1
|
Tiwari P, Park KI. Advanced Fungal Biotechnologies in Accomplishing Sustainable Development Goals (SDGs): What Do We Know and What Comes Next? J Fungi (Basel) 2024; 10:506. [PMID: 39057391 PMCID: PMC11278089 DOI: 10.3390/jof10070506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The present era has witnessed an unprecedented scenario with extreme climate changes, depleting natural resources and rising global food demands and its widespread societal impact. From providing bio-based resources to fulfilling socio-economic necessities, tackling environmental challenges, and ecosystem restoration, microbes exist as integral members of the ecosystem and influence human lives. Microbes demonstrate remarkable potential to adapt and thrive in climatic variations and extreme niches and promote environmental sustainability. It is important to mention that advances in fungal biotechnologies have opened new avenues and significantly contributed to improving human lives through addressing socio-economic challenges. Microbe-based sustainable innovations would likely contribute to the United Nations sustainable development goals (SDGs) by providing affordable energy (use of agro-industrial waste by microbial conversions), reducing economic burdens/affordable living conditions (new opportunities by the creation of bio-based industries for a sustainable living), tackling climatic changes (use of sustainable alternative fuels for reducing carbon footprints), conserving marine life (production of microbe-based bioplastics for safer marine life) and poverty reduction (microbial products), among other microbe-mediated approaches. The article highlights the emerging trends and future directions into how fungal biotechnologies can provide feasible and sustainable solutions to achieve SDGs and address global issues.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
2
|
Tian J, Zhang Z, Shang Y, Zheng Y. Extraction, structure and antioxidant activity of the polysaccharides from morels (Morchella spp.): A review. Int J Biol Macromol 2024; 264:130656. [PMID: 38453116 DOI: 10.1016/j.ijbiomac.2024.130656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Yi Zheng
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
3
|
Badalyan SM, Gharibyan NG, Iotti M, Zambonelli A. Antimicrobial Activity of Three Italian Strains of Morchella esculenta (Ascomycota). Int J Med Mushrooms 2024; 26:43-55. [PMID: 38421695 DOI: 10.1615/intjmedmushrooms.2023051956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Three genetically identified and morphologically characterized strains (MesAQ2-C, MesAQ6-2 and MesFI2-3) of the culinary-medicinal ascomycete mushroom Morchella esculenta (L.) Pers. collected in central-north Italy have been studied for their antifungal and antibacterial activities. The obtained data showed that mycelium of M. esculenta possess variable antimicrobial activity against four test fungi (Chrysosporium keratinophilum, Microsporum gypseum, Trichophyton terrestre, Penicillium griseofulvum), as well as one Gram positive (Staphylococcus aureus) and three Gram negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) test bacteria potentially pathogenic for humans and animals. Up to 20.4% of inhibition of the average mycelial growth rate (GRavr) of test fungi in dual culture experiment was detected. The samples of cultural liquid (CL) and mycelial extract (ME) obtained by static cultivation of M. esculenta strains showed up to 13.9 and 23.0% of GRavr inhibition of test fungi, respectively. Similarly, the inhibition of the bacterial colonies by CL and ME samples was 34.1 and 32.3%, respectively in comparison with the control with streptomycin indicating almost equal secretion of both intra- and extracellular antimicrobial compounds by M. esculenta mycelium. As a producer of antimicrobial compounds among tested M. esculenta strains, MesAQ2-C was the most effective. It may be considered for further myco-pharmacological research to develop mushroom-based antimicrobial biotech products with biomedical significance.
Collapse
Affiliation(s)
- Susanna M Badalyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, 1 A. Manoogian St., 0025 Yerevan, Armenia
| | - Narine G Gharibyan
- Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Yerevan State University, Yerevan, Armenia
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
4
|
Wu F, Li Z, Chen X, Si X, Lin S. Untargeted metabolomics reveals sour jujube kernel benefiting the nutritional value and flavor of Morchella esculenta. Open Life Sci 2023; 18:20220708. [PMID: 37671097 PMCID: PMC10476485 DOI: 10.1515/biol-2022-0708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/08/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Nucleosides, organic acids, and amino acids separated from Morchella esculenta are well known for their nutritional value and flavor. However, how to increase their content in a better way has been a challenge. In this study, the effect of adding jujube kernel on the active components of M. esculenta was investigated by untargeted metabolomics using UPLC-MS/MS. A total of 1,243 metabolites were identified, of which 262 metabolites (21.078%) were organic acids and derivatives, 245 metabolites (19.71%) were lipids and lipid-like molecules, and 26 metabolites (2.092%) were nucleosides, nucleotides, and analogues. Subsequently, differential metabolites between groups were screened by the orthogonal partial least squares-discriminant analysis model, which showed that 256 metabolites were identified as significantly different for the positive ion model and 149 for the negative ion model. Moreover, significant differential metabolites (VIP > 1, P < 0.05) in annotation of kyoto encyclopedia of genes and genomes pathway were investigated, which showed that ABC transporters were the most commonly observed transporters, followed by pyrimidine metabolism and purine metabolism. The results indicated that the main components of jujube kernel might be conducive to the accumulation of nucleoside organic acids and amino acid metabolites in M. esculenta. These results provide important information for the understanding of more suitable way for cultivation of M. esculenta.
Collapse
Affiliation(s)
- Fenfang Wu
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhiyuan Li
- Department of Acupuncture, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaoni Chen
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinlei Si
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Shan Lin
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Zhang J, Zhao J, Liu G, Li Y, Liang L, Liu X, Xu X, Wen C. Advance in Morchella sp. polysaccharides: Isolation, structural characterization and structure-activity relationship: A review. Int J Biol Macromol 2023; 247:125819. [PMID: 37455001 DOI: 10.1016/j.ijbiomac.2023.125819] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Morchella sp. is a kind of precious medicinal and edible fungus with a unique flavor and is rich in various amino acids and organic germanium needed by the human body. Most notably, Morchella sp. polysaccharides have attracted widespread attention due to their significant bioactivity in recent years. At present, extensive studies have been carried out on the extraction methods, structural characterization and activity evaluation of Morchella sp. polysaccharides, which provides a good theoretical basis for its further development and application. However, the systematic summary of the related research of Morchella sp. polysaccharides has not been reported yet. Therefore, this review mainly focused on the isolation and purification methods, structural characterization, biological activities and structure-activity relationship of Morchella sp. polysaccharides. This work will help to have a better in-depth understanding of Morchella sp. polysaccharides and provide a scientific basis and direct reference for more scientific and rational applications.
