1
|
Kim Y, Lee S, Chen YP, Lee B, Lee S, Park J. Partial-Interpenetration-Controlled UiO-Type Metal-Organic Framework and its Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305999. [PMID: 37840400 DOI: 10.1002/smll.202305999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 10/17/2023]
Abstract
An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.
Collapse
Affiliation(s)
- Yeonghun Kim
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sanghyeop Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ying-Pin Chen
- Electrode Engineering, Panasonic Energy of North America, Reno, NV, 89502, USA
| | - Byeongchan Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jinhee Park
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| |
Collapse
|
2
|
Xuan K, Chen S, Pu Y, Guo Y, Guo Y, Li Y, Pu C, Zhao N, Xiao F. Encapsulating phosphotungstic acid within metal-organic framework for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
|
4
|
Ebrahimi A, Nassireslami E, Zibaseresht R, Mohammadsalehi M. Ultra-fast catalytic detoxification of organophosphates by nano-zeolitic imidazolate frameworks. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Diao Y, Hu J, Cheng S, Ma F, Li MQ, Hu X, Li YY, He J, Xu Z. Dense Alkyne Arrays of a Zr(IV) Metal–Organic Framework Absorb Co2(CO)8 for Functionalization. Inorg Chem 2020; 59:5626-5631. [DOI: 10.1021/acs.inorgchem.0c00328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | | | | | | | | | | | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, P. R. China
| | | |
Collapse
|
6
|
Young RJ, Huxley MT, Pardo E, Champness NR, Sumby CJ, Doonan CJ. Isolating reactive metal-based species in Metal-Organic Frameworks - viable strategies and opportunities. Chem Sci 2020; 11:4031-4050. [PMID: 34122871 PMCID: PMC8152792 DOI: 10.1039/d0sc00485e] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/19/2020] [Indexed: 02/01/2023] Open
Abstract
Structural insight into reactive species can be achieved via strategies such as matrix isolation in frozen glasses, whereby species are kinetically trapped, or by confinement within the cavities of host molecules. More recently, Metal-Organic Frameworks (MOFs) have been used as molecular scaffolds to isolate reactive metal-based species within their ordered pore networks. These studies have uncovered new reactivity, allowed observation of novel metal-based complexes and clusters, and elucidated the nature of metal-centred reactions responsible for catalysis. This perspective considers strategies by which metal species can be introduced into MOFs and highlights some of the advantages and limitations of each approach. Furthermore, the growing body of work whereby reactive species can be isolated and structurally characterised within a MOF matrix will be reviewed, including discussion of salient examples and the provision of useful guidelines for the design of new systems. Novel approaches that facilitate detailed structural analysis of reactive chemical moieties are of considerable interest as the knowledge garnered underpins our understanding of reactivity and thus guides the synthesis of materials with unprecedented functionality.
Collapse
Affiliation(s)
- Rosemary J Young
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
- School of Chemistry, The University of Nottingham Nottingham UK
| | - Michael T Huxley
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Emilio Pardo
- Institute of Molecular Science, University of Valencia Valencia Spain
| | | | - Christopher J Sumby
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| | - Christian J Doonan
- Department of Chemistry, Centre for Advanced Nanomaterials, The University of Adelaide Adelaide Australia
| |
Collapse
|
7
|
