1
|
Liu Y, Chu M, Li X, Cao Z, Zhao X, Yin Y, Jiang Z. Photoredox Catalytic Deracemization Enabled Enantioselective and Modular Access to Axially Chiral N-Arylquinazolinones. Angew Chem Int Ed Engl 2024; 63:e202411236. [PMID: 39045910 DOI: 10.1002/anie.202411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Visible light-driven photocatalytic deracemization is highly esteemed as an ideal tool for organic synthesis due to its exceptional atom economy and synthetic efficiency. Consequently, successful instances of deracemization of allenes have been established, where the activated energy of photosensitizer should surpass that of the substrates, representing an intrinsic requirement. Accordingly, this method is not applicable for axially chiral molecules with significantly high triplet energies. In this study, we present a photoredox catalytic deracemization approach that enables the efficient synthesis of valuable yet challenging-to-access axially chiral 2-azaarene-functionalized quinazolinones. The substrate scope is extensive, allowing for both 3-axis and unmet 1-axis assembly through facile oxidation of diverse central chiral 2,3-dihydroquinazolin-4(1H)-ones that can be easily prepared and achieve enantiomer enrichment via deracemization. Mechanistic studies reveal the importance of photosensitizer selection in attaining excellent chemoselectivity and highlight the indispensability of a chiral Brønsted acid in enabling highly enantioselective protonation to accomplish efficient deracemization.
Collapse
Affiliation(s)
- Yilin Liu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Mengqi Chu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Zheng Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R., China, 451001
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| |
Collapse
|
2
|
Ozgun U, Genc HN. Catalytic Performance of Chiral Tetraaza-Bridged Calix[4]arene[2]triazine Derivatives for Enantioselective Michael Reactions. Chirality 2024; 36:e23711. [PMID: 39267303 DOI: 10.1002/chir.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/17/2024]
Abstract
Novel chiral tetraaza-bridged calix[4]arene[2]triazine-based organocatalysts were synthesized and used for catalytic asymmetric Michael reaction of acetylacetone to various aromatic nitrostyrenes. Chiral subunits (R)- and (S)-1,2,3,4-tetrahydro-1-naphthylamine were attached to the tetraaza-bridged calix[4]arene[2]triazine platform in both enantiomeric forms. The R configuration of the major enantiomer of the Michael product was obtained when 3a was used as catalyst, and the S configuration was obtained when 3b was used as catalyst. This indicated that the configuration of the Michael product was controlled by the chiral calixarene moiety. The Michael adducts were obtained in excellent yields (91%) and enantioselectivities (98%).
Collapse
Affiliation(s)
- Ummu Ozgun
- Department of Chemistry, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
- Faculty of Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Hayriye Nevin Genc
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
3
|
Wang J, Fu Q, Cao S, Lv X, Yin Y, Ban X, Zhao X, Jiang Z. Enantioselective [2 + 2] Photocycloreversion Enables De Novo Deracemization Synthesis of Cyclobutanes. J Am Chem Soc 2024; 146:22840-22849. [PMID: 39094097 DOI: 10.1021/jacs.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
While photochemical deracemization significantly enhances atom economy by eliminating the necessity for additional oxidants or reductants, the laborious presynthesis of substrates from feedstock chemicals is often required, thereby compromising the practicality of this method. In this study, we propose a novel approach known as de novo deracemization synthesis, which involves direct utilization of simple substrates undergoing both photochemical transformation and reversible photochemical transformation. The efficient enantiocontrol of chiral catalysts in the latter process establishes an effective platform for deracemization. This alternative and practical approach to address the challenges of asymmetric photocatalysis has been successfully demonstrated in the photosensitized de novo deracemization synthesis of azaarene-functionalized cyclobutanes featuring three stereocenters, including an all-carbon quaternary center. By exclusively employing a suitable chiral catalyst to enable kinetically controlled [2 + 2] photocycloreversion, we pave a creative path toward achieving more cost-effective photochemical deracemization.
Collapse
Affiliation(s)
- Jiahao Wang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianqian Fu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Shanshan Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xinxin Lv
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xu Ban
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
4
|
Abdulrasheed M, Sardauna AE, Alhaffar MT, Takahashi M, Takahashi E, Hamdan SM, Musa MM. Enantiocomplementary Asymmetric Reduction of 2-Haloacetophenones Using TeSADH: Synthesis of Enantiopure 2-Halo-1-arylethanols. ACS OMEGA 2024; 9:35046-35051. [PMID: 39157145 PMCID: PMC11325397 DOI: 10.1021/acsomega.4c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Enantiopure 2-halo-1-arylethanols are essential precursors for the synthesis of pharmaceuticals, agrochemicals, and fine chemicals. This study investigates the asymmetric reduction of 2-haloacetophenones and their substituted analogs to obtain their corresponding optically active 2-halo-1-arylethanols using secondary alcohol dehydrogenase from Thermoanaerobacter pseudethanolicus (TeSADH) mutants. Specifically, the ΔP84/A85G and P84S/A85G TeSADH mutants were evaluated for the asymmetric reduction of 2-haloacetophenones, generating their corresponding optically active halohydrins with high enantioselectivities. The asymmetric reduction of 2-haloacetophenones and their substituted analogs using the ΔP84/A85G TeSADH mutant yielded their corresponding (S)-2-halo-1-arylethanols with high enantiopurity in accordance with the anti-Prelog's rule. Conversely, the P84S/A85G TeSADH mutant produced (R)-alcohols when reducing 2-chloro-4'-chloroacetophenone, 2-chloro-4'-bromoacetophenone, and 2-bromo-4'-chloroacetophenone, while generating the (S)-configured halohydrin from 2-chloro-4'-fluoroacetophenone. Asymmetric reduction of the unsubstituted 2-bromoacetophenone, 2-chloroacetophenone, and 2,2,2-trifluoroacetophenone resulted in production of their (S)-halohydrins with the tested mutants, which reflects the importance of the nature of the substituent on the substrate's ring in controlling the stereopreference of these TeSADH-catalyzed reduction reactions. These findings contribute to the understanding and application of TeSADH in synthesizing optically active compounds and aid in the design of further mutants with the desired stereopreference.
