - I Gerhardt
- Institute for Quantum Science and Technology (IQST) and 3rd Institute of Physics, Stuttgart, Germany
| | - A S Clark
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - A Reserbat-Plantey
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - S Götzinger
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Z Ristanović
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| | - M Colautti
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - P Lombardi
- CNR-INO, Sesto Fiorentino, Italy
- LENS, European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
| | - K D Major
- Centre for Cold Matter, Blackett Laboratory, Imperial College London, London, UK
| | - I Deperasińska
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - W H Pernice
- Physikalisches Institut, Westfälische Wilhelms, Universität Münster, Münster, Germany
| | - F H L Koppens
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - B Kozankiewicz
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - V Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - M Orrit
- Huygens-Kamerlingh Onnes Laboratory, LION, Leiden, The Netherlands
| |
Collapse
|
11
|
Wang Z, Kim J, Magermans L, Corbella F, Florea I, Larquet E, Kim J, Gacoin T. Monazite LaPO 4:Eu 3+ nanorods as strongly polarized nano-emitters. NANOSCALE 2021; 13:16968-16976. [PMID: 34609394 DOI: 10.1039/d1nr04639j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Orientation analyses of macromolecules or artificial particles are vital for both fundamental research and practical bio-applications. An accurate approach is monitoring the polarization spectroscopy of lanthanide-doped nanocrystalline materials. However, nanomaterials are often far from ideal for the colloidal and polarization luminescence properties. In the present study, we synthesize well-dispersed LaPO4:Eu3+ nanomaterials in an anisotropic rod shape. Microwave heating with excess addition of phosphate precursor invokes a rapid phase transition of rhabdophane into monazite. The colloidal stability of the nanorod suspension is outstanding, demonstrated by showing liquid crystalline behaviors. The monazite nanorods are also superior in luminescence efficiency with limited defects. The emission spectrum of Eu3+ consists of well-defined lines with prominent polarization dependencies for both the forced electric dipole transitions and the magnetic dipole transitions. All the results demonstrate that the synthesized monazite nanorods can serve as an accurate probe in orientation analyses and potential applications, such as in microfluidics and biological detections.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Jeongmo Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Lilian Magermans
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Francesca Corbella
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Ileana Florea
- Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France.
| |
Collapse
|
12
|
Georgieva H, López M, Hofer H, Kanold N, Kaganskiy A, Rodt S, Reitzenstein S, Kück S. Absolute calibration of a single-photon avalanche detector using a bright triggered single-photon source based on an InGaAs quantum dot. OPTICS EXPRESS 2021; 29:23500-23507. [PMID: 34614614 DOI: 10.1364/oe.430680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
We apply an InGaAs quantum dot based single-photon source for the absolute detection efficiency calibration of a silicon single-photon avalanche diode operating in Geiger mode. The single-photon source delivers up to (2.55 ± 0.02) × 106 photons per second inside a multimode fiber at the wavelength of 929.8 nm for above-band pulsed excitation with a repetition rate of 80 MHz. The purity of the single-photon emission, expressed by the value of the 2nd order correlation function g(2)(τ = 0), is between 0.14 and 0.24 depending on the excitation power applied to the quantum dot. The single-photon flux is sufficient to be measured with an analog low-noise reference detector, which is traceable to the national standard for optical radiant flux. The measured detection efficiency using the single-photon source remains constant within the measurement uncertainty for different photon fluxes. The corresponding weighted mean thus amounts to 0.3263 with a standard uncertainty of 0.0022.
