1
|
Queen JD, Anderson-Sanchez LM, Stennett CR, Rajabi A, Ziller JW, Furche F, Evans WJ. Synthesis of Crystallographically Characterizable Bis(cyclopentadienyl) Sc(II) Complexes: (C 5H 2tBu 3) 2Sc and {[C 5H 3(SiMe 3) 2] 2ScI} 1. J Am Chem Soc 2024; 146:3279-3292. [PMID: 38264991 DOI: 10.1021/jacs.3c11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The synthesis of previously unknown bis(cyclopentadienyl) complexes of the first transition metal, i.e., Sc(II) scandocene complexes, has been investigated using C5H2(tBu)3 (Cpttt), C5Me5 (Cp*), and C5H3(SiMe3)2 (Cp″) ligands. Cpttt2ScI, 1, formed from ScI3 and KCpttt, can be reduced with potassium graphite (KC8) in hexanes to generate dark-red crystals of the first crystallographically characterizable bis(cyclopentadienyl) scandium(II) complex, Cpttt2Sc, 2. Complex 2 has a 170.6° (ring centroid)-Sc-(ring centroid) angle and exhibits an eight-line EPR spectrum characteristic of Sc(II) with Aiso = 82.6 MHz (29.6 G). It sublimes at 200 °C at 10-4 Torr and has a melting point of 268-271 °C. Reductions of Cp*2ScI and Cp″2ScI under analogous conditions in hexanes did not provide new Sc(II) complexes, and reduction of Cp*2ScI in benzene formed the Sc(III) phenyl complex, Cp*2Sc(C6H5), 3, by C-H bond activation. However, in Et2O and toluene, reduction of Cp*2ScI at -78 °C gives a dark-red solution, 4, which displays an eight-line EPR pattern like that of 1, but it did not provide thermally stable crystals. Reduction of Cp″2ScI, in THF or Et2O at -35 °C in the presence of 2.2.2-cryptand, yields the green Sc(II) metallocene iodide complex, [K(crypt)][Cp″2ScI], 5, which was identified by X-ray crystallography and EPR spectroscopy and is thermally unstable. The analogous reaction of Cp*2ScI with KC8 and 18-crown-6 in Et2O gave the ligand redistribution product, [Cp*2Sc(18-crown-6-κ2O,O')][Cp*2ScI2], 6, as the only crystalline product. Density functional theory calculations on the electronic structure of these compounds are reported in addition to a steric analysis using the Guzei method.
Collapse
Affiliation(s)
- Joshua D Queen
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | | - Cary R Stennett
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
2
|
Price CGT, Mondal A, Durrant JP, Tang J, Layfield RA. Structural and Magnetization Dynamics of Borohydride-Bridged Rare-Earth Metallocenium Cations. Inorg Chem 2023. [PMID: 37314885 DOI: 10.1021/acs.inorgchem.3c01038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structure and magnetic properties of the bimetallic borohydride-bridged dysprosocenium compound [{(η5-Cpttt)(η5-CpMe4t)Dy}2(μ:κ2:κ2-BH4)]+[B(C6F5)4]- ([3Dy][B(C6F5)4]) are reported along with the solution-phase dynamics of the isostructural yttrium and lutetium analogues (Cpttt is 1,2,4-tri(tert-butyl)cyclopentadienyl, CpMe4t is tetramethyl(tert-butyl)cyclopentadienyl). The synthesis of [3M][B(C6F5)4] was accomplished in the 2:1 stoichiometric reactions of [(η5-Cpttt)(η5-CpMe4t)Dy(BH4)] (2M) with [CPh3][B(C6F5)4], with the metallocenes 2M obtained from reactions of the half-sandwich complexes [(η5-Cpttt)M(BH4)2(THF)] (1M) (M = Y, Dy, Lu) with NaCpMe4t. Crystallographic studies show significant lengthening of the M···B distance on moving through the series 1M, 2M, and 3M, with essentially linear {M···B···M} bridges in 3M. Multinuclear NMR spectroscopy indicates restricted rotation of the Cpttt ligands in 3Y and 3Lu in solution. The single-molecule magnet (SMM) properties of [3M][B(C6F5)4] are characterized by Raman and Orbach processes, with an effective barrier of 533(18) cm-1 and relaxation via the second-excited Kramers doublet. Although quantum tunneling of the magnetization (QTM) was not observed for [3M][B(C6F5)4], it was, surprisingly, found in its magnetically dilute version, which has a very similar barrier of Ueff = 499(21) cm-1. Consistent with this observation, slightly wider openings of the magnetic hysteresis loop at 2 K are found for [3M][B(C6F5)4] but not for the diluted analogue. The dynamic magnetic properties of the dysprosium SMMs and the role of exchange interactions in 3Dy are interpreted with the aid of multireference ab initio calculations.