Collapse
Affiliation(s)
- Muhammad Abdulrasheed
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Auwal Eshi Sardauna
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Mouheddin T. Alhaffar
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary
Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Masateru Takahashi
- Bioscience
Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Etsuko Takahashi
- Bioscience
Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Samir M. Hamdan
- Bioscience
Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Musa M. Musa
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary
Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
O'Connell A, Barry A, Burke AJ, Hutton AE, Bell EL, Green AP, O'Reilly E. Biocatalysis: landmark discoveries and applications in chemical synthesis. Chem Soc Rev 2024; 53:2828-2850. [PMID: 38407834 DOI: 10.1039/d3cs00689a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Biocatalysis has become an important tool in chemical synthesis, allowing access to complex molecules with high levels of activity and selectivity and with low environmental impact. Key discoveries in protein engineering, bioinformatics, recombinant technology and DNA sequencing have contributed towards the rapid acceleration of the field. This tutorial review explores enzyme engineering strategies and high-throughput screening approaches that have been applied for the discovery and development of enzymes for synthetic application. Landmark developments in the field are discussed and have been carefully selected to highlight the diverse synthetic applications of enzymes within the pharmaceutical, agricultural, food and chemical industries. The design and development of artificial biocatalytic cascades is also examined. This tutorial review will give readers an insight into the landmark discoveries and milestones that have helped shape and grow this branch of catalysis since the discovery of the first enzyme.
Collapse
Affiliation(s)
- Adam O'Connell
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Amber Barry
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elizabeth L Bell
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Lee Y, Chong S, Lee C, Kim J, Choi SQ. Structural Determinants of Chirally Selective Transport of Amino Acids through the α-Hemolysin Protein Nanopores of Free-Standing Planar Lipid Membranes. NANO LETTERS 2024; 24:681-687. [PMID: 38185873 DOI: 10.1021/acs.nanolett.3c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Despite the importance of the enantioselective transport of amino acids through transmembrane protein nanopores from fundamental and practical perspectives, little has been explored to date. Here, we study the transport of amino acids through α-hemolysin (αHL) protein pores incorporated into a free-standing lipid membrane. By measuring the transport of 13 different amino acids through the αHL pores, we discover that the molecular size of the amino acids and their capability to form hydrogen bonds with the pore surface determine the chiral selectivity. Molecular dynamics simulations corroborate our findings by revealing the enantioselective molecular-level interactions between the amino acid enantiomers and the αHL pore. Our work is the first to present the determinants for chiral selectivity using αHL protein as a molecular filter.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sanggyu Chong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Chiwoo Lee
- Chiral Technology Korea (CTK), Daejeon 34013, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Großkopf J, Bach T. Catalytic Photochemical Deracemization via Short-Lived Intermediates. Angew Chem Int Ed Engl 2023; 62:e202308241. [PMID: 37428113 DOI: 10.1002/anie.202308241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
8
|
Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Creating a Defined Chirality in Amino Acids and Cyclic Dipeptides by Photochemical Deracemization. Angew Chem Int Ed Engl 2023; 62:e202313606. [PMID: 37793026 DOI: 10.1002/anie.202313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
9
|
Cassels WR, Fulton JL, Johnson JS. Enantioconvergent iso-Pictet-Spengler Reactions: Organocatalytic Synthesis of Chiral Tetrahydro-γ-carbolines. Org Lett 2023; 25:5248-5252. [PMID: 37410881 PMCID: PMC10529283 DOI: 10.1021/acs.orglett.3c01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Enantioconvergent iso-Pictet-Spengler reactions of chiral racemic ß-formyl esters and a ß-keto ester are reported, providing complex tetrahydro-γ-carbolines containing two contiguous stereocenters. The reactions are catalyzed by a chiral thiourea and benzoic acid cocatalytic system and constitute rare cases of nonhydrogenative stereoconvergent additions to racemic α-stereogenic-ß-dicarbonyls. Elaboration of the products to chiral aminoalcohols and carbamates is demonstrated.