Collapse
|
13
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
14
|
Optical spin-state polarization in a binuclear europium complex towards molecule-based coherent light-spin interfaces. Nat Commun 2021; 12:2152. [PMID: 33846323 PMCID: PMC8042120 DOI: 10.1038/s41467-021-22383-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
The success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ion (REI)-based molecular systems, whose quantum properties could be tuned taking advantage of molecular engineering strategies, are one of the systems actively pursued for the implementation of QIP schemes. Herein, we demonstrate the efficient polarization of ground-state nuclear spins-a fundamental requirement for all-optical spin initialization and addressing-in a binuclear Eu(III) complex, featuring inhomogeneously broadened 5D0 → 7F0 optical transition. At 1.4 K, long-lived spectral holes have been burnt in the transition: homogeneous linewidth (Γh) = 22 ± 1 MHz, which translates as optical coherence lifetime (T2opt) = 14.5 ± 0.7 ns, and ground-state spin population lifetime (T1spin) = 1.6 ± 0.4 s have been obtained. The results presented in this study could be a progressive step towards the realization of molecule-based coherent light-spin QIP interfaces.
Collapse
|
15
|
Liu M, Qiu JG, Ma F, Zhang CY. Advances in single-molecule fluorescent nanosensors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1716. [PMID: 33779063 DOI: 10.1002/wnan.1716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Single-molecule detection represents the ultimate sensitivity in measurement science with the characteristics of simplicity, rapidity, low sample consumption, and high signal-to-noise ratio and has attracted considerable attentions in biosensor development. In recent years, a variety of functional nanomaterials with unique chemical, optical, mechanical, and electronic features have been synthesized. The integration of single-molecule detection with functional nanomaterials enables the construction of novel single-molecule fluorescent nanosensors with excellent performance. Herein, we review the advance in single-molecule fluorescent nanosensors constructed by novel nanomaterials including quantum dots, gold nanoparticles, upconversion nanoparticles, fluorescent conjugated polymer nanoparticles, nanosheets, and magnetic nanoparticles in the past decade (2011-2020), and discuss the strategies, features, and applications of single-molecule fluorescent nanosensors in the detection of microRNAs, DNAs, enzymes, proteins, viruses, and live cells. Moreover, we highlight the future direction and challenges in this area. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. Proc Natl Acad Sci U S A 2020; 117:24305-24315. [PMID: 32913060 PMCID: PMC7533661 DOI: 10.1073/pnas.2006517117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bright, photostable, and nontoxic fluorescent contrast agents are critical for biological imaging. "Self-healing" dyes, in which triplet states are intramolecularly quenched, enable fluorescence imaging by increasing fluorophore brightness and longevity, while simultaneously reducing the generation of reactive oxygen species that promote phototoxicity. Here, we systematically examine the self-healing mechanism in cyanine-class organic fluorophores spanning the visible spectrum. We show that the Baird aromatic triplet-state energy of cyclooctatetraene can be physically altered to achieve order of magnitude enhancements in fluorophore brightness and signal-to-noise ratio in both the presence and absence of oxygen. We leverage these advances to achieve direct measurements of large-scale conformational dynamics within single molecules at submillisecond resolution using wide-field illumination and camera-based detection methods. These findings demonstrate the capacity to image functionally relevant conformational processes in biological systems in the kilohertz regime at physiological oxygen concentrations and shed important light on the multivariate parameters critical to self-healing organic fluorophore design.
Collapse
|
17
|
Li B, Liu Y, Liu Y, Tian T, Yang B, Huang X, Liu J, Liu B. Construction of Dual-Color Probes with Target-Triggered Signal Amplification for In Situ Single-Molecule Imaging of MicroRNA. ACS NANO 2020; 14:8116-8125. [PMID: 32568523 DOI: 10.1021/acsnano.0c01061] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The in vitro detection of low abundance biomolecules via nonenzymatic signal amplification is an attractive strategy. However, it remains a challenge to monitor targets of interest in situ in living cells by low-background interference and visualized enzyme-free signal amplification strategies. Taking advantage of the single-molecule imaging and dynamic DNA nanotechnologies, we have achieved the target-triggered self-assembly of nanostructure-based dual-color fluorescent probes (NDFPs) by an enzyme-free toehold-mediated strand displacement cascade. NDFPs will facilitate the simple and visualized monitoring of microRNA (miRNA) at the femtomolar level. The recycled miRNA can be considered as the catalyst for the assembly of multiple H1/H2 duplexes. This generated the fluorescence signal of the enhanced target expression, indicating both in vitro and in vivo signal-amplified imaging. Moreover, the NDFPs improved the measurement accuracy by dual-color colocalization imaging to greatly avoid false-positive signals and enabled the successful in situ imaging of miRNA in living cells in real time. This work provides a strategy to visually monitor and study the integration of signal amplification detection and single-molecule imaging. NDFPs may be an important step toward the enzyme-free amplified monitoring and imaging of various biomolecules in living cells at the single-molecule level.