Collapse
Affiliation(s)
- Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jiayin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
6
|
Wu H, Chen J, Liu Y, Cheng H, Nan J, Park HJ, Yang L, Li J. Digestion profile, antioxidant, and antidiabetic capacity of Morchella esculenta exopolysaccharide: in vitro, in vivo and microbiota analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4401-4412. [PMID: 36807912 DOI: 10.1002/jsfa.12513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 12/11/2022] [Accepted: 02/19/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Novel functional polysaccharides from fungi are important nutraceuticals. An exopolysaccharide, Morchella esculenta exopolysaccharide (MEP 2), was extracted and purified from the fermentation liquor of M. esculenta. The aim of this study was to investigate its digestion profile, antioxidant capacity, and effect on the microbiota composition in diabetic mice. RESULTS The study found that MEP 2 was stable during in vitro saliva digestion but was partially degraded during gastric digestion. The digest enzymes exerted a negligible effect on the chemical structure of MEP 2. Molecular weight and atomic force microscope (AFM) images suggest that both smaller chains and larger aggregations were produced. Scanning electron microscope (SEM) images reveal that the surface morphology was much altered after intestinal digestion. After digestion, the antioxidant ability increased as revealed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Both MEP 2 and its digested components showed strong α-amylase and moderate α-glucosidase inhibition activity, leading us to further investigate its ability to modulate the diabetic symptoms. The MEP 2 treatment ameliorated the inflammatory cell infiltration and increased the size of pancreas inlets. Serum concentration of HbA1c was significantly reduced. Blood glucose level during the oral glucose tolerance test (OGTT) was also slightly lower. The MEP 2 increased the diversity of the gut microbiota and modulated the abundance of several important bacteria including Alcaligenaceae, Caulobacteraceae, Prevotella, Brevundimonas, Demequina, and several Lachnospiraceae species. CONCLUSION It was found that MEP 2 was partially degraded during in vitro digestion. Its potential antidiabetic bioactivity may be associated with its α-amylase inhibition and gut microbiome modulation ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jing Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Haoran Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| |
Collapse
|
7
|
Tiwari P, Dufossé L. Focus and Insights into the Synthetic Biology-Mediated Chassis of Economically Important Fungi for the Production of High-Value Metabolites. Microorganisms 2023; 11:1141. [PMID: 37317115 PMCID: PMC10222946 DOI: 10.3390/microorganisms11051141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Substantial progress has been achieved and knowledge gaps addressed in synthetic biology-mediated engineering of biological organisms to produce high-value metabolites. Bio-based products from fungi are extensively explored in the present era, attributed to their emerging importance in the industrial sector, healthcare, and food applications. The edible group of fungi and multiple fungal strains defines attractive biological resources for high-value metabolites comprising food additives, pigments, dyes, industrial chemicals, and antibiotics, including other compounds. In this direction, synthetic biology-mediated genetic chassis of fungal strains to enhance/add value to novel chemical entities of biological origin is opening new avenues in fungal biotechnology. While substantial success has been achieved in the genetic manipulation of economically viable fungi (including Saccharomyces cerevisiae) in the production of metabolites of socio-economic relevance, knowledge gaps/obstacles in fungal biology and engineering need to be remedied for complete exploitation of valuable fungal strains. Herein, the thematic article discusses the novel attributes of bio-based products from fungi and the creation of high-value engineered fungal strains to promote yield, bio-functionality, and value-addition of the metabolites of socio-economic value. Efforts have been made to discuss the existing limitations in fungal chassis and how the advances in synthetic biology provide a plausible solution.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, F-97490 Saint-Denis, France
| |
Collapse
|
8
|
Ben Akacha B, Michalak M, Najar B, Venturi F, Taglieri I, Kačániová M, Ben Saad R, Mnif W, Garzoli S, Ben Hsouna A. Recent Advances in the Incorporation of Polysaccharides with Antioxidant and Antibacterial Functions to Preserve the Quality and Shelf Life of Meat Products. Foods 2023; 12:foods12081647. [PMID: 37107442 PMCID: PMC10138043 DOI: 10.3390/foods12081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Meat and meat products are susceptible to various types of natural processes such as oxidative degradation due to their high content of protein and essential amino acids. However, finding solutions to maintain the nutritional and sensory quality of meat and meat products is unavoidable. Hence, there is a pressing need to investigate alternatives to synthetic preservatives, focusing on active biomolecules of natural provenance. Polysaccharides are natural polymers of various sources that exhibit antibacterial and antioxidant properties via a variety of mechanisms, owing to their diversity and structural variation. For this reason, these biomolecules are widely studied in order to improve texture, inhibit the growth of pathogens, and improve the oxidative stability and sensory characteristics of meat products. However, the literature has not addressed their biological activity in meat and meat products. This review summarizes the various sources of polysaccharides, their antioxidant and antibacterial activities (mainly against pathogenic food strains), and their use as natural preservatives to replace synthetic additives in meat and meat products. Special attention is given to the use of polysaccharides to improve the nutritional value of meat, resulting in more nutrient-rich meat products with higher polysaccharide content and less salt, nitrites/nitrates, and cholesterol.
Collapse
Affiliation(s)
- Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Basma Najar
- Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Free University of Brussels, Bld Triomphe, Campus Plaine, 205/5, B-1050 Brussels, Belgium
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
- Department of Bioenergy, Food Technology and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 4 Zelwerowicza St, 35-601 Rzeszow, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
| | - Wissem Mnif
- Department of Chemistry, College of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, P. le Aldo Moro, 5, 00185 Rome, Italy
| | - Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, B.P "1177", Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
9
|
Teng S, Zhang Y, Jin X, Zhu Y, Li L, Huang X, Wang D, Lin Z. Structure and hepatoprotective activity of Usp10/NF-κB/Nrf2 pathway-related Morchella esculenta polysaccharide. Carbohydr Polym 2023; 303:120453. [PMID: 36657860 DOI: 10.1016/j.carbpol.2022.120453] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
The water-soluble Morchella esculenta polysaccharide 2 (MEP2) was purified and isolated from an aqueous extract of the Morchella esculenta fruiting bodies. MEP2, having a molecular weight of 959 kDa, has a →4)-α-D-Glcp-(1→ glucan backbone, and this branch was substituted at the H-6 position by an α-D-Glcp-(1 → 4)-α-D-Glcp-(1→ residue and an α-D-Glcp-(1→ residue. The hepatoprotective activity and potential mechanism of action of MEP2 were also investigated. MEP2 ameliorated severe liver damage and regulated the liver function indicators and the alcohol-related enzyme levels in chronic alcohol-induced mice. Combined with biochemical detection, the gut microbiota, metabolites, and proteomics results revealed that MEP2 regulates the levels of hepatic cytokines related to inflammatory response and oxidative stress, as well as those of intestinal Bacteroides, Oscillospira, Parabacteroides, Alistipes, and Prevotella, through the ubiquitin-specific peptidase 10 (Usp10)/nuclear factor κB (NF-κB)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway in the liver of mice induced by long-term alcohol intake. These data provide experimental evidence for the application of MEP2 in chronic alcohol-induced liver injury.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaowei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Zhe Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