Collapse
Affiliation(s)
- William R Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jennifer L Fulton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
10
|
Cassels WR, Crawford ET, Johnson JS. Enantio- and Diastereoselective Mannich Reactions of ß-Dicarbonyls by Second Stage Diastereoconvergent Crystallization. ACS Catal 2023; 13:6518-6524. [PMID: 38046476 PMCID: PMC10688612 DOI: 10.1021/acscatal.3c01515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The synthesis of chiral α-monosubstituted-ß-dicarbonyls is a challenging task in asymmetric catalysis due to the rapid, typically uncontrolled, product racemization or epimerization under most reaction conditions. For this reason, diastereoselective additions of unsubstituted ß-dicarbonyls to π-electrophiles are unusual. Herein, we disclose a simple catalytic crystallization-driven enantio- and diastereoselective Mannich reaction for the synthesis of stereodefined α-monosubstituted-ß-keto esters, dissymmetric ß-diesters, dissymmetric ß-diketones, and ß-keto amides that productively leverages product epimerization in solution. Mechanistic studies suggest a scenario where the initial enantioselective, diastereodivergent skeletal assembly is catalyzed by a chiral tertiary amine organocatalyst, which then facilitates second stage crystallization-induced diastereoconvergence to provide the challenging α-stereocenter in excellent stereoselectivity.
Collapse
Affiliation(s)
- William R Cassels
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Evan T Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
11
|
Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. Conversion of Racemic Alkyl Aryl Sulfoxides into Pure Enantiomers Using a Recycle Photoreactor: Tandem Use of Chromatography on Chiral Support and Photoracemization on Solid Support. J Org Chem 2023. [PMID: 37155937 DOI: 10.1021/acs.joc.3c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chiral sulfoxides are valuable in the fields of medicinal chemistry and organic synthesis. A recycle photoreactor utilizing the concept of deracemization, where a racemate is converted into a pure enantiomer, is developed and successfully applied in the syntheses of chiral alkyl aryl sulfoxides. The recycling system consists of rapid photoracemization using an immobilized photosensitizer and separation of the enantiomers via chiral high-performance liquid chromatography, and the desired pure chiral sulfoxides are obtained after 4-6 cycles. The key to the success of the system is the photoreactor site, wherein the photosensitizer 2,4,6-triphenylpyrylium is immobilized on the resin and irradiated (405 nm) to enable the rapid photoracemizations of the sulfoxides. As the green recycle photoreactor requires no chiral components, it should be a useful alternative system for application in producing chiral compounds.
Collapse
Affiliation(s)
- Kumi Tozawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Yuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kayo Nakamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Akiko Inagaki
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Hidetsugu Tabata
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tetsuta Oshitari
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideaki Natsugari
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noritaka Kuroda
- YMC Co., Ltd., 284 Daigo, Karasuma Nishiiru Gojo-dori, Shimogyo-ku, Kyoto 600-8106, Japan
| | - Kunio Kanemaru
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Yuji Oda
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
12
|
Bearne SL, Hayden JA. Application of circular dichroism-based assays to racemases and epimerases: Recognition and catalysis of reactions of chiral substrates by mandelate racemase. Methods Enzymol 2023; 685:127-169. [PMID: 37245900 DOI: 10.1016/bs.mie.2023.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Racemases and epimerases have attracted much interest because of their astonishing ability to catalyze the rapid α-deprotonation of carbon acid substrates with high pKa values (∼13-30) leading to the formation of d-amino acids or various carbohydrate diastereomers that serve important roles in both normal physiology and pathology. Enzymatic assays to measure the initial rates of reactions catalyzed by these enzymes are discussed using mandelate racemase (MR) as an example. For MR, a convenient, rapid, and versatile circular dichroism (CD)-based assay has been used to determine the kinetic parameters accompanying the MR-catalyzed racemization of mandelate and alternative substrates. This direct, continuous assay permits real time monitoring of reaction progress, the rapid determination of initial velocities, and immediate recognition of anomalous behaviors. MR recognizes chiral substrates primarily through interactions of the phenyl ring of (R)- or (S)-mandelate with the hydrophobic R- or S-pocket at the active site, respectively. During catalysis, the carboxylate and α-hydroxyl groups of the substrate remain fixed in place through interactions with the Mg2+ ion and multiple H-bonding interactions, while the phenyl ring moves between the R- and S-pockets. The minimal requirements for the substrate appear to be the presence of a glycolate or glycolamide moiety, and a hydrophobic group of limited size that can stabilize the carbanionic intermediate through resonance or strong inductive effects. Similar CD-based assays may be applied to determine the activity of other racemases or epimerases with proper consideration of the molar ellipticity, wavelength, overall absorbance of the sample, and the light pathlength.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| | - Joshua A Hayden
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. Multifaceted View on the Mechanism of a Photochemical Deracemization Reaction. J Am Chem Soc 2023; 145:2354-2363. [PMID: 36660908 DOI: 10.1021/jacs.2c11265] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Upon irradiation in the presence of a chiral benzophenone catalyst (5 mol %), a racemic mixture of a given chiral imidazolidine-2,4-dione (hydantoin) can be converted almost quantitatively into the same compound with high enantiomeric excess (80-99% ee). The mechanism of this photochemical deracemization reaction was elucidated by a suite of mechanistic experiments. It was corroborated by nuclear magnetic resonance titration that the catalyst binds the two enantiomers by two-point hydrogen bonding. In one of the diastereomeric complexes, the hydrogen atom at the stereogenic carbon atom is ideally positioned for hydrogen atom transfer (HAT) to the photoexcited benzophenone. Detection of the protonated ketyl radical by transient absorption revealed hydrogen abstraction to occur from only one but not from the other hydantoin enantiomer. Quantum chemical calculations allowed us to visualize the HAT within this complex and, more importantly, showed that the back HAT does not occur to the carbon atom of the hydantoin radical but to its oxygen atom. The achiral enol formed in this process could be directly monitored by its characteristic transient absorption signal at λ ≅ 330 nm. Subsequent tautomerization leads to both hydantoin enantiomers, but only one of them returns to the catalytic cycle, thus leading to an enrichment of the other enantiomer. The data are fully consistent with deuterium labeling experiments and deliver a detailed picture of a synthetically useful photochemical deracemization reaction.