Collapse
Affiliation(s)
- Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yujie Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongtong Tian
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Beibei Yang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
18
|
Zhang H, Zhang K, Yao Y, Liu Y, Ji J, Huang X, Liu J, Liu B. Single-Molecule Fluorescence Imaging for Ultrasensitive DNA Methyltransferase Activity Measurement and Inhibitor Screening. Anal Chem 2019; 91:9500-9507. [PMID: 31291094 DOI: 10.1021/acs.analchem.9b00379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Yuanyuan Yao
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Yujie Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
19
|
Camacho R, Täuber D, Scheblykin IG. Fluorescence Anisotropy Reloaded-Emerging Polarization Microscopy Methods for Assessing Chromophores' Organization and Excitation Energy Transfer in Single Molecules, Particles, Films, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805671. [PMID: 30721532 DOI: 10.1002/adma.201805671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Fluorescence polarization is widely used to assess the orientation/rotation of molecules, and the excitation energy transfer between closely located chromophores. Emerging since the 1990s, single molecule fluorescence spectroscopy and imaging stimulate the application of light polarization for studying molecular organization and energy transfer beyond ensemble averaging. Here, traditional fluorescence polarization and linear dichroism methods used for bulk samples are compared with techniques specially developed for, or inspired by, single molecule fluorescence spectroscopy. Techniques for assessing energy transfer in anisotropic samples, where the traditional fluorescence anisotropy framework is not readily applicable, are discussed in depth. It is shown that the concept of a polarization portrait and the single funnel approximation can lay the foundation for alternative energy transfer metrics. Examples ranging from fundamental studies of photoactive materials (conjugated polymers, light-harvesting aggregates, and perovskite semiconductors) to Förster resonant energy transfer (FRET)-based biomedical imaging are presented. Furthermore, novel uses of light polarization for super-resolution optical imaging are mentioned as well as strategies for avoiding artifacts in polarization microscopy.
Collapse
Affiliation(s)
- Rafael Camacho
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Daniela Täuber
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
- Biopolarisation, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745, Jena, Germany
- Institute of Solid State Physics, FSU Jena, Helmholtzweg 3, D-07743, Jena, Germany
| | - Ivan G Scheblykin
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, SE-22100, Lund, Sweden
| |
Collapse
|
20
|
Ojambati OS, Chikkaraddy R, Deacon WD, Horton M, Kos D, Turek VA, Keyser UF, Baumberg JJ. Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity. Nat Commun 2019; 10:1049. [PMID: 30837456 PMCID: PMC6400948 DOI: 10.1038/s41467-019-08611-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
Interactions between a single emitter and cavity provide the archetypical system for fundamental quantum electrodynamics. Here we show that a single molecule of Atto647 aligned using DNA origami interacts coherently with a sub-wavelength plasmonic nanocavity, approaching the cooperative regime even at room temperature. Power-dependent pulsed excitation reveals Rabi oscillations, arising from the coupling of the oscillating electric field between the ground and excited states. The observed single-molecule fluorescent emission is split into two modes resulting from anti-crossing with the plasmonic mode, indicating the molecule is strongly coupled to the cavity. The second-order correlation function of the photon emission statistics is found to be pump wavelength dependent, varying from g(2)(0) = 0.4 to 1.45, highlighting the influence of vibrational relaxation on the Jaynes-Cummings ladder. Our results show that cavity quantum electrodynamic effects can be observed in molecular systems at ambient conditions, opening significant potential for device applications.