10
|
Teng H, Zhang Y, Jin C, Wang T, Huang S, Li L, Xie S, Wu D, Xu F. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against d-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:779-791. [PMID: 36054707 DOI: 10.1002/jsfa.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/13/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Polygonatum cyrtonema Hua is cultivated for its edible and medical value. The steam-processed rhizome of P. cyrtonema is the main form for daily consumption and it has been used traditionally in tonics for treating various age-related disorders. The aim of our study was to compare the physicochemical properties and antioxidant activity of polysaccharides respectively extracted from crude P. Cyrtonema (PCPC), and steam-processed P. cyrtonema (PCPS), and to explore a possible underlying antioxidant mechanism. RESULTS The PCPC with a molecular weight of 4.35 × 103 Da mainly consisted of fructose and trace amounts of glucose, whereas PCPS with 4.24 × 104 Da was composed of fructose, arabinose, glucose, xylose, mannose, galacturonic acid and glucuronic acid. The PCPC had a triple-helical conformation whereas PCPS was a random coil. Both exhibited free radicals- scavenging activity in vitro. In a mouse model of oxidative damage, PCPC or PCPS treatment significantly reversed histopathological alterations, reactive oxygen species (ROS) accumulation and the reduction of antioxidant enzyme activity. They both also promoted Nrf2 nuclear transport by decreasing Keap-1 expression and increasing HO-1 expression. Both in vitro and in vivo, PCPS exhibited more potent antioxidant activity than PCPC. CONCLUSION Overall, the results suggest that PCPS has a stronger effect on the prevention of oxidative damage by activating Nrf2/HO-1 antioxidant signaling. This study demonstrates the role of steam-processed P. cyrtonema rhizome and provides valuable perspective for PCPS as a functional agent. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huanhuan Teng
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yi Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanshan Jin
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tongsheng Wang
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shengzhuo Huang
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, Haikou, China
| | - Lei Li
- Research and development department, Jinzhai Senfeng Biological Technology Co. LTD., Lu'an, China
| | - Songzi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Deling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Fengqing Xu
- School of Pharmacy, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
- Research and development department, Jinzhai Senfeng Biological Technology Co. LTD., Lu'an, China
| |
Collapse
|
11
|
Kewlani P, Tiwari D, Singh L, Balodi S, Bhatt ID. Food and Antioxidant Supplements with Therapeutic Properties of Morchella esculenta (Ascomycetes): A Review. Int J Med Mushrooms 2023; 25:11-29. [PMID: 37824403 DOI: 10.1615/intjmedmushrooms.2023049147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Morchella esculenta, commonly known as yellow morels, is an edible and medicinal mushroom popular worldwide for its unique flavor and culinary purposes. The traditional medical system effectively uses morels against infertility, fatigue, cancer, muscular pain, cough, and cold. The M. esculenta possesses many health-promoting nutritional components such as mono and polyunsaturated fatty acids, polyphenols, protein hydrolysates, vitamins, amino acids and minerals. The potential medicinal properties of morels is due to polysaccharides (galactomannan, chitin, β-glucans, and β-1,3-1,6-glucan) present that has high economic importance worldwide. Polysaccharides present possess a broad spectrum of biological activities such as anti-cancer, anti-inflammatory, anti-microbial, anti-diabetic, and antioxidant. However, the toxicity and clinical trials to prove its safety and efficacy for medicinal uses are yet to be evaluated. Moreover, the separation, purification, identification, and structural elucidation of active compounds responsible for the unique flavors and biological activities are still lacking in M. esculenta. The available information provides a new base for future perspectives. It highlights the need for further studies of this potent medicinal mushroom species as a source of beneficial therapeutic drugs and nutraceutical supplements.
Collapse
Affiliation(s)
- Pushpa Kewlani
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Deepti Tiwari
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Laxman Singh
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Shivani Balodi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| | - Indra D Bhatt
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora 263 643, Uttarakhand, India
| |
Collapse
|
12
|
LIU H, LIU X, XIE J, CHEN S. Structure, function and mechanism of edible fungus polysaccharides in human beings chronic diseases. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Huijuan LIU
- Guizhou Medical University, China; Guizhou Medical University, China
| | | | - Jiao XIE
- Guizhou Medical University, China; Guizhou Medical University, China
| | | |
Collapse
|
13
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
14
|
Song-xin L, Zhi-man L, Zi-jun S, Yun-shi X, Li-juan Z, Duo-duo R, Yin-shi S. Effect of velvet antler on the immune activity of cyclophosphamide-induced immunosuppressed mice. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2128070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Liu Song-xin
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
- State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine of Lunan Pharmaceutical Group Co., Ltd., Linyi, People’s Republic of China
| | - Li Zhi-man
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shao Zi-jun
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xia Yun-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhao Li-juan
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Ren Duo-duo
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Sun Yin-shi
- Institute of Special Animal and Plant Sciences, China Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
15
|
Mycochemical profile and health-promoting effects of morel mushroom Morchella esculenta (L.) - A review. Food Res Int 2022; 159:111571. [DOI: 10.1016/j.foodres.2022.111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
|
16
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
17
|
Li J, Wu H, Liu Y, Nan J, Park HJ, Chen Y, Yang L. The chemical structure and immunomodulatory activity of an exopolysaccharide produced by Morchella esculenta under submerged fermentation. Food Funct 2021; 12:9327-9338. [PMID: 34606556 DOI: 10.1039/d1fo01683k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extracellular polysaccharide of Morchella esculenta cultivated under submerged fermentation was extracted. A single polysaccharide was purified through DEAE-Cellulose 52 and Sephadex G 100, and named as MEP 2a. The molecular weight of MEP 2a was determined by HPGPC and it is about 1391.5 kDa. MEP 2a is composed of mannose and glucose as the monosaccharide unit with a molar ratio of 8.15 : 1.07. The main polysaccharide chemical structure was analyzed by 1D and 2D NMR. Methylation and NMR analysis revealed that the backbone of MEP 2a consists of 1,3,4-linked-Manp, 1,2-linked-Manp and 1,6-linked-Glcp. 1D and 2D NMR results indicated that the main chain is based on →1)-β-D-Glcp-(6→, →1)-α-D-Manp-(3,4→, →1)-α-D-Manp-(2→) and the branch chain is composed of α-D-Manp-(1→, →1)-β-D-Glcp-(6→ and α-D-Glcp-(1→). MEP 2a promoted the phagocytosis function and secretion of NO, IL-1β, IL-6 and TNF-α of macrophages. In the present study, the chemical structure and immunomodulatory ability of an extracellular polysaccharide of Morchella esculenta was investigated which guarantees further research studies and promising applications.