Collapse
Affiliation(s)
- Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Nils van Staalduinen
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Antonia Seitz
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Philipp Pracht
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stefan Breitenlechner
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| |
Collapse
|
14
|
Liu L. Hydride-Abstraction-Initiated Catalytic Stereoselective Intermolecular Bond-Forming Processes. Acc Chem Res 2022; 55:3537-3550. [PMID: 36384272 DOI: 10.1021/acs.accounts.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| |
Collapse
|
15
|
Wang J, Peng Y, Xu J, Wu Q. Deracemization of racemic alcohols combining photooxidation and biocatalytic reduction. Org Biomol Chem 2022; 20:7765-7769. [PMID: 36165209 DOI: 10.1039/d2ob01386j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described a cascade reaction for deracemization of racemic alcohols combining photooxidation and enzymatic reduction under mild conditions without the isolation of intermediate ketones. Using different ketoreductases, a variety of racemic alcohols can be successfully converted into (R)- or (S)-enantiomers in high yields (up to 95%) and stereoselectivity (up to 99%).
Collapse
Affiliation(s)
- Jianfeng Wang
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China. .,Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Yongzhen Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
16
|
Asano K, Matsubara S. Organocatalytic Access to Tetrasubstituted Chiral Carbons Integrating Functional Groups. CHEM REC 2022:e202200200. [PMID: 36163471 DOI: 10.1002/tcr.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Three-dimensional organic structures containing sp3 carbons bearing four non-hydrogen substituents can provide drug-like molecules. Although such complex structures are challenging targets in synthetic organic chemistry, efficient synthetic approaches will open a new chemical space for pharmaceutical candidates. This review provides an account of our recent achievements in developing organocatalytic approaches to attractive molecular platforms based on optically active sp3 carbons integrating four different functional groups. These methodologies include asymmetric cycloetherification and cyanation of multifunctional ketones, both of which take advantage of the mild characteristics of organocatalytic activation. Enzyme-like but non-enzymatic organocatalytic systems can be used to precisely manufacture molecules containing complex chiral structures without substrate specificity problems. In addition, these catalytic systems control not only stereoselectivity but also site-selectivity and do not induce side reactions even from substrates with rich functionality.
Collapse
Affiliation(s)
- Keisuke Asano
- Institute for Catalysis, Hokkaido University Sapporo, Hokkaido, 001-0021, Japan
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigaku-Katsura, Nishikyo, Kyoto, 615-8510, Japan
| |
Collapse
|
17
|
Liang D, Xiao W, Lakhdar S, Chen J. Construction of axially chiral compounds via catalytic asymmetric radical reaction. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Photochemical α-Deracemization of Carbonyl Compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Musa MM. Alcohol Dehydrogenases with anti-Prelog Stereopreference in Synthesis of Enantiopure Alcohols. ChemistryOpen 2022; 11:e202100251. [PMID: 35191611 PMCID: PMC8973272 DOI: 10.1002/open.202100251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Biocatalytic production of both enantiomers of optically active alcohols with high enantiopurities is of great interest in industry. Alcohol dehydrogenases (ADHs) represent an important class of enzymes that could be used as catalysts to produce optically active alcohols from their corresponding prochiral ketones. This review covers examples of the synthesis of optically active alcohols using ADHs that exhibit anti-Prelog stereopreference. Both wild-type and engineered ADHs that exhibit anti-Prelog stereopreference are highlighted.
Collapse
Affiliation(s)
- Musa M. Musa
- Department of Chemistry Interdisciplinary Research Center for Refining and Advanced ChemicalsKing Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
| |
Collapse
|
20
|
Song J, Zheng WH. Kinetic Resolution of Tertiary Alcohols by Chiral Organotin-Catalyzed O-Acylation. Org Lett 2022; 24:2349-2353. [PMID: 35315279 DOI: 10.1021/acs.orglett.2c00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel highly enantioselective method for the kinetic resolution of racemic tertiary alcohols has been achieved through chiral organotin-catalyzed intermolecular acylation of the hydroxyl group. This process has demonstrated a broad substrate scope (both alkyl- and aryl-substituted tertiary alcohols) with high enantioselectivity under mild reaction conditions, affording the corresponding products and the recovered tertiary alcohols with high enantioselectivities, with s factors up to >200.
