1
|
Plewniak F, Crognale S, Bruneel O, Sismeiro O, Coppée JY, Rossetti S, Bertin P. Metatranscriptomic outlook on green and brown food webs in acid mine drainage. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:606-615. [PMID: 33973709 DOI: 10.1111/1758-2229.12958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Acid mine drainages (AMDs), metal-rich acidic effluents generated by mining activities, are colonized by prokaryotic and eukaryotic microorganisms widely distributed among different phyla. We compared metatranscriptomic data from two sampling stations in the Carnoulès AMD and from a third station in the nearby Amous River, focussing on processes involved in primary production and litter decomposition. A synergistic relationship between the green and brown food webs was favoured in the AMD sediments by the low carbon content and the availability of mineral nutrients: primary production of organic matter would benefit C-limited decomposers whose activity of organic matter mineralization would in turn profit primary producers. This balance could be locally disturbed by heterogeneous factors such as an input of plant debris from the riparian vegetation, strongly boosting the growth of Tremellales which would then outcompete primary producers. In the unpolluted Amous River on the contrary, the competition for limited mineral nutrients was dominated by the green food web, fish and bacterivorous protists having a positive effect on phytoplankton. These results suggest that in addition to direct effects of low pH and metal contamination, trophic conditions like carbon or mineral nutrient limitations also have a strong impact on assembly and activities of AMDs' microbial communities.
Collapse
Affiliation(s)
- Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS - University of Strasbourg, Strasbourg, France
| | - Simona Crognale
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Odile Bruneel
- HydroSciences Montpellier, University of Montpellier - CNRS - IRD, Montpellier, France
| | - Odile Sismeiro
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and Epigenome Platform, Biomics Pole, Paris, France
- Biologie des ARN des Pathogènes Fongiques, Institut Pasteur, Paris, France
| | - Simona Rossetti
- Istituto di Ricerca Sulle Acque, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Philippe Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS - University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Yang Z, Hosokawa H, Kuroda M, Inoue D, Ike M. Microbial antimonate reduction and removal potentials in river sediments. CHEMOSPHERE 2021; 266:129192. [PMID: 33310524 DOI: 10.1016/j.chemosphere.2020.129192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Antimony (Sb), a toxic metalloid, exists mainly as Sb(V) and Sb(III) in the aquatic environment. Sb(V) displays greater solubility and can be reduced to insoluble Sb(III) compounds by microbial activities under anaerobic conditions, thus affecting the environmental fate of Sb. This study was conducted to evaluate the potential of Sb(V) reduction and removal from the aqueous phase by microbial communities existing in river sediments with and without the impact of Sb mining activities. Among the 14 tested sediment samples, which were collected from an urban river without Sb impact and a river flowing through mining area, microbial communities in two samples could reduce and remove Sb(V) in the presence of high concentrations of sulfate, whereas those in other six samples could reduce Sb(V) even under low sulfate concentrations, indicating the relatively wide distribution of microbial Sb(V) reduction potential in the environment, irrespective of the anthropogenic impact. The Sb(V) reduction and removal abilities under different sulfate levels also suggested the presence of multiple types of Sb(V) reduction and removal pathways, including the direct Sb(V) reduction by anaerobic respiration, indirect (chemical) Sb(V) reduction by sulfide produced by microbial sulfate reduction, and their combination. Furthermore, analysis of microbial communities in two enrichment cultures, which were constructed from sediment samples with Sb(V) reduction ability under the minimum sulfate condition and maintained Sb(V) removal ability during 28-d enrichment process, revealed possible contribution of several microbial taxa such as Azospira, Chlostridium, Dechloromonas, Dendrosporobacter, and Halodesulfovibrio to Sb(V) reduction in sediment microbial communities.