Collapse
Affiliation(s)
- Jinglei Li
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Haishan Wu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Yuting Liu
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Jian Nan
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, 410007 Changsha, Hunan, China
| | - Liu Yang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P.R. China.
| |
Collapse
|
18
|
Recent Advances on Bioactive Ingredients of Morchella esculenta. Appl Biochem Biotechnol 2021; 193:4197-4213. [PMID: 34524632 DOI: 10.1007/s12010-021-03670-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
Morchella esculenta (M. esculenta) is a delicious edible mushroom prized for its special flavor and strong health promoting abilities. Several bioactive ingredients including polysaccharides, polyphenolic compounds, proteins, and protein hydrolysates all contribute to the biological activities of M. esculenta. Different polysaccharides could be extracted and purified depending on the extraction methods and M. esculenta studied. Monosaccharide composition of M. esculenta polysaccharides (MEP) generally includes mannose, galactose, and glucose, etc. MEP possess multiple bioactivities such as antioxidant, anti-inflammation, immunoregulation, hypoglycemic activity, atherosclerosis prevention and antitumor ability. Other components like polyphenols, protein hydrolysates, and several crude extracts are also reported with strong bioactivities. In terms of potential applications of M. esculenta and its metabolites as nutritional supplements and drug supplements, this review aims to comprehensively summarize the structural characteristics, biological activities, research progress, and research trends of the active ingredients produced by M. esculenta. Among the various biological activities, the substances extracted from both natural collected and submerged fermented M. esculenta are promising for antioxidants, immunomodulation, anti-cancer and anti-inflammatory applications. However, further researches on the extraction conditions and chemical structure of bioactive compounds produced by M. esculenta still need investigations.
Collapse
|
19
|
Lü BB, Wu GG, Sun Y, Zhang LS, Wu X, Jiang W, Li P, Huang YN, Wang JB, Zhao YC, Liu H, Song LL, Mo Q, Pan AH, Yang Y, Long XQ, Cui WD, Zhang C, Wang X, Tang XM. Comparative Transcriptome and Endophytic Bacterial Community Analysis of Morchella conica SH. Front Microbiol 2021; 12:682356. [PMID: 34354681 PMCID: PMC8329594 DOI: 10.3389/fmicb.2021.682356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
The precious rare edible fungus Morchella conica is popular worldwide for its rich nutrition, savory flavor, and varieties of bioactive components. Due to its high commercial, nutritional, and medicinal value, it has always been a hot spot. However, the molecular mechanism and endophytic bacterial communities in M. conica were poorly understood. In this study, we sequenced, assembled, and analyzed the genome of M. conica SH. Transcriptome analysis reveals significant differences between the mycelia and fruiting body. As shown in this study, 1,329 and 2,796 genes were specifically expressed in the mycelia and fruiting body, respectively. The Gene Ontology (GO) enrichment showed that RNA polymerase II transcription activity-related genes were enriched in the mycelium-specific gene cluster, and nucleotide binding-related genes were enriched in the fruiting body-specific gene cluster. Further analysis of differentially expressed genes in different development stages resulted in finding two groups with distinct expression patterns. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment displays that glycan degradation and ABC transporters were enriched in the group 1 with low expressed level in the mycelia, while taurine and hypotaurine metabolismand tyrosine metabolism-related genes were significantly enriched in the group 2 with high expressed level in mycelia. Moreover, a dynamic shift of bacterial communities in the developing fruiting body was detected by 16S rRNA sequencing, and co-expression analysis suggested that bacterial communities might play an important role in regulating gene expression. Taken together, our study provided a better understanding of the molecular biology of M. conica SH and direction for future research on artificial cultivation.
Collapse
Affiliation(s)
- Bei B Lü
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guo G Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liang S Zhang
- Institute of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiao Wu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wei Jiang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan N Huang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jin B Wang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yong C Zhao
- Institute of Edible Fungi, Yunnan Academy of Agricultural Sciences, Yunnan, China
| | - Hua Liu
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Li L Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qin Mo
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ai H Pan
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xuan Q Long
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Wei D Cui
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Xue M Tang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
20
|
Healthy function and high valued utilization of edible fungi. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
22
|
Wen Y, Bi S, Hu X, Yang J, Li C, Li H, Yu DB, Zhu J, Song L, Yu R. Structural characterization and immunomodulatory mechanisms of two novel glucans from Morchella importuna fruiting bodies. Int J Biol Macromol 2021; 183:145-157. [PMID: 33878360 DOI: 10.1016/j.ijbiomac.2021.04.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Two novel glucans named MIPB50-W and MIPB50-S-1 were obtained from edible Morchella importuna with molecular weights (Mw) of 939.2 kDa and 444.5 kDa, respectively. MIPB50-W has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1→. Moreover, MIPB50-S-1 has a backbone of α-(1 → 4)-d-glucan, which was substituted at O-6 position by α-d-Glcp-(1 → 6)-α-d-Glcp-(1→. This is the first report about glucan found in Morchella mushrooms. Furthermore, MIPB50-W and MIPB50-S-1 strengthened the phagocytosis function and the promoted secretion of interleukins (IL)-6/tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO), which induced the activation of Toll-like receptor 2 (TLR2), TLR4 as well as mitogen activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways. Interestingly, MIPB50-S-1 performed the better immunomodulatory activity than that of MIPB50-W in almost all tests. Therefore, MIPB50-W and MIPB50-S-1 are potential immune-enhancing components of functional foods.
Collapse
Affiliation(s)
- Yao Wen
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sixue Bi
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xianjing Hu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jianing Yang
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Hang Li
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dong Bo Yu
- Department of Cardiovascular Care, ThedaCare Regional Medical Center, Appleton, WI, USA
| | - Jianhua Zhu
- Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liyan Song
- Department of Pharmacology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; Department of Natural Products Chemistry, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
23
|
Effect of γ-irradiation on the structure and antioxidant activity of polysaccharide isolated from the fruiting bodies of Morchella sextelata. Biosci Rep 2021; 40:226365. [PMID: 32896857 PMCID: PMC7494991 DOI: 10.1042/bsr20194522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 08/18/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
The molecular weight of the polysaccharide and the chemical groups it contains has an important influence on its biological activity, relatively low molecular weight polysaccharides may have better antioxidant activity. Polysaccharides isolated from the fruiting bodies of Morchella sextelata (MSP) were treated by γ-irradiation at 10, 100 and 1000 kGy doses, and the physicochemical properties and antioxidant activity of irradiated MSP were investigated. Microscopic observation under a scanning electron microscope (SEM) showed that breakage and pores appeared on the surface of the irradiated polysaccharide. As the irradiation dose increased, the average molecular weight of MSP decreased significantly, while the particle size and thermal stability of MSP first increased at 10 and 100 kGy doses and then decreased at 1000 kGy doses. The antioxidant activities, measured by free radical scavenging tests and protective effect on PC12 cells injured by H2O2, were all increased after irradiation, especially when the concentration of MSP was low (50 and 100 μg/ml). Therefore, irradiation treatment was an effective method to enhance the activity of polysaccharides.