Collapse
Affiliation(s)
- Jian Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China
| |
Collapse
|
21
|
Su Y, Zou Y, Xiao W. Recent Advances in Photocatalytic Deracemization. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. Photochemical Deracemization at sp 3-Hybridized Carbon Centers via a Reversible Hydrogen Atom Transfer. J Am Chem Soc 2021; 143:21241-21245. [PMID: 34902253 DOI: 10.1021/jacs.1c11266] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A photochemical deracemization of 5-substituted 3-phenylimidazolidine-2,4-diones (hydantoins) is reported (27 examples, 69%-quant., 80-99% ee). The reaction is catalyzed by a chiral diarylketone which displays a two-point hydrogen bonding site. Mechanistic evidence (DFT calculations, radical clock experiments, H/D labeling) suggests the reaction to occur by selective hydrogen atom transfer (HAT). Upon hydrogen binding, one substrate enantiomer displays the hydrogen atom at the stereogenic center to the photoexcited catalyst allowing for a HAT from the substrate and eventually for its conversion into the product enantiomer. The product enantiomer is not processed by the catalyst and is thus enriched in the photostationary state.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Manuel Plaza
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Antonia Seitz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
23
|
Zhang Z, Hu X. Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021; 60:22833-22838. [PMID: 34397164 PMCID: PMC8519112 DOI: 10.1002/anie.202107570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Deracemization of racemic chiral compounds is an attractive approach in asymmetric synthesis, but its development has been hindered by energetic and kinetic challenges. Here we describe a catalytic deracemization method for secondary benzylic alcohols which are important synthetic intermediates and end products for many industries. Driven by visible light only, this method is based on sequential photochemical dehydrogenation followed by enantioselective thermal hydrogenation. The combination of a heterogeneous dehydrogenation photocatalyst and a chiral molecular hydrogenation catalyst is essential to ensure two distinct pathways for the forward and reverse reactions. These reactions convert a large number of racemic aryl alkyl alcohols into their enantiomerically enriched forms in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| |
Collapse
|
24
|
Zhang Z, Hu X. Visible‐Light‐Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
25
|
De Jesús Cruz P, Crawford ET, Liu S, Johnson JS. Stereodivergent Nucleophilic Additions to Racemic β-Oxo Acid Derivatives: Fast Addition Outcompetes Stereoconvergence in the Archetypal Configurationally Unstable Electrophile. J Am Chem Soc 2021; 143:16264-16273. [PMID: 34570512 DOI: 10.1021/jacs.1c07702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Additions of carbon nucleophiles to racemic α-stereogenic β-oxo acid derivatives that deliver enantiomerically enriched tertiary alcohols are valuable, but uncommon. This article describes stereodivergent Cu-catalyzed borylative cyclizations of racemic β-oxo acid derivatives bearing tethered pro-nucleophilic olefins to deliver highly functionalized cyclopentanols containing four contiguous stereogenic centers. The reported protocol is applicable to a range of β-oxo acid derivatives, and the diastereomeric products are readily isolable by typical chromatographic techniques. α-Stereogenic-β-keto esters are typically thought to have extreme or spontaneous configurational fragility, but mechanistic studies for this system reveal an unusual scenario wherein productive catalysis occurs on the same time scale as background substrate racemization and completely outcompetes on-cycle epimerization, even under the basic conditions of the reaction.
Collapse
Affiliation(s)
- Pedro De Jesús Cruz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Evan T Crawford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shubin Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.,Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3420, United States
| | - Jeffrey S Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
26
|
Recent Advances in Selected Asymmetric Reactions Promoted by Chiral Catalysts: Cyclopropanations, Friedel–Crafts, Mannich, Michael and Other Zinc-Mediated Processes—An Update. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The main purpose of this review article is to present selected asymmetric synthesis reactions in which chemical and stereochemical outcomes are dependent on the use of an appropriate chiral catalyst. Optically pure or enantiomerically enriched products of such transformations may find further applications in various fields. Among an extremely wide variety of asymmetric reactions catalyzed by chiral systems, we are interested in: asymmetric cyclopropanation, Friedel–Crafts reaction, Mannich and Michael reaction, and other stereoselective processes conducted in the presence of zinc ions. This paper describes the achievements of the above-mentioned asymmetric transformations in the last three years. The choice of reactions is related to the research that has been carried out in our laboratory for many years.
Collapse
|
27
|
Zhang C, Gao AZ, Nie X, Ye CX, Ivlev SI, Chen S, Meggers E. Catalytic α-Deracemization of Ketones Enabled by Photoredox Deprotonation and Enantioselective Protonation. J Am Chem Soc 2021; 143:13393-13400. [PMID: 34392683 DOI: 10.1021/jacs.1c06637] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.