Collapse
Affiliation(s)
- Christopher G T Price
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - James P Durrant
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
3
|
Schäfer S, Kaufmann S, Rösch ES, Roesky PW. Divalent metallocenes of the lanthanides - a guideline to properties and reactivity. Chem Soc Rev 2023. [PMID: 37183859 DOI: 10.1039/d2cs00744d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Since the discovery in the early 1980s, the soluble divalent metallocenes of lanthanides have become a steadily growing field in organometallic chemistry. The predominant part of the investigation has been performed with samarium, europium, and ytterbium, whereas only a few reports dealing with other rare earth elements were disclosed. Reactions of these metallocenes can be divided into two major categories: (1) formation of Lewis acid-base complexes, in which the oxidation state remains +II; and (2) single electron transfer (SET) reductions with the ultimate formation of Ln(III) complexes. Due to the increasing reducing character from Eu(II) over Yb(II) to Sm(II), the plethora of literature concerning redox reactions revolves around the metallocenes of Sm and Yb. In addition, a few reactivity studies on Nd(II), Dy(II) and mainly Tm(II) metallocenes were published. These compounds are even stronger reducing agents but significantly more difficult to handle. In most cases, the metals are ligated by the versatile pentamethylcyclopentadienyl ligand: (C5Me5). Other cyclopentadienyl ligands are fully covered but only discussed in detail, if the ligand causes differences in synthesis or reactivity. Thus, the focus lays on three compounds: [(C5Me5)2Sm], [(C5Me5)2Eu] and [(C5Me5)2Yb] and their solvates. We discuss the synthesis and physical properties of divalent lanthanide metallocenes first, followed by an overview of the reactivity rendering the full potential of these versatile reactants.
Collapse
Affiliation(s)
- Sebastian Schäfer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Sebastian Kaufmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Esther S Rösch
- Baden-Württemberg Cooperative State University Karlsruhe, Erzbergerstr. 121, 76133 Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
4
|
Mahieu N, Piątkowski J, Simler T, Nocton G. Back to the future of organolanthanide chemistry. Chem Sci 2023; 14:443-457. [PMID: 36741512 PMCID: PMC9848160 DOI: 10.1039/d2sc05976b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
At the dawn of the development of structural organometallic chemistry, soon after the discovery of ferrocene, the description of the LnCp3 complexes, featuring large and mostly trivalent lanthanide ions, was rather original and sparked curiosity. Yet, the interest in these new architectures rapidly dwindled due to the electrostatic nature of the bonding between π-aromatic ligands and 4f-elements. Almost 70 years later, it is interesting to focus on how the discipline has evolved in various directions with the reports of multiple catalytic reactivities, remarkable potential in small molecule activation, and the development of rich redox chemistry. Aside from chemical reactivity, a better understanding of their singular electronic nature - not precisely as simplistic as anticipated - has been crucial for developing tailored compounds with adapted magnetic anisotropy or high fluorescence properties that have witnessed significant popularity in recent years. Future developments shall greatly benefit from the detailed reactivity, structural and physical chemistry studies, particularly in photochemistry, electro- or photoelectrocatalysis of inert small molecules, and manipulating the spins' coherence in quantum technology.