Collapse
|
24
|
Badshah SL, Riaz A, Muhammad A, Tel Çayan G, Çayan F, Emin Duru M, Ahmad N, Emwas AH, Jaremko M. Isolation, Characterization, and Medicinal Potential of Polysaccharides of Morchella esculenta. Molecules 2021; 26:1459. [PMID: 33800212 PMCID: PMC7962536 DOI: 10.3390/molecules26051459] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Mushroom polysaccharides are active medicinal compounds that possess immune-modulatory and anticancer properties. Currently, the mushroom polysaccharides krestin, lentinan, and polysaccharopeptides are used as anticancer drugs. They are an unexplored source of natural products with huge potential in both the medicinal and nutraceutical industries. The northern parts of Pakistan have a rich biodiversity of mushrooms that grow during different seasons of the year. Here we selected an edible Morchella esculenta (true morels) of the Ascomycota group for polysaccharide isolation and characterization. Polysaccharopeptides and polysaccharides from this mushroom were isolated using the green chemistry, hot water treatment method. Fourier transform infrared spectroscopy revealed the sugar nature and possible beta-glucan type structure of these polysaccharides. Antioxidant assays showed that the deproteinized polysaccharides have moderate free radical scavenging activity. These isolated polysaccharides exhibited good acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibition activities. Therefore, these polysaccharides may be valuable for the treatment of Alzheimer's and Parkinson's diseases. Further bioassays are needed to discover the true potential of M. esculenta polysaccharides for medicinal purposes.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.R.); (A.M.); (N.A.)
| | - Anila Riaz
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.R.); (A.M.); (N.A.)
| | - Akhtar Muhammad
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.R.); (A.M.); (N.A.)
| | - Gülsen Tel Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey; (G.T.Ç.); (F.Ç.); (M.E.D.)
| | - Fatih Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey; (G.T.Ç.); (F.Ç.); (M.E.D.)
| | - Mehmet Emin Duru
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey; (G.T.Ç.); (F.Ç.); (M.E.D.)
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.R.); (A.M.); (N.A.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Zhang N, Li C, Niu Z, Kang H, Wang M, Zhang B, Tian H. Colonization and immunoregulation of Lactobacillus plantarum BF_15, a novel probiotic strain from the feces of breast-fed infants. Food Funct 2021; 11:3156-3166. [PMID: 32207765 DOI: 10.1039/c9fo02745a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppression is a manifestation imbalance in the immune system, often during unhealthy states. In recent years, lactic acid bacteria (LAB) have been found to be important components of the body's innate immune system, and indispensable to maintaining normal immune function. Lactobacillus plantarum BF_15, a novel strain isolated from the feces of breast-fed infants, which has shown potential as an immunomodulator in vitro. In the present study, with the Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) based on RNA-polymerase beta subunit encoding gene (rpoB) to analyze the colonization of L. plantarum BF_15 in the intestine of mice. In addition, Lactobacillus rhamnosus GG (LGG) as a positive control strain, by measuring immune-related indexes and the diversity of intestinal microbiota, the effects of BF_15 on immunoregulation and intestinal microbiota dysbiosis were investigated to elucidate whether the attenuation of immunosuppression is related to the modulation of intestinal microbiota. Results did indeed support this notion that BF_15 did colonize murine intestines well, in which it could still be detected in mice feces 14 days after stopping the probiotic administration. Moreover, BF_15 found to protect mice against reduction in the levels of several immune-related indicators, including the thymus and spleen indexes, splenic lymphocyte proliferation, toe swelling degree, serum hemolysin-antibody level, and macrophage phagocytosis index, triggered by high-dose (200 mg kg-1) intraperitoneal administration of cyclophosphamide (CTX). In addition, the strain was also found to effectively balance intestinal microbiota dysbiosis in the mice. Collectively, these results indicated that L. plantarum BF_15 can not only successfully colonize murine intestines, but also can effectively alleviate CTX-induced immunosuppression, once established, by rebalancing the intestinal microbiota. This, therefore, provides strong evidence for the view that BF_15 has the potential to become a highly effective immunomodulating probiotic in human microbiota as well.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China. and College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chen Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Zhihua Niu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Hongyan Kang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Bo Zhang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Hongtao Tian
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China. and National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China
| |
Collapse
|
26
|
Gunasekaran S, Govindan S, Ramani P. Sulfated modification, characterization and bioactivities of an acidic polysaccharide fraction from an edible mushroom Pleurotus eous (Berk.) Sacc. Heliyon 2021; 7:e05964. [PMID: 33511294 PMCID: PMC7815800 DOI: 10.1016/j.heliyon.2021.e05964] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The acidic fraction (P3a) of Pleurotus eous was successfully sulfated by sulphur trioxide-pyridine complex method. The effect of sulfate modification (SP3a) on the structure, physicochemical properties and in vitro biological activity of P3 was studied. The structural characteristics were established by UV absorption, FT-IR, HPGPC and GC-MS. Biological studies were carried out, such as in vitro antioxidant, anticoagulant, anti-tumour and antibacterial activities. The sulfation process changed its physicochemical and biological characteristics. Compared with P3a, the molecular weight of SP3a is reduced. P3a and SP3a are composed of galactose, xylose, arabinose with different molar percentages. Sulfated derivatives have strong antioxidant and anticoagulant properties. Compared with P3a, SP3a showed obvious cytotoxicity to Jurkat and HeLa cells. SP3a showed a higher inhibition zone for Gram-positive and Gram-negative bacteria. This article demonstrates that sulfation is an effective way to enhance biological activity, especially SP3a is a promising candidate for bioactive macromolecules and has great potential for industrial and biomedical applications.
Collapse
Affiliation(s)
- Sasikala Gunasekaran
- Department of Biochemistry, School of Biosciences, Periyar University, Salem, India
| | - Sudha Govindan
- Department of Biochemistry, School of Biosciences, Periyar University, Salem, India
| | - Prasanna Ramani
- Dhanvanthri Lab, Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE–AMGT), Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
27
|
Wu G, Sun Y, Deng T, Song L, Li P, Zeng H, Tang X. Identification and Functional Characterization of a Novel Immunomodulatory Protein From Morchella conica SH. Front Immunol 2020; 11:559770. [PMID: 33193329 PMCID: PMC7649207 DOI: 10.3389/fimmu.2020.559770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
A novel fungal immunomodulatory protein (FIP) was found in the precious medical and edible mushroom Morchella conica SH, defined as FIP-mco, which belongs to the FIP family. Phylogenetic analyses of FIPs from different origins were performed using Neighbor-Joining method. It was found that FIP-mco belonged to a new branch of the FIP family and may evolved from a different ancestor compared with most other FIPs. The cDNA sequence of FIP-mco was cloned and expressed in the yeast Pichia Pastoris X33. The recombinant protein of FIP-mco (rFIP-mco) was purified by agarose Ni chromatography and determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis. The protein rFIP-mco could significantly suppress the proliferation of A549 and HepG2 cells at the concentration of 15 and 5 μg/ml, respectively, and inhibited the migration and invasion of human A549 and HepG2 cells at the concentration of 15 and 30 μg/ml respectively in vitro. Further, rFIP-mco can significantly reduce the expression levels of TNF-α, IL-1β, and IL-6 in the THP1 cells (human myeloid leukemia mononuclear cells). In order to explore the potential mechanism of the cytotoxicity effect of rFIP-mco on A549 and HepG2 cells, cell cycle and apoptosis assay in the two cancer cells were conducted. The results demonstrated that G0/G1 to S-phase arrest and increased apoptosis may contribute to the proliferation inhibition by rFIP-mco in the two cancer cells. Molecular mechanism of rFIP-mco's reduction effect on the inflammatory cytokines was also studied by suppression of the NF-κB signaling pathway. It showed that suppression of NF-κB signaling is responsible for the reduction of inflammatory cytokines by rFIP-mco. The results indicated the prospect of FIP-mco from M. conica SH as an effective and feasible source for cancer therapeutic studies and medical applications.