Collapse
Affiliation(s)
- Chenhao Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Anthony Z Gao
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Xin Nie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Chen-Xi Ye
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
28
|
Zhao Z, Wang C, Chen Q, Wang Y, Xiao R, Tan C, Liu G. Phase Separation‐Promoted Redox Deracemization of Secondary Alcohols over a Supported Dual Catalysts System. ChemCatChem 2021. [DOI: 10.1002/cctc.202100738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhitong Zhao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chengyi Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Yu Wang
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Rui Xiao
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Chunxia Tan
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education Shanghai Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
29
|
Zhong H, Zhao B, Deng J. Chiral magnetic hybrid materials constructed from macromolecules and their chiral applications. NANOSCALE 2021; 13:11765-11780. [PMID: 34231630 DOI: 10.1039/d1nr01939b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chirality is a fundamental and ubiquitous feature of living organisms in nature. Magnetic materials, in particular magnetic nanoparticles (MNPs), show some interesting properties such as large specific surface area, easy surface modification, magnetic responsivity and separation ability. Integrating MNPs with chirality in a single material will undoubtedly create a large number of advanced multi-functional materials. Despite the great advancements made in this area, there have been no review articles to summarize the relevant studies. The present work reviews the major progress recently made in constructing chiral magnetic hybrid materials (CMHMs) using macromolecules, which are classified based on the primary chiral macromolecular organic components, namely, biological polymers and synthetic polymers, and the applications of the resulting chiral hybrids in chiral research fields, including asymmetric catalysis, enzymatic resolution, chromatographic separation, enantioselective crystallization and enantioselective adsorption, are also summarized. The challenges and prospects of related research fields are proposed in the last section.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | | | |
Collapse
|
30
|
Chen X, Zhao R, Liu Z, Sun S, Ma Y, Liu Q, Sun X, Liu L. Redox deracemization of α-substituted 1,3-dihydroisobenzofurans. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Metlushka KE, Sadkova DN, Nikitina KA, Zinnatullin RG, Yamaleeva ZR, Ivshin KA, Kiiamov AG, Kataeva ON. Chiral recognition of N-thiophosphorylated thioureas via nickel(ii) coordination assisted by 4-dimethylaminopyridine. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Sinast M, Claasen B, Stöckl Y, Greulich A, Zens A, Baro A, Laschat S. Synthesis of Highly Functionalized Hydrindanes via Sequential Organocatalytic Michael/Mukaiyama Aldol Addition and Telescoped Hydrozirconation/Cross-Coupling as Key Steps: En Route to the AB System of Clifednamides. J Org Chem 2021; 86:7537-7551. [PMID: 34014095 DOI: 10.1021/acs.joc.1c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The AB ring systems of the clifednamide family, polycyclic tetramate macrolactames (PoTeMs), were prepared by a new, convergent approach employing an intramolecular Diels-Alder (IMDA) reaction. Key steps comprise an organocatalytic Michael addition (>90% enantiomeric excess (ee)), a Mukaiyama aldol reaction for the convergent installation of a diene moiety, and a telescoped hydrozirconation/cross-coupling grafting an enone. The following IMDA furnished a highly functionalized hydrindane (diastereomeric ratio (dr) = 91:1) with the same configuration as the clifednamide scaffold. Advantages of this route are only one required protecting group, 13% overall yield over 9 steps (reduced from previously 17 steps/1.3% overall), and the potential access to the key intermediates in the clifednamide biosynthesis.
Collapse
Affiliation(s)
- Moritz Sinast
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Yannick Stöckl
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Andreas Greulich
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Anna Zens
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angelika Baro
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
33
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lucy A. Harwood
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| | - Jeremy Robertson
- Department of Chemistry University of Oxford Chemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Oxford Suzhou Centre for Advanced Research Ruo Shui Road, Suzhou Industrial Park Jiangsu 215123 P. R. China
| |
Collapse
|
34
|
Harwood LA, Wong LL, Robertson J. Enzymatic Kinetic Resolution by Addition of Oxygen. Angew Chem Int Ed Engl 2021; 60:4434-4447. [PMID: 33037837 PMCID: PMC7986699 DOI: 10.1002/anie.202011468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 12/25/2022]
Abstract
Kinetic resolution using biocatalysis has proven to be an excellent complementary technique to traditional asymmetric catalysis for the production of enantioenriched compounds. Resolution using oxidative enzymes produces valuable oxygenated structures for use in synthetic route development. This Minireview focuses on enzymes which catalyse the insertion of an oxygen atom into the substrate and, in so doing, can achieve oxidative kinetic resolution. The Baeyer-Villiger rearrangement, epoxidation, and hydroxylation are included, and biological advancements in enzyme development, and applications of these key enantioenriched intermediates in natural product synthesis are discussed.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Luet L. Wong