Fu SS, Ren XY, Guo S, Lan G, Zhang ZM, Lu TB, Lin W. Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. iScience 2019; 23:100793. [PMID: 31958757 PMCID: PMC6992937 DOI: 10.1016/j.isci.2019.100793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Quinolones and isoquinolones are of interest to pharmaceutical industry owing to their potent biological activities. Herein, we first encapsulated sub-nm Pt nanoclusters into Zr-porphyrin frameworks to afford an efficient photocatalyst Pt0.9@PCN-221. This catalyst can dramatically promote electron-hole separation and 1O2 generation to achieve synergistic effect first in the metal-organic framework (MOF) system, leading to the highest activity in photosynthesis of (iso)quinolones in >90.0% yields without any electronic sacrificial agents. Impressively, Pt0.9@PCN-221 was reused 10 times without loss of activity and can catalyze gram-scale synthesis of 1-methyl-5-nitroisoquinolinone at an activity of 175.8 g·gcat−1, 22 times higher than that of PCN-221. Systematic investigations reveal the contribution of synergistic effect of photogenerated electron, photogenerated hole, and 1O2 generation for efficient photo-oxidation, thus highlighting a new strategy to integrate multiple functional components into MOFs to synergistically catalyze complex photoreactions for exploring biologically active heterocyclic molecules. A state-of-the-art photocatalyst for preparation of bioactive (iso)quinolones Synergistic catalysis of photogenerated e−/h+ and 1O2 Sub-nm Pt0.9@PCN-221 with a high efficiency of e−-h+ separation and 1O2 generation
Collapse
Affiliation(s)
- Shan-Shan Fu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiu-Ying Ren
- College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China
| | - Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Guangxu Lan
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; College of Chemistry, Northeast Normal University, Changchun 130024, P.R. China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Afzali N, Kardanpour R, Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mechler A, Mohammadpoor‐Baltork I, Bahadori M. Molybdenum (VI)‐functionalized UiO‐66 provides an efficient heterogeneous nanocatalyst in oxidation reactions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niloufar Afzali
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Reihaneh Kardanpour
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Farnaz Zadehahmadi
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
- La Trobe Institute for Molecular SciencesLa Trobe University Bundoora VIC 3086 Australia
| | | | - Majid Moghadam
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| | - Adam Mechler
- La Trobe Institute for Molecular SciencesLa Trobe University Bundoora VIC 3086 Australia
| | | | - Mehrnaz Bahadori
- Department of Chemistry, Catalysis DivisionUniversity of Isfahan Isfahan 81746‐73441 Iran
| |
Collapse
|
9
|
Xuan K, Pu Y, Li F, Luo J, Zhao N, Xiao F. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63291-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
|
11
|
Xuan K, Pu Y, Li F, Li A, Luo J, Li L, Wang F, Zhao N, Xiao F. Direct synthesis of dimethyl carbonate from CO2 and methanol over trifluoroacetic acid modulated UiO-66. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ebrahimi A, Mansournia M. Zeolitic imidazolate framework-7: Novel ammonia atmosphere-assisted synthesis, thermal and chemical durability, phase reversibility and potential as highly efficient nanophotocatalyst. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 2018; 47:8134-8172. [DOI: 10.1039/c8cs00256h] [Citation(s) in RCA: 835] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide different strategies employed to use MOFs as solid catalysts and photocatalysts in organic transformations.
Collapse
Affiliation(s)
| | - Zhaohui Li
- Research Institute of Photocatalysis
- State Key Laboratory on Photocatalysis
- Fuzhou University
- Fuzhou 350002
- People's Republic of China
| | - Hermenegildo Garcia
- Department of Chemistry and Instituto de Tecnología Química
- Consejo Superior de Investigaciones Científicas-Universitat Politecnica de Valencia
- Universitat Politecnica de Valencia
- 46022 Valencia
- Spain
| |
Collapse
|
14
|
Qin JS, Yuan S, Lollar C, Pang J, Alsalme A, Zhou HC. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun (Camb) 2018; 54:4231-4249. [DOI: 10.1039/c7cc09173g] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent years have witnessed the exploration and synthesis of an increasing number of metal–organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed.