Collapse
Affiliation(s)
- Oluwafemi S Ojambati
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - William D Deacon
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Matthew Horton
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Dean Kos
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Vladimir A Turek
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ulrich F Keyser
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
21
|
Hedley GJ, Steiner F, Vogelsang J, Lupton JM. Fluctuations in the Emission Polarization and Spectrum in Single Chains of a Common Conjugated Polymer for Organic Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1804312. [PMID: 30444577 DOI: 10.1002/smll.201804312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Measuring the nanoscale organization of conjugated polymer chains used in organic photovoltaic (OPV) blends is vital if one wants to understand the materials. This is made very difficult with high efficiency OPV polymers such as PTB7 that form aggregates, as a lack of periodicity and a high degree of disorder make understanding of the nanoscale organization challenging. Here, single molecule spectroscopy is used to observe single chains and aggregates of PTB7. Using four detectors the photoluminescence intensity, wavelength, polarization, and lifetime are simultaneously monitored. Fast (milliseconds) and slow (seconds) fluctuations are observed over a time window of 30 s in all of these observables from single aggregates and chains as individual chromophores activate and deactivate, leading to dynamical changes in the emission spectrum and dipole orientation. This information can be used to help reconstruct the spatial and spectral organization of disordered aggregates of PTB7, thereby adding valuable new information on how the chains are arranged in space.
Collapse
Affiliation(s)
- Gordon J Hedley
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| | - Florian Steiner
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - Jan Vogelsang
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377, München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040, Regensburg, Germany
| |
Collapse
|
22
|
Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1312-1319. [PMID: 30426455 DOI: 10.1007/s11427-018-9380-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022]
Abstract
Remarkable progress in correlative light and electron cryo-microscopy (cryo-CLEM) has been made in the past decade. A crucial component for cryo-CLEM is a dedicated cryo-fluorescence microscope (cryo-FM). Here, we describe an ultra-stable super-resolution cryo-FM that exhibits excellent thermal and mechanical stability. The temperature fluctuations in 10 h are less than 0.06 K, and the mechanical drift over 5 h is less than 200 nm in three dimensions. We have demonstrated the super-resolution imaging capability of this system (average single molecule localization accuracy of ∼13.0 nm). The results suggest that our system is particularly suitable for long-term observations, such as single molecule localization microscopy (SMLM) and cryogenic super-resolution correlative light and electron microscopy (csCLEM).
Collapse
|
23
|
Spehar K, Ding T, Sun Y, Kedia N, Lu J, Nahass GR, Lew MD, Bieschke J. Super-resolution Imaging of Amyloid Structures over Extended Times by Using Transient Binding of Single Thioflavin T Molecules. Chembiochem 2018; 19:1944-1948. [PMID: 29953718 PMCID: PMC6428420 DOI: 10.1002/cbic.201800352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/28/2023]
Abstract
Oligomeric amyloid structures are crucial therapeutic targets in Alzheimer's and other amyloid diseases. However, these oligomers are too small to be resolved by standard light microscopy. We have developed a simple and versatile tool to image amyloid structures by using thioflavin T without the need for covalent labeling or immunostaining. The dynamic binding of single dye molecules generates photon bursts that are used for fluorophore localization on a nanometer scale. Thus, photobleaching cannot degrade image quality, allowing for extended observation times. Super-resolution transient amyloid binding microscopy promises to directly image native amyloid by using standard probes and record amyloid dynamics over minutes to days. We imaged amyloid fibrils from multiple polypeptides, oligomeric, and fibrillar structures formed during different stages of amyloid-β aggregation, as well as the structural remodeling of amyloid-β fibrils by the compound epi-gallocatechin gallate.