Collapse
Affiliation(s)
- Nolwenn Mahieu
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Jakub Piątkowski
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay91120 PalaiseauFrance
| |
Collapse
|
5
|
McClain KR, Gould CA, Marchiori DA, Kwon H, Nguyen TT, Rosenkoetter KE, Kuzmina D, Tuna F, Britt RD, Long JR, Harvey BG. Divalent Lanthanide Metallocene Complexes with a Linear Coordination Geometry and Pronounced 6s–5d Orbital Mixing. J Am Chem Soc 2022; 144:22193-22201. [DOI: 10.1021/jacs.2c09880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K. Randall McClain
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| | | | - David A. Marchiori
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | | | - Trisha T. Nguyen
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Kyle E. Rosenkoetter
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| | - Diana Kuzmina
- Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - R. David Britt
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Jeffrey R. Long
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- Research Department, Chemistry Division. US Navy, Naval Air Warfare Center, Weapons Division, China Lake, California 93555, United States
| |
Collapse
|
6
|
Simler T, McCabe KN, Maron L, Nocton G. CO reductive oligomerization by a divalent thulium complex and CO 2-induced functionalization. Chem Sci 2022; 13:7449-7461. [PMID: 35919756 PMCID: PMC9241974 DOI: 10.1039/d2sc01798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
The divalent thulium complex [Tm(Cpttt)2] (Cpttt = 1,2,4-tris(tert-butyl)cyclopentadienyl) reacts with CO to afford selective CO reductive dimerization and trimerization into ethynediolate (C2) and ketenecarboxylate (C3) complexes, respectively. DFT calculations were performed to shed light on the elementary steps of CO homologation and support a stepwise chain growth. The attempted decoordination of the ethynediolate fragment by treatment with Me3SiI led to dimerization and rearrangement into a 3,4-dihydroxyfuran-2-one complex. Investigation of the reactivity of the C2 and C3 complexes towards other electrophiles led to unusual functionalization reactions: while the reaction of the ketenecarboxylate C3 complex with electrophiles yielded new multicarbon oxygenated complexes, the addition of CO2 to the ethynediolate C2 complex resulted in the formation of a very reactive intermediate, allowing C-H activation of aromatic solvents. This original intermolecular reactivity corresponds to an unprecedented functionalization of CO-derived ligands, which is induced by CO2.
Collapse
Affiliation(s)
- Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay Palaiseau 91120 France
| | - Karl N McCabe
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS Toulouse France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay Palaiseau 91120 France
| |
Collapse
|
7
|
Gompa TP, Greer SM, Rice NT, Jiang N, Telser J, Ozarowski A, Stein BW, La Pierre HS. High-Frequency and -Field Electron Paramagnetic Resonance Spectroscopic Analysis of Metal-Ligand Covalency in a 4f 7 Valence Series (Eu 2+, Gd 3+, and Tb 4+). Inorg Chem 2021; 60:9064-9073. [PMID: 34106710 DOI: 10.1021/acs.inorgchem.1c01062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent isolation of molecular tetravalent lanthanide complexes has enabled renewed exploration of the effect of oxidation state on the single-ion properties of the lanthanide ions. Despite the isotropic nature of the 8S ground state in a tetravalent terbium complex, [Tb(NP(1,2-bis-tBu-diamidoethane)(NEt2))4], preliminary X-band electron paramagnetic resonance (EPR) measurements on tetravalent terbium complexes show rich spectra with broad resonances. The complexity of these spectra highlights the limits of conventional X-band EPR for even qualitative determination of zero-field splitting (ZFS) in these complexes. Therefore, we report the synthesis and characterization of a novel valence series of 4f7 molecular complexes spanning three oxidation states (Eu2+, Gd3+, and Tb4+) featuring a weak-field imidophosphorane ligand system, and employ high-frequency and -field electron paramagnetic resonance (HFEPR) to obtain quantitative values for ZFS across this valence series. The series was designed to minimize deviation in the first coordination sphere from the pseudotetrahedral geometry in order to directly interrogate the role of metal identity and charge on the complexes' electronic structures. These HFEPR studies are supported by crystallographic analysis and quantum-chemical calculations to assess the relative covalent interactions in each member of this valence series and the effect of the oxidation state on the splitting of the ground state and first excited state.
Collapse
Affiliation(s)
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | | | | | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory (NHMFL), Florida State University, Tallahassee, Florida 32310, United States
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
8
|
Klementyeva SV, Schrenk C, Zhang M, Khusniyarov MM, Schnepf A. (thf) 2Ln(Ge 9{Si(SiMe 3) 3} 3) 2 (Ln = Eu, Sm): the first coordination of metalloid germanium clusters to lanthanides. Chem Commun (Camb) 2021; 57:4730-4733. [PMID: 33977949 DOI: 10.1039/d1cc01151k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the synthesis, structure and magnetic properties of the first rare earth complexes of metalloid group 14 clusters [(thf)2Ln(Ge9Hyp3)2] (Ln = Eu, Sm, Hyp = Si(SiMe3)3). X-Ray crystallographic analysis and DFT calculations reveal a novel η2-coordination mode of the Ge9Hyp3 units and a slight distortion of the Ge9 cage.