Collapse
Affiliation(s)
- Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tingshan Deng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lili Song
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haijuan Zeng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xueming Tang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
28
|
Yang H, Chen Q, Xiao Y, Li C, Bi H, Zhang M, Wei L, Du Y. Effect of preparation method on physicochemical, scavenging, and proliferative properties of gelatin from Yak skin. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongxia Yang
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Qi Chen
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
- University of Chinese Academic of Sciences Beijing China
| | - Yuancan Xiao
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Cen Li
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Hongtao Bi
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Ming Zhang
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Lixin Wei
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| | - Yuzhi Du
- Qinghai Key Laboratory Of Tibetan Medicine Pharmacology and Safety Evaluation Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
- Key Laboratory of Tibetan Medicine Research Chinese Academy of Sciences Xining China
| |
Collapse
|
29
|
Acay H. Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications. Prep Biochem Biotechnol 2020; 51:127-136. [PMID: 32734826 DOI: 10.1080/10826068.2020.1799390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study aimed to synthesize gold nanoparticles (AuNPs) by hot water extract in room conditions using edible Morchella esculenta (ME) and investigate the bioactive properties of the synthesized Morchella esculenta-based gold nanoparticles (ME-AuNPs). The characterization of the biologically synthesized ME-AuNPs was made using the ultraviolet-visible spectrophotometry, X-ray crystallography, scanning electron microscopy, Fourier transforms infrared spectroscopy, and energy dispersive X-ray spectrum methods. The ME-AuNPs, with a particle size of 16.51 nm, were found to have strong bioactive properties. The antioxidant activity of the ME-AuNPs attempted by metal chelating activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and the β-carotene linoleate model system. The activities at 10 mg/mL were 82, 85, and 77% for the chelation of ferrous ions, DPPH scavenging, and β-carotene linoleate tests, respectively. The ME-AuNPs also showed strong antimicrobial activity against various pathogen microorganisms and strong cytotoxic activity in the A549 and HepG2 cell lines. This study demonstrated the possibility of using a cheap and nontoxic fungal extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, and biocompatible AuNPs that could be used in future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Hilal Acay
- Department of Nutrition and Dietetics, Faculty of Health Science, Mardin Artuklu University, Mardin, Turkey
| |
Collapse
|
30
|
Huang L, Shen M, Wu T, Yu Y, Yu Q, Chen Y, Xie J. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. Int J Biol Macromol 2020; 152:766-774. [PMID: 32119945 DOI: 10.1016/j.ijbiomac.2020.02.318] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
In this study, the immune responses of Mesona chinensis Benth polysaccharides (MP) in vitro and in vivo were investigated. Results showed that MP presented immunomodulatory activities on macrophages and T lymphocytes in vitro. Compared with the cyclophosphamide (Cy)-induced immunosuppressive mice, the body weights, spleen indexes (3.45 to 4.91) and thymus indexes (0.78 to 1.04) of the mice treated with MP were increased, and the peripheral blood levels were recovered. MP treatment also increased superoxide dismutase, glutathione peroxidase and catalase activities, and reduced malondialdehyde levels to enhance the total antioxidant capacity of Cy-treated mice. In addition, MP significantly elevated IL-2, NO, and IFN-γ secretions of splenic lymphocytes and spleen, while MP mainly exerts an immune effect by regulating T lymphocytes. Furthermore, MP possessed the immunomodulatory activity by up-regulating the phosphorylation levels of proteins factors (c-Jun N-terminal kinase, extracellular regulated protein kinase and p38 kinase) in mitogen activated protein kinases signaling pathways. This study suggested that MP may be explored as a natural immune stimulant for functional food and nutraceutical industries.
Collapse
Affiliation(s)
- Lixin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ting Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
31
|
Mingyi Y, Belwal T, Devkota HP, Li L, Luo Z. Trends of utilizing mushroom polysaccharides (MPs) as potent nutraceutical components in food and medicine: A comprehensive review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Wen Y, Peng D, Li C, Hu X, Bi S, Song L, Peng B, Zhu J, Chen Y, Yu R. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. Int J Biol Macromol 2019; 137:8-19. [DOI: 10.1016/j.ijbiomac.2019.06.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/09/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
|
33
|
Optimization and Identification of Antioxidant Peptide from Underutilized Dunaliella salina Protein: Extraction, In Vitro Gastrointestinal Digestion, and Fractionation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6424651. [PMID: 31531361 PMCID: PMC6720044 DOI: 10.1155/2019/6424651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
DPPH• scavenging peptides (<3kDa) from underutilized Dunaliella salina protein were obtained by the following successive treatment, i.e., ultrasound extraction, simulated in vitro gastrointestinal digestion hydrolyzation, and membrane ultrafiltration classification. The optimal condition for ultrasound-assisted extraction was an ultrasound wave with 800 W of power treating a mixture of 60 mL of 1.0 mol L−1 NaOH and 2 g algae powder for 15 min. A high correlation (r=0.8146) between DPPH• scavenging activity and yield of the intact peptides showed their antioxidant capacity. Simulated in vitro digestion assay resulted in excellent DPPH• scavenging activity of the total peptide, amounting to (86.5 ± 10.1)%, comparing with the nondigestion samples at (46.8 ± 6.5)%. After fractionation, the 500-1000 Da fraction exhibited the highest DPPH• scavenging activity (81.2 ± 4.0)%, increasing 1.5 times due to digestion. Then, the 500-1000 Da fraction was analyzed by RPLC-Q Exactive HF mass spectrometer, and 4 novel peptides, i.e., Ile-Leu-Thr-Lys-Ala-Ala-Ile-Glu-Gly-Lys, Ile-Ile-Tyr-Phe-Gln-Gly-Lys, Asn-Asp-Pro-Ser-Thr-Val-Lys, and Thr-Val-Arg-Pro-Pro-Gln-Arg, were identified. From these amino acid sequences, hydrophobic residues accounted for 56%, which indicated their high antioxidant property. The results indicated that underutilized protein of Dunaliella salina could be a potential source of antioxidative peptides through simulated in vitro gastrointestinal digestion.