Collapse
Affiliation(s)
- Ziran Yang
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisaaki Hosokawa
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Zhang C, He M, Ouyang W, Lin C, Liu X. Influence of Fe(II) on Sb(III) oxidation and adsorption by MnO 2 under acidic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138209. [PMID: 32247116 DOI: 10.1016/j.scitotenv.2020.138209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The transformation and transport of Sb are significantly influenced by strong oxides (e.g. MnO2) in the natural environment. Furthermore, Fe(II) can coexist with Sb(III) and MnO2 in waters contaminated by acidic mine drainage. However, role of Fe(II) in Sb(III) oxidation and adsorption by MnO2 remains unclear. Therefore, in the present study, the effects of Fe(II) on the oxidation and adsorption of Sb(III) by MnO2 under acidic conditions (pH 3) and the mechanism thereof were comprehensively investigated. The results of kinetic experiments showed that, in the presence of soluble Fe(II), Sb(III) oxidation is inhibited, but adsorption is promoted. Further characterization confirmed that Fe(III) compounds are formed around MnO2 particles and that these inhibit Sb(III) oxidation. However, two different Fe(III) compounds are formed around MnO2 particles depending on how the Fe(II) is introduced into the experimental system. In the simultaneous oxidation system, poorly crystallized or amorphous FeSb precipitates are formed (probably FeSbO4) around MnO2 particles, while in the Fe(II) pretreated oxidation system, schwertmannite is formed. Thus, the present study revealed that Fe(II) is critical to Sb(III) oxidation and adsorption by MnO2 and that the mechanism of its action is depend upon how it is introduced into the reaction system. This information is of relevance to predicting the fate of Sb.
Collapse
Affiliation(s)
- Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
4
|
He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci (China) 2019; 75:14-39. [PMID: 30473279 DOI: 10.1016/j.jes.2018.05.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid, and its pollution has become a global environmental problem as a result of its extensive use and corresponding Sb-mining activities. The toxicity and mobility of Sb strongly depend on its chemical speciation. In this review, we summarize the current knowledge on the biogeochemical processes (including emission, distribution, speciation, redox, metabolism and toxicity) that trigger the mobilization and transformation of Sb from pollution sources to the surrounding environment. Natural phenomena such as weathering, biological activity and volcanic activity, together with anthropogenic inputs, are responsible for the emission of Sb into the environment. Sb emitted in the environment can adsorb and undergo redox reactions on organic or inorganic environmental media, thus changing its existing form and exerting toxic effects on the ecosystem. This review is based on a careful and systematic collection of the latest papers during 2010-2017 and our research results, and it illustrates the fate and ecological effects of Sb in the environment.
Collapse
Affiliation(s)
- Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Congli Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aneesa Pervaiz
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jun Shan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Qiu C, Majs F, Douglas TA, Schmidt M, Trainor TP. In Situ Structural Study of Sb(V) Adsorption on Hematite (11̅02) Using X-ray Surface Scattering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11161-11168. [PMID: 30188697 DOI: 10.1021/acs.est.8b03903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The binding mechanism of Sb(V) on a single-crystal hematite (11̅02) surface was studied using crystal truncation rod X-ray diffraction (CTR) under in situ conditions. The best-fit CTR model indicates Sb(V) adsorbs at the surface as an inner-sphere complex forming a tridentate binding geometry with the nearest Sb-Fe distance of 3.09(4) Å and an average Sb-O bond length of 2.08(5) Å. In this binding geometry, Sb is bound at both edge-sharing and corner-sharing sites of the surface Fe-O octahedral units. The chemical plausibility of the proposed structure was further verified by bond valence analysis, which also deduced a protonation scheme for surface O groups. The stoichiometry of the surface reaction predicts the release of one OH- group at pH 5.5.
Collapse
Affiliation(s)
- Canrong Qiu
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Frantisek Majs
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory , Fort Wainwright , Alaska 99703 , United States
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Dresden 01328 , Germany
| | - Thomas P Trainor
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| |
Collapse
|
6
|
Mishra S, Sankararamakrishnan N. Characterization, evaluation, and mechanistic insights on the adsorption of antimonite using functionalized carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12686-12701. [PMID: 29468398 DOI: 10.1007/s11356-018-1347-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
Floating catalytic chemical vapor deposition technique was used for synthesizing carbon nanotubes (CNTs) using ferrocene in benzene as the hydrocarbon source. The functionalization of CNTs was carried out by oxidation followed by grafting of potassium iodide (KI) and mercaptoethanol (HS(CH2)2OH) ligands to produce iodide-grafted CNTs (CNT-I) and thiol-functionalized CNTs (CNT-SH), respectively. The resulting adsorbents have been thoroughly characterized by various techniques. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) studies revealed the efficient grafting of the ligands. Further, their adsorption capacities towards antimonite have been assessed. The adsorption kinetics fitted the pseudo-second-order model for both the adsorbents. Moreover, the adsorption of Sb(III) followed Langmuir and Freundlich's model. The maximum adsorption capacity of CNT-I and CNT-SH for Sb(III) at pH 7 was found to be 200 and 140.85 mg/g, respectively. The interference effect of various ions on the adsorption of antimonite was studied. A suitable mechanism for Sb(III) adsorption has been postulated using TEM, XRD, XPS, and FTIR. The adaptability of the adsorbents was demonstrated by the removal capacity of Sb(III) at parts per billion levels from nuclear decontamination formulation (NAC) and tap water matrix as well.