Collapse
Affiliation(s)
- Kevin Spehar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - Yuanzi Sun
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA)
| | - Niraja Kedia
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - Jin Lu
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - George R. Nahass
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - Matthew D. Lew
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
| | - Jan Bieschke
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 (USA),
- MRC Prion Unit, UCL Institute of Prion Diseases, London, (UK),
| |
Collapse
|
24
|
Zhang H, Liu Y, Zhang K, Ji J, Liu J, Liu B. Single Molecule Fluorescent Colocalization of Split Aptamers for Ultrasensitive Detection of Biomolecules. Anal Chem 2018; 90:9315-9321. [PMID: 30003776 DOI: 10.1021/acs.analchem.8b01916] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Single-molecule fluorescence imaging is a promising strategy for biomolecule detection. However, the accuracy of single-molecule method is often compromised by the false-positive events at the ultralow sample levels that are caused by the nonspecific adsorption of the fluorescent labeled probe and other fluorescent impurities on the imaging surface. Here, we demonstrate an ultrasensitive single molecule detection assay based on dual-color fluorescent colocalization of spilt aptamers that was implemented to the measurement of adenosine triphosphate (ATP). The ATP aptamer was split into two fragments and labeled with green and red dye molecules, respectively. When the two probes of split aptamers were brought together by the target ATP molecule, the two colors of fluorescence of two probes were simultaneously detected through two channels and projected to the correlated locations in the two halves of image. The colocalizaiton imaging of two split apatamer probes greatly excluded the false detection of biomolecules that was usually caused by the fluorescent noise of single nonbound aptamer probes and impurities, and further improved the accuracy of measurement. The assay showed excellent selectivity and high sensitivity for ATP detection with linear range of 1 pM to 5 nM and a detection limit of 100 fM. This versatile protocol of single molecule colocalization of split apatamer can be widely applied to the ultrasensitive and highly accurate detection of many types of biomolecules in basic research and biomedical applications.
Collapse
Affiliation(s)
- Hongding Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Yujie Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Kun Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Ji Ji
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Jianwei Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences , Fudan University , Shanghai 200433 , People's Republic of China
| |
Collapse
|
25
|
Pazzagli S, Lombardi P, Martella D, Colautti M, Tiribilli B, Cataliotti FS, Toninelli C. Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission. ACS NANO 2018; 12:4295-4303. [PMID: 29630340 DOI: 10.1021/acsnano.7b08810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Quantum technologies could largely benefit from the control of quantum emitters in sub-micrometric size crystals. These are naturally prone to integration in hybrid devices, including heterostructures and complex photonic devices. Currently available quantum emitters in nanocrystals suffer from spectral instability, preventing their use as single-photon sources for most quantum optics operations. In this work we report on the performances of single-photon emission from organic nanocrystals (average size of hundreds of nm), made of anthracene (Ac) and doped with dibenzoterrylene (DBT) molecules. The source has hours-long photostability with respect to frequency and intensity, both at room and at cryogenic temperature. When cooled to 3 K, the 00-zero phonon line shows linewidth values (50 MHz) close to the lifetime limit. Such optical properties in a nanocrystalline environment recommend the proposed organic nanocrystals as single-photon sources for integrated photonic quantum technologies.