Collapse
Affiliation(s)
- Jun-Sheng Qin
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shuai Yuan
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Jiandong Pang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Ali Alsalme
- Chemistry Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Chemistry Department
| |
Collapse
|
15
|
Pettinari C, Marchetti F, Mosca N, Tosi G, Drozdov A. Application of metal − organic frameworks. POLYM INT 2017. [DOI: 10.1002/pi.5315] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Claudio Pettinari
- School of Pharmacy-chemistry section; University of Camerino; Camerino Italy
| | - Fabio Marchetti
- School of Science and Technology-chemistry section; University of Camerino; Camerino Italy
| | - Nello Mosca
- School of Pharmacy-chemistry section; University of Camerino; Camerino Italy
| | - Giovanni Tosi
- School of Pharmacy-chemistry section; University of Camerino; Camerino Italy
| | - Andrei Drozdov
- Lomonosov Moscow State University; Moscow, 119991, Russian Federation, Department of Chemistry; Moscow Russian Federation
| |
Collapse
|
16
|
Rimoldi M, Howarth AJ, DeStefano MR, Lin L, Goswami S, Li P, Hupp JT, Farha OK. Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02923] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Martino Rimoldi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ashlee J. Howarth
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew R. DeStefano
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lu Lin
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Subhadip Goswami
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peng Li
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department
of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Kaposi M, Cokoja M, Hutterer CH, Hauser SA, Kaposi T, Klappenberger F, Pöthig A, Barth JV, Herrmann WA, Kühn FE. Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: the effect of pore size on catalyst activity and recycling. Dalton Trans 2015; 44:15976-83. [PMID: 26283061 DOI: 10.1039/c5dt01340b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amino-functionalised metal-organic frameworks UiO-66 and -67 were post-synthetically modified with salicylaldehyde. A molybdenum complex was immobilised on the resulting materials. They were characterised by (13)C-MAS-NMR, XPS and PXRD to confirm immobilisation and stability. The immobilised complex is an active and reusable catalyst for olefin epoxidation with tert-butyl hydroperoxide (TBHP) as an oxidant. It is shown that the effective pore size, probed with Brunauer-Emmett-Teller (BET) surface area analysis and the number of amino groups affect the diffusion of reactants and products, as well as catalyst recycling.
Collapse
Affiliation(s)
- Marlene Kaposi
- Chair of Inorganic Chemistry/Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching bei München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Horiuchi Y, Toyao T, Fujiwaki M, Dohshi S, Kim TH, Matsuoka M. Zeolitic imidazolate frameworks as heterogeneous catalysts for a one-pot P–C bond formation reaction via Knoevenagel condensation and phospha-Michael addition. RSC Adv 2015. [DOI: 10.1039/c5ra02410b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ZIF-8 promotes a sequential one-pot reaction efficiently to produce organophosphorus compounds via Knoevenagel condensation and phospha-Michael addition.
Collapse
Affiliation(s)
- Yu Horiuchi
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Takashi Toyao
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Mika Fujiwaki
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| | - Satoru Dohshi
- Technology Research Institute of Osaka Prefecture
- Suita
- Japan
| | - Tae-Ho Kim
- Division of Mechanics and ICT Convergence Engineering
- Sun Moon University
- Republic of Korea
| | - Masaya Matsuoka
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai
- Japan
| |
Collapse
|
19
|
Wang T, Zhang C, Ju Z, Zheng H. Solvent-induced synthesis of cobalt(ii) coordination polymers based on a rigid ligand and flexible carboxylic acid ligands: syntheses, structures and magnetic properties. Dalton Trans 2015; 44:6926-35. [DOI: 10.1039/c5dt00578g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural formations for compounds 1–5 are effected by using different solvents or different carboxylic acid ligands.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Chuanlei Zhang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Zemin Ju
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| |
Collapse
|
20
|
Le HT, Nguyen TT, Vu PH, Truong T, Phan NT. Ligand-free direct C-arylation of heterocycles with aryl halides over a metal-organic framework Cu2(BPDC)2(BPY) as an efficient and robust heterogeneous catalyst. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Siu PW, Brown ZJ, Farha OK, Hupp JT, Scheidt KA. A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal-organic framework UiO-67. Chem Commun (Camb) 2014; 49:10920-2. [PMID: 24132049 DOI: 10.1039/c3cc47177b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A hydrogen-bond donating MOF catalyst based on the framework, containing both urea-functionalized dicarboxylate and biphenyl-4,4'-dicarboxylate struts, was synthesized by a de novo route. The mixed strut framework has larger pore sizes and improved catalytic activity for Henry reactions than the pure strut analogue, which contains only the urea-functionalized dicarboxylate linker.
Collapse
Affiliation(s)
- Paul W Siu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
22
|
Phan NTS, Nguyen TT, Vu PHL. A Copper Metal-Organic Framework as an Efficient and Recyclable Catalyst for the Oxidative Cross-Dehydrogenative Coupling of Phenols and Formamides. ChemCatChem 2013. [DOI: 10.1002/cctc.201300400] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Toyao T, Fujiwaki M, Horiuchi Y, Matsuoka M. Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction. RSC Adv 2013. [DOI: 10.1039/c3ra44701d] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|