Collapse
Affiliation(s)
- Svetlana V Klementyeva
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Claudio Schrenk
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| | - Minghui Zhang
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg (FAU) Egerlandstraße 1, Erlangen 91058, Germany
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg (FAU) Egerlandstraße 1, Erlangen 91058, Germany
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany.
| |
Collapse
|
9
|
Hay MA, Boskovic C. Lanthanoid Complexes as Molecular Materials: The Redox Approach. Chemistry 2021; 27:3608-3637. [PMID: 32965741 DOI: 10.1002/chem.202003761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 11/05/2022]
Abstract
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.
Collapse
Affiliation(s)
- Moya A Hay
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
10
|
Wang D, Moutet J, Tricoire M, Cordier M, Nocton G. Reactive Heterobimetallic Complex Combining Divalent Ytterbium and Dimethyl Nickel Fragments. INORGANICS 2019; 7:58. [PMID: 31463301 PMCID: PMC6713561 DOI: 10.3390/inorganics7050058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article presented the synthesis and characterization of original heterobimetallic species combining a divalent lanthanide fragment and a divalent nickel center bridged by the bipyrimidine ligand, a redox-active ligand. X-ray crystal structures were obtained for the Ni monomer (bipym)NiMe2, 1, as well as the heterobimetallic dimer compounds, Cp*2Yb(bipym)NiMe2, 2, along with 1H solution NMR, solid-state magnetic data, and DFT calculations only for 1. The reactivity with CO was investigated on both compounds and the stoichiometric acetone formation is discussed based on kinetic and mechanistic studies. The key role of the lanthanide fragment was demonstrated by the relatively slow CO migratory insertion step, which indicated the stability of the intermediate.
Collapse
|
11
|
Gould CA, McClain KR, Yu JM, Groshens TJ, Furche F, Harvey BG, Long JR. Synthesis and Magnetism of Neutral, Linear Metallocene Complexes of Terbium(II) and Dysprosium(II). J Am Chem Soc 2019; 141:12967-12973. [PMID: 31375028 DOI: 10.1021/jacs.9b05816] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The divalent metallocene complexes Ln(CpiPr5)2 (Ln = Tb, Dy) were synthesized through the KC8 reduction of Ln(CpiPr5)2I intermediates and represent the first examples of neutral, linear metallocenes for these elements. X-ray diffraction analysis, density functional theory calculations, and magnetic susceptibility measurements indicate a 4fn5d1 electron configuration with strong s/d mixing that supports the linear coordination geometry. A comparison of the magnetic relaxation behavior of the two divalent metallocenes relative to salts of their trivalent counterparts, [Ln(CpiPr5)2][B(C6F5)4], reveals that lanthanide reduction has opposing effects for dysprosium and terbium, with magnetic relaxation times increasing from TbIII to TbII and decreasing from DyIII to DyII. The impact of this effect is most notably evident for Tb(CpiPr5)2, which displays an effective thermal barrier to magnetic relaxation of 1205 cm-1 and a 100-s blocking temperature of 52 K, the highest values yet observed for any nondysprosium single-molecule magnet.