Collapse
Affiliation(s)
- Sofia Pazzagli
- Dipartimento di Fisica ed Astronomia , Università di Firenze , Via Sansone 1 , I-50019 Sesto F.no, Firenze , Italy
- CNR-INO , Istituto Nazionale di Ottica , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
| | - Pietro Lombardi
- CNR-INO , Istituto Nazionale di Ottica , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
- LENS and Università di Firenze , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
| | - Daniele Martella
- LENS and Università di Firenze , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
| | - Maja Colautti
- LENS and Università di Firenze , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
| | - Bruno Tiribilli
- CNR-ISC Istituto dei Sistemi Complessi , Via Madonna del Piano 10 , I-50019 Sesto F.no, Firenze , Italy
| | - Francesco Saverio Cataliotti
- Dipartimento di Fisica ed Astronomia , Università di Firenze , Via Sansone 1 , I-50019 Sesto F.no, Firenze , Italy
- CNR-INO , Istituto Nazionale di Ottica , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
- LENS and Università di Firenze , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
- QSTAR , Largo Fermi 2 , I-50125 Firenze , Italy
| | - Costanza Toninelli
- CNR-INO , Istituto Nazionale di Ottica , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
- LENS and Università di Firenze , Via Carrara 1 , 50019 Sesto F.no, Firenze , Italy
- QSTAR , Largo Fermi 2 , I-50125 Firenze , Italy
| |
Collapse
|
26
|
Single-molecule studies beyond optical imaging: Multi-parameter single-molecule spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2018. [DOI: 10.1016/j.jphotochemrev.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Abstract
Cryofluorescence imaging is of great interest in biological microscopy because vitrified samples (i.e., frozen without ice crystallization) are free from fixation artifacts, are highly photostable, and allow direct correlation with electron cryomicroscopy. Here, we show a concept for conducting cryo-light microscopy in immersion that provides a twofold to fivefold increase in image brightness and higher resolution than are attainable with air objectives. Spherical aberration at an imaging temperature below the glass transition of water (−135 °C) is corrected by our approach. Cryogenic fluorescent light microscopy of flash-frozen cells stands out by artifact-free fixation and very little photobleaching of the fluorophores used. To attain the highest level of resolution, aberration-free immersion objectives with accurately matched immersion media are required, but both do not exist for imaging below the glass-transition temperature of water. Here, we resolve this challenge by combining a cryoimmersion medium, HFE-7200, which matches the refractive index of room-temperature water, with a technological concept in which the body of the objective and the front lens are not in thermal equilibrium. We implemented this concept by replacing the metallic front-lens mount of a standard bioimaging water immersion objective with an insulating ceramic mount heated around its perimeter. In this way, the objective metal housing can be maintained at room temperature, while creating a thermally shielded cold microenvironment around the sample and front lens. To demonstrate the range of potential applications, we show that our method can provide superior contrast in Escherichia coli and yeast cells expressing fluorescent proteins and resolve submicrometer structures in multicolor immunolabeled human bone osteosarcoma epithelial (U2OS) cells at −140°C.
Collapse
|
28
|
Białkowska M, Deperasińska I, Makarewicz A, Kozankiewicz B. Anomalous doping of a molecular crystal monitored with confocal fluorescence microscopy: Terrylene in a p-terphenyl crystal. J Chem Phys 2017; 147:114302. [DOI: 10.1063/1.4989983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
|
30
|
Białkowska M, Chaładaj W, Deperasińska I, Drzewiecka-Antonik A, Koziol AE, Makarewicz A, Kozankiewicz B. Single molecules of terrylene in di-substituted naphthalenes crystallizing in the herringbone pattern. RSC Adv 2017. [DOI: 10.1039/c6ra27167g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2,3-Dichloronaphthalene and 2,3-dibromonaphthalene were synthesized, their crystal structures determined, and vibronic spectra of single terrylene molecules in the crystals indicated lowering of the guest symmetry.
Collapse
Affiliation(s)
- Magda Białkowska
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | - Wojciech Chaładaj
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | | | - Anna E. Koziol
- Faculty of Chemistry
- Maria Curie-Skłodowska University
- 20-031 Lublin
- Poland
| | - Artur Makarewicz
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
| | | |
Collapse
|
31
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
32
|
Bykov YS, Cortese M, Briggs JAG, Bartenschlager R. Correlative light and electron microscopy methods for the study of virus-cell interactions. FEBS Lett 2016; 590:1877-95. [PMID: 27008928 DOI: 10.1002/1873-3468.12153] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Electron microscopy (EM) is an invaluable tool to study the interactions of viruses with cells, and the ultrastructural changes induced in host cells by virus infection. Light microscopy (LM) is a complementary tool with the potential to locate rare events, label specific components, and obtain dynamic information. The combination of LM and EM in correlative light and electron microscopy (CLEM) is particularly powerful. It can be used to complement a static EM image with dynamic data from live imaging, identify the ultrastructure observed in LM, or, conversely, provide molecular specificity data for a known ultrastructure. Here, we describe methods and strategies for CLEM, discuss their advantages and limitations, and review applications of CLEM to study virus-host interactions.