Collapse
|
34
|
Hepatoprotective Effects of Morchella esculenta against Alcohol-Induced Acute Liver Injury in the C57BL/6 Mouse Related to Nrf-2 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6029876. [PMID: 31396303 PMCID: PMC6664553 DOI: 10.1155/2019/6029876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
Abstract
This study investigated the hepatoprotective effects of Morchella esculenta fruit body (ME) and the underlying mechanisms in mice with alcohol-induced acute liver injury. Systematic analysis revealed that ME contained 21 types of fatty acid, 17 types of amino acid, and 12 types of mineral. Subsequently, a mouse model of acute alcohol-induced liver injury was established by oral administration of alcohol for 14 days. Fourteen-day administration of ME prevented alcohol-induced increases in alanine aminotransferase and aspartate aminotransferase levels and reduced the activity of acetaldehyde dehydrogenase in blood serum and liver tissue. ME appears to regulate lipid metabolism by suppressing triglycerides, total cholesterol, and high-density lipoprotein in the liver. ME inhibited the production of inflammatory factors including chitinase-3-like protein 1 (YKL 40), interleukin-7 (IL-7), plasminogen activator inhibitor type 1 (PAI-1), and retinol-binding protein 4 (RBP4) in blood serum and/or liver tissue. ME treatment relieved the alcohol-induced imbalance in prooxidative and antioxidative signaling via nuclear factor-erythroid 2-related factor 2 (Nrf-2), as indicated by upregulation of superoxide dismutase-1, superoxide dismutase-2, catalase, heme oxygenase-1, and heme oxygenase-2 expression and downregulation of kelch-like ECH-associated protein 1 (Keap-1) in the liver. Moreover, ME reduced the levels of phosphorylated nuclear factor kappa-B kinase α/β, inhibitor of nuclear factor kappa-B α and nuclear factor kappa-B p65 (NF-κB p65) in the liver. The hepatoprotective effects of ME against alcohol-induced acute liver injury were thus confirmed. The mechanism of action may be related to modulation of antioxidative and anti-inflammatory signaling pathways, partially via regulation of Nrf-2 and NF-κB signaling.
Collapse
|
35
|
Edible Spruce (Morchella esculenta), Accumulator of Toxic Elements in the Environment. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In this study we examined the dried fruiting bodies of Morchella esculenta, collected in the area of the coal and biomass based thermal power plant in Vojany from the nearby Bahoň marsh, in the Slovak Republic. The area is characterized by a high environmental burden, especially because of air pollutant emissions from the power plant operation. Twenty-three (23) chemical elements were found in the dried fruiting bodies after microwave-assisted sample preparation using an Inductively Coupled Plasma Mass Spectrophotometer ICP-MS AGILENT 7500c system. The mercury content was determined employing a special AMA 254 apparatus intended for the determination of Hg directly in dry powdered fruiting bodies without microwave digestion. The content of toxic elements expressed in mg.kg−1 DW (dry weight) were as follows: Hg 0.048—0.052 (RSD—Relative Standard Deviation = 4.80 %); Cd 4.543—6.169 (RSD = 3.35 %); Pb 0.261—0.291 (RSD = 2.67 %); As 0.455—0.469 (RSD = 5.79 %); Cr 1.585—1.616 (RSD = 2.33 %); and Ni 8.166—9.276 (RSD = 3.03 %). The contents of cadmium, nickel and mercury exceeded the hygiene limits, while the contents of arsenic and lead approached the hygiene limits. Due to the high levels of toxic elements, the fruiting bodies collected in the location are not suitable for culinary purposes. The mushroom Morchella esculenta acts as an accumulator of toxic elements from the environment in which it grows and can be considered as an indicator of environmental pollution.
Collapse
|
36
|
Ma XK, She X, Peterson EC, Wang YZ, Zheng P, Ma H, Zhang K, Liang J. A newly characterized exopolysaccharide from Sanghuangporus sanghuang. J Microbiol 2019; 57:812-820. [DOI: 10.1007/s12275-019-9036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
|
37
|
Yang Y, Chen J, Lei L, Li F, Tang Y, Yuan Y, Zhang Y, Wu S, Yin R, Ming J. Acetylation of polysaccharide from Morchella angusticeps peck enhances its immune activation and anti-inflammatory activities in macrophage RAW264.7 cells. Food Chem Toxicol 2019; 125:38-45. [DOI: 10.1016/j.fct.2018.12.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/28/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
38
|
Kang Q, Chen S, Li S, Wang B, Liu X, Hao L, Lu J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int J Biol Macromol 2019; 124:1137-1144. [DOI: 10.1016/j.ijbiomac.2018.11.215] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 11/15/2022]
|
39
|
Zhang Q, Wu C, Wang T, Sun Y, Li T, Fan G. Improvement of Biological Activity of Morchella esculenta Protein Hydrolysate by Microwave-Assisted Selenization. J Food Sci 2018; 84:73-79. [PMID: 30575032 DOI: 10.1111/1750-3841.14411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Abstract
Morchella esculenta protein hydrolysate (MPH) from a valued medicinal and edible fungus M. esculenta (L.) is an excellent material for functional food development. To promote MPH utilization, selenization of MPH was performed by applying a simple and environmentally friendly microwave irradiation procedure. The physicochemical characteristics of selenized MPH (Se-MPH) were investigated by SEM-EDX, FTIR, CD, and amino acid analyzer, and its biological activity were assessed by ABTS, DPPH, H2 O2 scavenging, and reducing power assays, as well as α-glucosidase, α-amylase, and tyrosinase inhibition tests. The results showed that MPH was successfully selenized, Se content in Se-MPH reached 59.0 ± 0.64 mg/g, and amino groups, hydroxyl groups, and sulfur atoms of methionine residues in the MPH molecule may participate in selenization. Furthermore, Se-MPH exhibited significantly enhanced antioxidant, antidiabetic, and tyrosinase inhibitory activities, compared with the native MPH and microwave-irradiated MPH. Thus, the microwave-assisted selenization is a feasible strategy for preparing organic Se and improving the biological activity of MPH. PRACTICAL APPLICATION: In this study, selenized Morchella esculenta protein hydrolysate (Se-MPH) was successfully prepared via conjugation with sodium selenite using the microwave-assisted method. The results showed that Se-MPH, synthesized with the aid of microwave, exhibited favorable selenium content and improved antioxidant, antidiabetic, and tyrosinase inhibitory activities. Therefore, microwave can be employed as an innovative and effective avenue for the production of organic selenium in nutraceutical and functional food industry.
Collapse
Affiliation(s)
- Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caie Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Tingting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Gongjian Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
40
|
Li Q, Chen G, Wang W, Zhang W, Ding Y, Zhao T, Li F, Mao G, Feng W, Wang Q, Yang L, Wu X. A novel Se-polysaccharide from Se-enriched G. frondosa protects against immunosuppression and low Se status in Se-deficient mice. Int J Biol Macromol 2018; 117:878-889. [DOI: 10.1016/j.ijbiomac.2018.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
|
41
|
Li Q, Chen G, Chen H, Zhang W, Ding Y, Yu P, Zhao T, Mao G, Feng W, Yang L, Wu X. Se-enriched G. frondosa polysaccharide protects against immunosuppression in cyclophosphamide-induced mice via MAPKs signal transduction pathway. Carbohydr Polym 2018; 196:445-456. [PMID: 29891317 DOI: 10.1016/j.carbpol.2018.05.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/31/2023]
Abstract
To assess the immunomodulatory and antioxidant activities of a Se-polysaccharide from Se-enriched G. frondosa (Se-GFP-22), immunosuppressed mice models were generated by cyclophosphamide (CTX) administration and then treated with Se-GFP-22. Results showed that Se-GFP-22 could increase thymus and spleen indices, phagocytic index, co-mitogenic (ConA- or LPS-stimulated) activities on splenocytes, DTH reaction, serum hemolysin formation and immunoglobulin (Ig G, Ig A and Ig M) levels in CTX-treated mice. Se-GFP-22 significantly enhanced the antioxidant activity in CTX-treated mice, as shown by the evaluation of GSH-Px, SOD and CAT activities, as well as MDA levels in serum, liver and kidney. Se-GFP-22 strongly stimulated inflammatory cytokines (IL-2 and IFN-γ) and NO productions by up-regulating mRNA expressions of IL-2, IFN-γ and iNOS. Se-GFP-22 possessed the immunomodulatory activity by up-regulating various transcription factors (JNK, ERK, and p38) in MAPKs signaling pathways. This study suggested that Se-GFP-22 may provide an alternative strategy in lessening chemotherapy-induced immunosuppression.