Collapse
Affiliation(s)
| | - K Randall McClain
- U.S. Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division , China Lake , California 93555 , United States
| | - Jason M Yu
- Department of Chemistry , University of California, Irvine , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| | - Thomas J Groshens
- U.S. Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division , China Lake , California 93555 , United States
| | - Filipp Furche
- Department of Chemistry , University of California, Irvine , 1102 Natural Sciences II , Irvine , California 92697-2025 , United States
| | - Benjamin G Harvey
- U.S. Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division , China Lake , California 93555 , United States
| | - Jeffrey R Long
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
12
|
Xémard M, Cordier M, Molton F, Duboc C, Le Guennic B, Maury O, Cador O, Nocton G. Divalent Thulium Crown Ether Complexes with Field-Induced Slow Magnetic Relaxation. Inorg Chem 2019; 58:2872-2880. [DOI: 10.1021/acs.inorgchem.8b03551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mathieu Xémard
- LCM, CNRS, Ecole Polytechnique, Université
Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
| | - Marie Cordier
- LCM, CNRS, Ecole Polytechnique, Université
Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
| | - Florian Molton
- Univ Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Carole Duboc
- Univ Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5182, Laboratoire de Chimie, 69342 Lyon, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Université
Paris-Saclay, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
13
|
Cheisson T, Ricard L, Heinemann FW, Meyer K, Auffrant A, Nocton G. Synthesis and Reactivity of Low-Valent f-Element Iodide Complexes with Neutral Iminophosphorane Ligands. Inorg Chem 2018; 57:9230-9240. [DOI: 10.1021/acs.inorgchem.8b01259] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Thibault Cheisson
- LCM, Ecole Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau Cedex, France
| | - Louis Ricard
- LCM, Ecole Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau Cedex, France
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Audrey Auffrant
- LCM, Ecole Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau Cedex, France
| | - Grégory Nocton
- LCM, Ecole Polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau Cedex, France
| |
Collapse
|
14
|
Borisova NE, Kostin AA, Reshetova MD, Lyssenko KA, Belova EV, Myasoedov BF. The structurally rigid tetradentate N,N′,O,O′-ligands based on phenanthroline for binding of f-elements: The substituents vs. structures of the complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Goodwin CAP, Reta D, Ortu F, Chilton NF, Mills DP. Synthesis and Electronic Structures of Heavy Lanthanide Metallocenium Cations. J Am Chem Soc 2017; 139:18714-18724. [DOI: 10.1021/jacs.7b11535] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Conrad A. P. Goodwin
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Daniel Reta
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Fabrizio Ortu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - Nicholas F. Chilton
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| | - David P. Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K
| |
Collapse
|
16
|
Xémard M, Goudy V, Braun A, Tricoire M, Cordier M, Ricard L, Castro L, Louyriac E, Kefalidis CE, Clavaguéra C, Maron L, Nocton G. Reductive Disproportionation of CO2 with Bulky Divalent Samarium Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mathieu Xémard
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Violaine Goudy
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Augustin Braun
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Marie Cordier
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Louis Ricard
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| | - Ludovic Castro
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | - Elisa Louyriac
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | | | - Carine Clavaguéra
- Laboratoire
de Chimie Physique, CNRS-Université Paris-Sud, Université Paris-Saclay, 15 avenue Jean Perrin, 91405 Orsay Cedex, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, Toulouse, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau
Cedex, France
| |
Collapse
|
17
|
Goudy V, Jaoul A, Cordier M, Clavaguéra C, Nocton G. Tuning the Stability of Pd(IV) Intermediates Using a Redox Non-innocent Ligand Combined with an Organolanthanide Fragment. J Am Chem Soc 2017; 139:10633-10636. [PMID: 28741942 PMCID: PMC5553092 DOI: 10.1021/jacs.7b05634] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The unique combination of a divalent
organolanthanide fragment,
Cp*2Yb, with bipyrimidine (bipym) and a palladium
bis-alkyl fragment, PdMe2, allows the rapid formation and
stabilization of a PdIV tris-alkyl moiety after oxidative
addition with MeI. The crucial role of the organolanthanide
fragment is demonstrated by the substitution of bipym by the 4,5,9,10-tetraazaphenanthrene
ligand, which drastically modifies the electronic structure and tunes
the stability of the PdIV species.