Collapse
Affiliation(s)
- Yury S Bykov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| | - John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Germany
| |
Collapse
|
33
|
Piatkowski L, Gellings E, van Hulst NF. Broadband single-molecule excitation spectroscopy. Nat Commun 2016; 7:10411. [PMID: 26794035 PMCID: PMC4735816 DOI: 10.1038/ncomms10411] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Over the past 25 years, single-molecule spectroscopy has developed into a widely used tool in multiple disciplines of science. The diversity of routinely recorded emission spectra does underpin the strength of the single-molecule approach in resolving the heterogeneity and dynamics, otherwise hidden in the ensemble. In early cryogenic studies single molecules were identified by their distinct excitation spectra, yet measuring excitation spectra at room temperature remains challenging. Here we present a broadband Fourier approach that allows rapid recording of excitation spectra of individual molecules under ambient conditions and that is robust against blinking and bleaching. Applying the method we show that the excitation spectra of individual molecules exhibit an extreme distribution of solvatochromic shifts and distinct spectral shapes. Importantly, we demonstrate that the sensitivity and speed of the broadband technique is comparable to that of emission spectroscopy putting both techniques side-by-side in single-molecule spectroscopy.
Collapse
Affiliation(s)
- Lukasz Piatkowski
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Esther Gellings
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Niek F. van Hulst
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA—Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
34
|
Kemmerich FE, Swoboda M, Kauert DJ, Grieb MS, Hahn S, Schwarz FW, Seidel R, Schlierf M. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers. NANO LETTERS 2016; 16:381-6. [PMID: 26632021 DOI: 10.1021/acs.nanolett.5b03956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Marko Swoboda
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Dominik J Kauert
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - M Svea Grieb
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Steffen Hahn
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Friedrich W Schwarz
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
- cfaed - Center for Advancing Electronics Dresden, TU Dresden , 01307 Dresden, Germany
| | - Ralf Seidel
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
35
|
Zhang Y, Tseng NW, Deng H, Kwok RTK, Lam JWY, Tang BZ. BCl3-mediated polycoupling of alkynes and aldehydes: a facile, metal-free multicomponent polymerization route to construct stereoregular functional polymers. Polym Chem 2016. [DOI: 10.1039/c6py00922k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BCl3-mediated alkyne–aldehyde polymerization to stereoregular functional polymers in a facile, metal-free and multicomponent manner.
Collapse
Affiliation(s)
- Yun Zhang
- HKUST-Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Chemistry
- Division of Life Science
| | - Nai-Wen Tseng
- Department of Chemistry
- Division of Life Science
- State Key Laboratory of Molecular Neuroscience
- Institute for Advanced Study
- Institute of Molecular Functional Materials
| | - Haiqin Deng
- HKUST-Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Chemistry
- Division of Life Science
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Chemistry
- Division of Life Science
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Chemistry
- Division of Life Science
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute
- Shenzhen 518057
- China
- Department of Chemistry
- Division of Life Science
| |
Collapse
|
36
|
Piatkowski L, Gellings E, van Hulst NF. Multicolour single molecule emission and excitation spectroscopy reveals extensive spectral shifts. Faraday Discuss 2015; 184:207-20. [PMID: 26407189 DOI: 10.1039/c5fd00107b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We explore the distribution and shape of single molecule spectra at room temperature, when embedded in a polymer host. Multicolour excitation and emission spectroscopy is implemented to capture the full inhomogeneous distribution. We observe dramatic spectral changes in a distribution of single quaterrylene diimide (QDI) molecules isolated in a PMMA matrix. The molecules are strongly blue shifted with respect to the ensemble absorption maximum and spread over a staggering 200 nm range. Despite these strong shifts, the shape of the emission spectra does not differ much between individual molecules. We demonstrate that a considerable number of molecules may be invisible in single molecule experiments, as they typically rely on only a single excitation wavelength, which predetermines which subensemble is probed in the experiment. Lastly, we make a first step towards single molecule excitation spectroscopy under ambient conditions, which allows us to determine the spectral range at which individual molecules absorb light most efficiently. We show how single molecule emission and excitation spectroscopies can complement each other and a combination of both techniques can help in understanding the origin of underlaying spectral properties of individual molecules.