- Department of ChemistryUniversity of OxfordInorganic Chemistry LaboratorySouth Parks RoadOxfordOX1 3QRUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| | - Jeremy Robertson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Oxford Suzhou Centre for Advanced ResearchRuo Shui Road, Suzhou Industrial ParkJiangsu215123P. R. China
| |
Collapse
|
35
|
Asano K. Multipoint Recognition of Molecular Conformations with Organocatalysts for Asymmetric Synthetic Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Keisuke Asano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo, Kyoto 615-8510, Japan
| |
Collapse
|
36
|
Carneiro T, Wrzosek K, Bettenbrock K, Lorenz H, Seidel‐Morgenstern A. Immobilization of an amino acid racemase for application in crystallization-based chiral resolutions of asparagine monohydrate. Eng Life Sci 2020; 20:550-561. [PMID: 33304228 PMCID: PMC7708953 DOI: 10.1002/elsc.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/04/2023] Open
Abstract
Integration of racemization and a resolution process is an attractive way to overcome yield limitations in the production of pure chiral molecules. Preferential crystallization and other crystallization-based techniques usually produce low enantiomeric excess in solution, which is a constraint for coupling with racemization. We developed an enzymatic fixed bed reactor that can potentially overcome these unfavorable conditions and improve the overall yield of preferential crystallization. Enzyme immobilization strategies were investigated on covalent-binding supports. The amino acid racemase immobilized in Purolite ECR 8309F with a load of 35 mg-enzyme/g-support showed highest specific activity (approx. 500 U/g-support) and no loss in activity in reusability tests. Effects of substrate inhibition observed for the free enzyme were overcome after immobilization. A packed bed reactor with the immobilized racemase showed good performance in steady state operation processing low enantiomeric excess inlet. Kinetic parameters from batch reactor experiments can be successfully used for prediction of packed bed reactor performance. Full conversions could be achieved for residence times above 1.1 min. The results suggest the potential of the prepared racemase reactor to be combined with preferential crystallization to improve resolution of asparagine enantiomers.
Collapse
Affiliation(s)
- Thiane Carneiro
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katarzyna Wrzosek
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Heike Lorenz
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
| | - Andreas Seidel‐Morgenstern
- Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
- Otto‐von‐Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
37
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3‐Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Roger J. Kutta
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
38
|
Hu CX, Chen L, Hu D, Song X, Chen ZC, Du W, Chen YC. Construction of Enantioenriched 9H-Fluorene Frameworks via a Cascade Reaction Involving Remote Vinylogous Dynamic Kinetic Resolution. Org Lett 2020; 22:8973-8977. [PMID: 33175549 DOI: 10.1021/acs.orglett.0c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cui-Xia Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
39
|
Redox-driven deracemization of secondary alcohols by sequential ether/O2-mediated oxidation and Ru-catalyzed asymmetric reduction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yuan B, Debecker DP, Wu X, Xiao J, Fei Q, Turner NJ. One‐pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation. ChemCatChem 2020. [DOI: 10.1002/cctc.202001191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology M1 7DN Manchester UK
| | - Damien P. Debecker
- Institute of Condensed Matter and Nanosciences (IMCN) Université catholique de Louvain (UCLouvain) Ottignies-Louvain-la-Neuve 1348 Louvain-La-Neuve Belgium
| | - Xiaofeng Wu
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool L69 7ZD Liverpool UK
| | - Qiang Fei
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Nicholas J. Turner
- Department of Chemistry University of Manchester Manchester Institute of Biotechnology M1 7DN Manchester UK
| |
Collapse
|
41
|
Chu H, Cheng J, Yang J, Guo Y, Zhang J. Asymmetric Dearomatization of Indole by Palladium/PC‐Phos‐Catalyzed Dynamic Kinetic Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haoke Chu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Jie Cheng
- Stake Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Yin‐Long Guo
- Stake Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
42
|
Chu H, Cheng J, Yang J, Guo YL, Zhang J. Asymmetric Dearomatization of Indole by Palladium/PC-Phos-Catalyzed Dynamic Kinetic Transformation. Angew Chem Int Ed Engl 2020; 59:21991-21996. [PMID: 32851748 DOI: 10.1002/anie.202010164] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 01/08/2023]
Abstract
A palladium-catalyzed intermolecular dynamic kinetic asymmetric dearomatization of 3-arylindoles with internal alkynes was developed with the use of achiral Xantphos and chiral sulfinamide phosphine ligand (PC-Phos) as the co-ligands. This method could deliver various spiro[indene-1,3'-indole] compounds in good yields (up to 95 % yield) with up to 98 % ee. The salient features of the transformation include the use of readily available substrates, ease of scale-up and the versatile functionalization of the products. The mechanistic experiments gave some insights on active intermediates.