Collapse
Affiliation(s)
- Violaine Goudy
- LCM, CNRS, Ecole polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| | - Arnaud Jaoul
- LCM, CNRS, Ecole polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| | - Marie Cordier
- LCM, CNRS, Ecole polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| | - Carine Clavaguéra
- Laboratoire de Chimie Physique, CNRS - Université Paris-Sud, Université Paris-Saclay , 15 avenue Jean Perrin, 91405 Orsay Cedex, France
| | - Grégory Nocton
- LCM, CNRS, Ecole polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
18
|
Xémard M, Jaoul A, Cordier M, Molton F, Cador O, Le Guennic B, Duboc C, Maury O, Clavaguéra C, Nocton G. Divalent Thulium Triflate: A Structural and Spectroscopic Study. Angew Chem Int Ed Engl 2017; 56:4266-4271. [DOI: 10.1002/anie.201700576] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Mathieu Xémard
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Arnaud Jaoul
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Marie Cordier
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Florian Molton
- Département de Chimie Moléculaire; Grenoble Université, CNRS; Avenue de la Chimie Saint Martin d'Hères France
| | - Olivier Cador
- Institut des Sciences Chimique de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
| | - Boris Le Guennic
- Institut des Sciences Chimique de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
| | - Carole Duboc
- Département de Chimie Moléculaire; Grenoble Université, CNRS; Avenue de la Chimie Saint Martin d'Hères France
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS; Université Claude Bernard Lyon 1, UMR 5182, Laboratoire de Chimie; 69342 Lyon France
| | - Carine Clavaguéra
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
- Laboratoire de Chimie Physique, CNRS; Université Paris Sud, Université Paris-Saclay; 15 avenue Jean Perrin 91405 Orsay cedex France
| | - Grégory Nocton
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| |
Collapse
|
19
|
Xémard M, Jaoul A, Cordier M, Molton F, Cador O, Le Guennic B, Duboc C, Maury O, Clavaguéra C, Nocton G. Divalent Thulium Triflate: A Structural and Spectroscopic Study. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mathieu Xémard
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Arnaud Jaoul
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Marie Cordier
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| | - Florian Molton
- Département de Chimie Moléculaire; Grenoble Université, CNRS; Avenue de la Chimie Saint Martin d'Hères France
| | - Olivier Cador
- Institut des Sciences Chimique de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
| | - Boris Le Guennic
- Institut des Sciences Chimique de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
| | - Carole Duboc
- Département de Chimie Moléculaire; Grenoble Université, CNRS; Avenue de la Chimie Saint Martin d'Hères France
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS; Université Claude Bernard Lyon 1, UMR 5182, Laboratoire de Chimie; 69342 Lyon France
| | - Carine Clavaguéra
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
- Laboratoire de Chimie Physique, CNRS; Université Paris Sud, Université Paris-Saclay; 15 avenue Jean Perrin 91405 Orsay cedex France
| | - Grégory Nocton
- LCM, Ecole polytechnique, CNRS; Université Paris-Saclay; Route de Saclay 91128 Palaiseau cedex France
| |
Collapse
|
20
|
Formanuik A, Ortu F, Liu J, Nodaraki LE, Tuna F, Kerridge A, Mills DP. Double Reduction of 4,4′-Bipyridine and Reductive Coupling of Pyridine by Two Thorium(III) Single-Electron Transfers. Chemistry 2017; 23:2290-2293. [DOI: 10.1002/chem.201605974] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Alasdair Formanuik
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Fabrizio Ortu
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Jingjing Liu
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Lydia E. Nodaraki
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Floriana Tuna
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| | - Andrew Kerridge
- Department of Chemistry; Lancaster University; Lancaster LA1 4YB UK
| | - David P. Mills
- School of Chemistry; The University of Manchester; Manchester M13 9PL UK
| |
Collapse
|
21
|
Maria L, Sousa VR, Santos IC, Mora E, Marçalo J. Synthesis and structural characterization of polynuclear divalent ytterbium complexes supported by a bis(phenolate) cyclam ligand. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Goodwin CAP, Chilton NF, Vettese GF, Moreno Pineda E, Crowe IF, Ziller JW, Winpenny REP, Evans WJ, Mills DP. Physicochemical Properties of Near-Linear Lanthanide(II) Bis(silylamide) Complexes (Ln = Sm, Eu, Tm, Yb). Inorg Chem 2016; 55:10057-10067. [DOI: 10.1021/acs.inorgchem.6b00808] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Conrad A. P. Goodwin
- School of Chemistry, The University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| | - Nicholas F. Chilton
- School of Chemistry, The University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| | - Gianni F. Vettese
- School of Chemistry, The University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| | - Eufemio Moreno Pineda
- School of Chemistry, The University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| | - Iain F. Crowe
- Photon Science Institute and School of
Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - David P. Mills
- School of Chemistry, The University of Manchester, Oxford
Road, Manchester M13 9PL, U.K
| |
Collapse
|
23
|
Maria L, Soares M, Santos IC, Sousa VR, Mora E, Marçalo J, Luzyanin KV. A novel samarium(ii) complex bearing a dianionic bis(phenolate) cyclam ligand: synthesis, structure and electron-transfer reactions. Dalton Trans 2016; 45:3778-90. [PMID: 26818107 DOI: 10.1039/c5dt04647e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reaction of the hexadentate dianionic 1,4,8,11-tetraazacyclotetradecane-based bis(phenolate) ligand, (tBu2ArO)2Me2-cyclam(2-), with [SmI2(thf )2] in thf resulted in the formation of the divalent samarium complex [Sm(κ(6)-{(tBu2ArO)2Me2-cyclam})] (1). X-ray diffraction studies revealed that after recrystallization from n-hexane/thf complex 1 has a monomeric structure and does not contain thf molecules coordinated to the Sm(II) center. However, UV-vis and (1)H NMR spectroscopy of 1 evidenced the formation of thf-solvated complexes in neat thf. Reductive studies show that complex 1 can act as a single electrontransfer reagent and form well-defined Sm(III) species. The reaction of 1 with several substrates, namely, TlBPh4, pyridine N-oxide, OPPh3, SPPh3 and bipyridines, are reported. Spectroscopy studies, including NMR, and single crystal X-ray diffraction data are in agreement with the formation of cationic Sm(III) species, monochalcogenide bridged Sm(III) complexes and Sm(III) complexes with bipyridine radical ligand, respectively.