Collapse
Affiliation(s)
- Lukasz Piatkowski
- ICFO-Institut de Ciences Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | |
Collapse
|
37
|
Liu Y, Zhao Z, Lam JWY, Zhao Y, Chen Y, Liu Y, Tang BZ. Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00860] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yajing Liu
- HKUST-Shenzhen Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yueyue Zhao
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuncong Chen
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yong Liu
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department
of Chemistry, Division of Life Science, State Key Laboratory of Molecular
Neuroscience, Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Single-molecule imaging of organic semiconductors: Toward nanoscale insights into photophysics and molecular packing. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Li W, Stein SC, Gregor I, Enderlein J. Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. OPTICS EXPRESS 2015; 23:3770-83. [PMID: 25836229 DOI: 10.1364/oe.23.003770] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We developed a stand-alone cryostat with optical access to the sample which can be adapted to any epi-fluorescence microscope for single-molecule fluorescence spectroscopy and imaging. The cryostat cools the sample to a cryogenic temperature of 89 K, and allows for imaging single molecules using an air objective with a numerical aperture of 0.7. An important property of this system is its excellent thermal and mechanical stability, enabling long-time observations of samples over several hours with negligible drift. Using this system, we performed photo-bleaching studies of Atto647N dye molecules, and find an improvement of the photostability of these molecules by more than two orders of magnitude. The resulting increased photon numbers of several millions allow for single-molecule localization accuracy of sub-nanometer.
Collapse
|
40
|
Merdasa A, Jiménez ÁJ, Camacho R, Meyer M, Würthner F, Scheblykin IG. Single Lévy states-disorder induced energy funnels in molecular aggregates. NANO LETTERS 2014; 14:6774-6781. [PMID: 25349900 DOI: 10.1021/nl5021188] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using fluorescence super-resolution microscopy we studied simultaneous spectral, spatial localization, and blinking behavior of individual 1D J-aggregates. Excitons migrating 100 nm are funneled to a trap appearing as an additional red-shifted blinking fluorescence band. We propose that the trap is a Frenkel exciton state formed much below the main exciton band edge due to an environmentally induced heavy-tailed Lévy disorder. This points to disorder engineering as a new avenue in controlling light-harvesting in molecular ensembles.
Collapse
Affiliation(s)
- Aboma Merdasa
- Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
41
|
Kaufmann R, Hagen C, Grünewald K. Fluorescence cryo-microscopy: current challenges and prospects. Curr Opin Chem Biol 2014; 20:86-91. [PMID: 24951858 PMCID: PMC4094034 DOI: 10.1016/j.cbpa.2014.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/09/2014] [Indexed: 11/25/2022]
Abstract
CryoFM allows imaging of vitrified biological samples with fluorescence microscopy. There are significant challenges to achieve high-resolution cryoFM imaging. Fluorophore characteristics at low temperature offer additional advantages. Cryo super-resolution fluorescence imaging will give dramatic resolution improvement.
Studying biological structures with fine details does not only require a microscope with high resolution, but also a sample preparation process that preserves the structures in a near-native state. Live-cell imaging is restricted mostly to the field of light microscopy. For studies requiring much higher resolution, fast freezing techniques (vitrification) are successfully used to immobilize the sample in a near-native state for imaging with electron and X-ray cryo-microscopy. Fluorescence cryo-microscopy combines imaging of vitrified samples with the advantages of fluorescence labeling of biological structures. Technical considerations as well as the behavior of fluorophores at low temperatures have to be taken into account for developing or adapting super-resolution methods under cryo conditions to exploit the full potential of this technique.
Collapse
Affiliation(s)
- Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|