Collapse
Affiliation(s)
- Haoke Chu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jie Cheng
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yin-Long Guo
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
43
|
Biswas A, Mondal H, Maji MS. Synthesis of Heterocycles by isothiourea organocatalysis. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anup Biswas
- Department of Chemistry Hooghly Women's College Hooghly India
| | - Haripriyo Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur India
| | - Modhu S. Maji
- Department of Chemistry Indian Institute of Technology Kharagpur India
| |
Collapse
|
44
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3-Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020; 59:21640-21647. [PMID: 32757341 PMCID: PMC7756555 DOI: 10.1002/anie.202008384] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/17/2022]
Abstract
The photochemical deracemization of spiro[cyclopropane‐1,3′‐indolin]‐2′‐ones (spirocyclopropyl oxindoles) was studied. The corresponding 2,2‐dichloro compound is configurationally labile upon direct irradiation at λ=350 nm and upon irradiation at λ=405 nm in the presence of achiral thioxanthen‐9‐one as the sensitizer. The triplet 1,3‐diradical intermediate generated in the latter reaction was detected by transient absorption spectroscopy and its lifetime determined (τ=22 μs). Using a chiral thioxanthone or xanthone, with a lactam hydrogen bonding site as a photosensitizer, allowed the deracemization of differently substituted chiral spirocyclopropyl oxindoles with yields of 65–98 % and in 50–85 % ee (17 examples). Three mechanistic contributions were identified to co‐act favorably for high enantioselectivity: the difference in binding constants to the chiral thioxanthone, the smaller molecular distance in the complex of the minor enantiomer, and the lifetime of the intermediate 1,3‐diradical.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Roger J Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
45
|
One-pot two-step chemoenzymatic deracemization of allylic alcohols using laccases and alcohol dehydrogenases. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Plaza M, Jandl C, Bach T. Photochemical Deracemization of Allenes and Subsequent Chirality Transfer. Angew Chem Int Ed Engl 2020; 59:12785-12788. [PMID: 32390291 PMCID: PMC7537568 DOI: 10.1002/anie.202004797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Trisubstituted allenes with a 3-(1'-alkenylidene)-pyrrolidin-2-one motif were successfully deracemized (13 examples, 86-98 % ee) employing visible light (λ=420 nm) and a chiral triplet sensitizer as the catalyst (2.5 mol %). The photocatalyst likely operates by selective recognition of one allene enantiomer via hydrogen bonds and by a triplet-sensitized racemization process. Even a tetrasubstituted allene (45 % ee) and a seven-membered 3-(1'-alkenylidene)-azepan-2-one (62 % ee) could be enantiomerically enriched under the chosen conditions. It was shown that the axial chirality of the allenes can be converted into point chirality by a Diels-Alder (94-97 % ee) or a bromination reaction (91 % ee). Ring opening of the five-membered pyrrolidin-2-one was achieved without significantly compromising the integrity of the chirality axis (92 % ee).
Collapse
Affiliation(s)
- Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstrasse 485747GarchingGermany
| |
Collapse
|
47
|
Nafiu SA, Takahashi M, Takahashi E, Hamdan SM, Musa MM. Deracemization and Stereoinversion of Alcohols Using Two Mutants of Secondary Alcohol Dehydrogenase from Thermoanaerobacter pseudoethanolicus. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sodiq A. Nafiu
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| | - Masateru Takahashi
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Etsuko Takahashi
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Samir M. Hamdan
- Division of Biological and Environmental Sciences and Engineering; King Abdullah University of Science and Technology; 23955-6900 Thuwal KSA
| | - Musa M. Musa
- Chemistry Department; King Fahd University of Petroleum and Minerals; 31261 Dhahran KSA
| |
Collapse
|
48
|
Mao Y, Wang Z, Wang G, Zhao R, Kan L, Pan X, Liu L. Redox Deracemization of Tertiary Stereocenters Adjacent to an Electron-Withdrawing Group. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02486] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Mao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zehua Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ran Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Linglong Kan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaoguang Pan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lei Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
49
|
Plaza M, Jandl C, Bach T. Photochemical Deracemization of Allenes and Subsequent Chirality Transfer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
50
|
Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, Charan PD, Purohit P, Bhandari HS, Bhojak N, Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem 2020; 67:586-601. [PMID: 32248597 DOI: 10.1002/bab.1919] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/03/2023]
Abstract
Enzymes are highly efficient and selective biocatalysts, present in the living beings. They exist in enormous varieties in terms of the types of reactions catalyzed by them for instance oxidation-reduction, group transfers within the molecules or between the molecules, hydrolysis, isomerization, ligation, bond cleavage, and bond formation. Besides, enzyme based catalyses are performed with much higher fidelity, under mild reaction conditions and are highly efficient in terms of number of steps, giving them an edge over their chemical counter parts. The unique characteristics of enzymes makes them highly applicable fora number of chemical transformation reactions in pharmaceutical industries, such as group protection and deprotection, selective acylation and deacylation, selective hydrolysis, deracemization, kinetic resolution of racemic mixtures, esterification, transesterification, and many others. In this review, an overview of the enzymes, their production and their applications in pharmaceutical syntheses and enzyme therapies are presented with diagrams, reaction schemes and table for easy understanding of the readers.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Department of Microbiology, M.G.S. University, Bikaner, India
| | - Swati Verma
- Department of Microbiology, M.G.S. University, Bikaner, India
| | | | | | - P D Charan
- Department of Environmental Science, M.G.S. University, Bikaner, India
| | - Praveen Purohit
- Department of Chemistry, Engineering College, Bikaner, India
| | - H S Bhandari
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - N Bhojak
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|