Collapse
Affiliation(s)
- Leonor Maria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Marina Soares
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal. and Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Isabel C Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Vânia R Sousa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Elsa Mora
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Konstantin V Luzyanin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, 198504 Saint Petersburg, Russian Federation and Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK
| |
Collapse
|
24
|
Jaoul A, Clavaguéra C, Nocton G. Electron transfer in tetramethylbiphosphinine complexes of Cp*2Yb and Cp*2Sm. NEW J CHEM 2016. [DOI: 10.1039/c6nj00527f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How to make sure an electron is really transferred to a tmbp ligand?
Collapse
Affiliation(s)
- Arnaud Jaoul
- LCM
- CNRS
- Ecole Polytechnique
- Université Paris-Saclay
- 91128 Palaiseau
| | | | - Grégory Nocton
- LCM
- CNRS
- Ecole Polytechnique
- Université Paris-Saclay
- 91128 Palaiseau
| |
Collapse
|
25
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Cheisson T, Auffrant A, Nocton G. η5–η1 Switch in Divalent Phosphaytterbocene Complexes with Neutral Iminophosphoranyl Pincer Ligands: Solid-State Structures and Solution NMR 1JYb–P Coupling Constants. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thibault Cheisson
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Grégory Nocton
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
27
|
Nocton G, Ricard L. Reversible C–C coupling in phenanthroline complexes of divalent samarium and thulium. Chem Commun (Camb) 2015; 51:3578-81. [DOI: 10.1039/c5cc00289c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phenanthroline adducts of organosamarium and organothulium fragments feature a reversible C–C bond on the phenanthroline ligand.
Collapse
Affiliation(s)
- Grégory Nocton
- Laboratoire de Chimie Moléculaire
- CNRS
- Ecole polytechnique
- Palaiseau
- France
| | - Louis Ricard
- Laboratoire de Chimie Moléculaire
- CNRS
- Ecole polytechnique
- Palaiseau
- France
| |
Collapse
|
28
|
Jacquot L, Xémard M, Clavaguéra C, Nocton G. Multiple One-Electron Transfers in Bipyridine Complexes of Bis(phospholyl) Thulium. Organometallics 2014. [DOI: 10.1021/om500607r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Léa Jacquot
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Mathieu Xémard
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Carine Clavaguéra
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| | - Grégory Nocton
- Laboratoire de Chimie Moléculaire, CNRS, Ecole Polytechnique, Route de Saclay, Palaiseau 91128, France
| |
Collapse
|
29
|
Kefalidis CE, Essafi S, Perrin L, Maron L. Qualitative Estimation of the Single-Electron Transfer Step Energetics Mediated by Samarium(II) Complexes: A “SOMO–LUMO Gap” Approach. Inorg Chem 2014; 53:3427-33. [DOI: 10.1021/ic402837n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Christos E. Kefalidis
- Université de Toulouse et CNRS, INSA, UPS, CNRS,
UMR 5215, LPCNO, 135 Avenue
de Rangueil, F-31077 Toulouse, France
| | - Stéphanie Essafi
- School of Chemistry and
Centre for Computational Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Lionel Perrin
- Université de Toulouse et CNRS, INSA, UPS, CNRS,
UMR 5215, LPCNO, 135 Avenue
de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, CNRS,
UMR 5215, LPCNO, 135 Avenue
de Rangueil, F-31077 Toulouse, France
| |
Collapse
|