Collapse
Affiliation(s)
- Qian Li
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, Hainan Normal University, Longkun Rd. 99, Hainan 570100, China
| | - Hui Chen
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weijie Zhang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Yangyang Ding
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Ping Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Weiwei Feng
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, China.
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
42
|
Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta. Carbohydr Polym 2018; 195:29-38. [DOI: 10.1016/j.carbpol.2018.04.069] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/05/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
|
43
|
Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed Pharmacother 2018; 105:377-394. [DOI: 10.1016/j.biopha.2018.05.138] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
|
44
|
Li Q, Zhang F, Chen G, Chen Y, Zhang W, Mao G, Zhao T, Zhang M, Yang L, Wu X. Purification, characterization and immunomodulatory activity of a novel polysaccharide from Grifola frondosa. Int J Biol Macromol 2018; 111:1293-1303. [DOI: 10.1016/j.ijbiomac.2018.01.090] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/27/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
45
|
The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res Int 2018; 105:517-536. [DOI: 10.1016/j.foodres.2017.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022]
|
46
|
Bioactivity-guided isolation and chemical characterization of antiproliferative constituents from morel mushroom (Morchella esculenta) in human lung adenocarcinoma cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
47
|
Xiong C, Luo Q, Huang WL, Li Q, Chen C, Chen ZQ, Yang ZR. The potential neuritogenic activity of aqueous extracts from Morchella importuna in rat pheochromocytoma cells. Food Sci Biotechnol 2017; 26:1685-1692. [PMID: 30263706 PMCID: PMC6049703 DOI: 10.1007/s10068-017-0224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/11/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to explore the neuritogenic effects of aqueous extracts from the fruiting bodies of Morchella importuna (MEA). 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was carried out to assess the cytotoxicity of MEA. Neurite outgrowth stimulation assay was used to evaluate the potentiation of neuritogenic activity induced by MEA. The specific inhibitors for TrkA, MEK/ERK and PI3K signaling pathway were served to clarify the mechanism of MEA's neuritogenic effects. It was shown that MEA could mimic neuritogenic activity of NGF, a kind of representative neurotrophic factors with no significant cytotoxicity, and stimulate neurite outgrowth in a dose-dependent manner of PC12 cells. The neuritogenic activity induced by MEA required activity of PI3K/Akt and MEK/ERK1/2 signaling pathways, as well as parts of TrkA receptor. Accordingly, MEA could be used as a promising neuritogenic-stimulation compound for nervous diseases treatment.
Collapse
Affiliation(s)
- Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 China
| | - Qiang Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010 China
| | - Wen-Li Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 China
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| | - Zu-Qin Chen
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 China
| | - Zhi-Rong Yang
- School of Life Science, Sichuan University, Chengdu, 610065 Sichuan China
| |
Collapse
|
48
|
Feng T, Sang M, Zhuang H, Xu Z. In vitro and in vivo antioxidative and radioprotective capacities of polysaccharide isolated from Mesona Blumes
gum. STARCH-STARKE 2017. [DOI: 10.1002/star.201700056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Min Sang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Haining Zhuang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
- Institute of Edible Fungi; Shanghai Academy of Agricultural Sciences; Key Laboratory of Edible Fungi Resources and Utilization (South); Ministry of Agriculture; National Engineering Research Center of Edible Fungi; National R&D Center for Edible Fungi Processing; Shanghai P. R. China
| | - Zhimin Xu
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
- School of Nutrition and Food Sciences; Louisiana State University Agricultural Center; Baton Rouge LA USA
| |
Collapse
|
49
|
Xu N, Sun Y, Guo X, Liu C, Mao Q, Hou J. Optimization of ultrasonic‐microwave synergistic extraction of polysaccharides from
Morchella conica. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Xu
- College of Food Science and EngineeringJilin UniversityChangchun 130062 China
| | - Yong‐Hai Sun
- College of Food Science and EngineeringJilin UniversityChangchun 130062 China
| | - Xiao‐Lei Guo
- College of Food Science and EngineeringJilin UniversityChangchun 130062 China
| | - Chao Liu
- School of Food EngineeringJilin Agriculture Science and Technology CollegeJilin 132101 China
| | - Qian Mao
- College of Food Science and EngineeringJilin UniversityChangchun 130062 China
| | - Ju‐Min Hou
- College of Food Science and EngineeringJilin UniversityChangchun 130062 China
| |
Collapse
|
50
|
Liu Q, Ma H, Zhang Y, Dong C. Artificial cultivation of true morels: current state, issues and perspectives. Crit Rev Biotechnol 2017; 38:259-271. [PMID: 28585444 DOI: 10.1080/07388551.2017.1333082] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Morels (Morchella, Ascomycota), which are some of the most highly prized edible and medicinal mushrooms, are of great economic and scientific value. Morel cultivation has been a research focus worldwide for more than 100 years, and the outdoor cultivation of morels has succeeded and expanded to a large scale in China in recent years. In this study, we review the progress in recent research regarding the life cycle and reproductive systems in the genus Morchella and the current state of outdoor cultivation. Sclerotia formation and conidia production are two important phases during the life cycle. The morel species cultivated commercially in America is M. rufobrunnea based on molecular phylogenetic analysis. The species currently cultivated in China are black morels, including M. importuna, M. sextalata and M. eximia. The field cultivation of morels expanded in the majority of the provinces in China with a yield of fresh morels of 0-7620 kg per ha. The key techniques include spawn production, land preparation and spawning, the addition of exogenous nutrition, fruiting management and harvesting. The application of exogenous nutrition is the most important breakthrough in the field of morel cultivation, but the mechanism remains unclear. It was estimated that the total amount of field cultivated fresh morels was ∼500 t in 2015-2016. We also discuss the potential issues remaining in the current literature and suggest directions for future studies.
Collapse
Affiliation(s)
- Qizheng Liu
- a State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| | - Husheng Ma
- b Guangxi Institute of Botany , Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences , Guiling , China
| | - Ya Zhang
- c Sichuan Province Delilong Agricultural Technology Co. Ltd. , Chengdu , China
| | - Caihong Dong
- a State Key Laboratory of Mycology , Institute of Microbiology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|