Collapse
Affiliation(s)
- Shruti Mishra
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Nalini Sankararamakrishnan
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
7
|
Elbaz-Poulichet F, Resongles E, Bancon-Montigny C, Delpoux S, Freydier R, Casiot C. The environmental legacy of historic Pb-Zn-Ag-Au mining in river basins of the southern edge of the Massif Central (France). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20725-20735. [PMID: 28718018 DOI: 10.1007/s11356-017-9669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The main rivers (Aude, Orb, Herault) that discharge into the Gulf of Lions and the west bank tributaries of the Rhone River including the Gardon have former non-ferrous metal mines in their upper drainage basin. Using unpublished data and data from the literature, this study provides an integrated overview of the contamination of water and sediment along the continent-sea continuum and of its impacts on the biota and on human health. In the upper part of these basins, water and stream sediments are enriched in metal(-loids) compared to median European concentrations. Arsenic is the main contaminant in the rivers Aude and Gardon d'Anduze, Sb in the Orb and Gardon d'Alès, and Tl in the Herault river. A rapid reduction in dissolved and particulate concentrations was systematically observed along the river due to dilution and precipitation. The high concentrations of metal(-loid)s observed suggest that the former mining activity still represents a potential threat for the environment, but the lack of high temporal resolution monitoring, especially during Mediterranean floods, prevents accurate assessment of metal fluxes from these rivers to the Mediterranean Sea. Studies dedicated to the impacts on human health are too rare, given that studies have shown a higher rate of arsenic-specific cancer near Salsigne mine in the Aude River basin and cases of saturnism in children in the upper Herault River basin. These studies underline the need to take environmental health issues into consideration not only in these watersheds but around the entire Mediterranean basin, which harbors numerous metalliferous ores that have been mined for millennia.
Collapse
Affiliation(s)
| | - Eléonore Resongles
- Laboratoire HydroSciences, CNRS, Université de Montpellier, IRD, Montpellier, France
| | | | - Sophie Delpoux
- Laboratoire HydroSciences, CNRS, Université de Montpellier, IRD, Montpellier, France
| | - Rémi Freydier
- Laboratoire HydroSciences, CNRS, Université de Montpellier, IRD, Montpellier, France
| | - Corinne Casiot
- Laboratoire HydroSciences, CNRS, Université de Montpellier, IRD, Montpellier, France
| |
Collapse
|
8
|
Le Pape P, Battaglia-Brunet F, Parmentier M, Joulian C, Gassaud C, Fernandez-Rojo L, Guigner JM, Ikogou M, Stetten L, Olivi L, Casiot C, Morin G. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:764-772. [PMID: 27720469 DOI: 10.1016/j.jhazmat.2016.09.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 05/27/2023]
Abstract
Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-AsIII2S3) (33-73%), and realgar (AsIIS) (0-34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound AsIII (14-23%). We propose that the formation of the AsIIS nanowires results from AsIII2S3 reduction by biogenic H2S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.
Collapse
Affiliation(s)
- Pierre Le Pape
- Sorbonne Universités - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | - Marc Parmentier
- French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2, France
| | - Catherine Joulian
- French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2, France
| | - Cindy Gassaud
- French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2, France
| | - Lidia Fernandez-Rojo
- HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier, France
| | - Jean-Michel Guigner
- Sorbonne Universités - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Maya Ikogou
- Sorbonne Universités - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Lucie Stetten
- Sorbonne Universités - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Luca Olivi
- Sincrotrone Trieste ELETTRA, I-34012 Trieste, Italy
| | - Corinne Casiot
- HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier, France
| | - Guillaume Morin
- Sorbonne Universités - Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
9
|
Resongles E, Freydier R, Casiot C, Viers J, Chmeleff J, Elbaz-Poulichet F. Antimony isotopic composition in river waters affected by ancient mining activity. Talanta 2015; 144:851-61. [DOI: 10.1016/j.talanta.2015.07.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 10/23/2022]
|