1
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
2
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Moteshareie H, Indrayanti AM, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Hydrogen peroxide sensitivity connects the activity of COX5A and NPR3 to the regulation of YAP1 expression. FASEB J 2024; 38:e23439. [PMID: 38416461 DOI: 10.1096/fj.202300978rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | - Taha Azad
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Kazmirchuk TDD, Said KB, Samanfar B, Golshani A. The Involvement of YNR069C in Protein Synthesis in the Baker's Yeast, Saccharomyces cerevisiae. BIOLOGY 2024; 13:138. [PMID: 38534408 DOI: 10.3390/biology13030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Maintaining translation fidelity is a critical step within the process of gene expression. It requires the involvement of numerous regulatory elements to ensure the synthesis of functional proteins. The efficient termination of protein synthesis can play a crucial role in preserving this fidelity. Here, we report on investigating a protein of unknown function, YNR069C (also known as BSC5), for its activity in the process of translation. We observed a significant increase in the bypass of premature stop codons upon the deletion of YNR069C. Interestingly, the genomic arrangement of this ORF suggests a compatible mode of expression reliant on translational readthrough, incorporating the neighboring open reading frame. We also showed that the deletion of YNR069C results in an increase in the rate of translation. Based on our results, we propose that YNR069C may play a role in translation fidelity, impacting the overall quantity and quality of translation. Our genetic interaction analysis supports our hypothesis, associating the role of YNR069C to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Hajikarimlou M, Hooshyar M, Sunba N, Nazemof N, Moutaoufik MT, Phanse S, Said KB, Babu M, Holcik M, Samanfar B, Smith M, Golshani A. A Correlation between 3'-UTR of OXA1 Gene and Yeast Mitochondrial Translation. J Fungi (Basel) 2023; 9:jof9040445. [PMID: 37108900 PMCID: PMC10143089 DOI: 10.3390/jof9040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria possess their own DNA (mtDNA) and are capable of carrying out their transcription and translation. Although protein synthesis can take place in mitochondria, the majority of the proteins in mitochondria have nuclear origin. 3' and 5' untranslated regions of mRNAs (3'-UTR and 5'-UTR, respectively) are thought to play key roles in directing and regulating the activity of mitochondria mRNAs. Here we investigate the association between the presence of 3'-UTR from OXA1 gene on a prokaryotic reporter mRNA and mitochondrial translation in yeast. OXA1 is a nuclear gene that codes for mitochondrial inner membrane insertion protein and its 3'-UTR is shown to direct its mRNA toward mitochondria. It is not clear, however, if this mRNA may also be translated by mitochondria. In the current study, using a β-galactosidase reporter gene, we provide genetic evidence for a correlation between the presence of 3'-UTR of OXA1 on an mRNA and mitochondrial translation in yeast.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Noor Sunba
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Nazila Nazemof
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mohamed Taha Moutaoufik
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhena Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Kamaledin B Said
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail P.O. Box 2240, Saudi Arabia
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K2H 8S2, Canada
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
5
|
Van Damme P, Osberg C, Jonckheere V, Glomnes N, Gevaert K, Arnesen T, Aksnes H. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC. J Biol Chem 2023; 299:102824. [PMID: 36567016 PMCID: PMC9867985 DOI: 10.1016/j.jbc.2022.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
N-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.
Collapse
Affiliation(s)
- Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Camilla Osberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nina Glomnes
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Surgery, Haukeland University Hospital, Bergen, Norway
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
6
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
7
|
Jagadeesan SK, Potter T, Al-Gafari M, Hooshyar M, Hewapathirana CM, Takallou S, Hajikarimlou M, Burnside D, Samanfar B, Moteshareie H, Smith M, Golshani A. Discovery and identification of genes involved in DNA damage repair in yeast. Gene 2022; 831:146549. [PMID: 35569766 DOI: 10.1016/j.gene.2022.146549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
DNA repair defects are common in tumour cells and can lead to misrepair of double-strand breaks (DSBs), posing a significant challenge to cellular integrity. The overall mechanisms of DSB have been known for decades. However, the list of the genes that affect the efficiency of DSB repair continues to grow. Additional factors that play a role in DSB repair pathways have yet to be identified. In this study, we present a computational approach to identify novel gene functions that are involved in DNA damage repair in Saccharomyces cerevisiae. Among the primary candidates, GAL7, YMR130W, and YHI9 were selected for further analysis since they had not previously been identified as being active in DNA repair pathways. Originally, GAL7 was linked to galactose metabolism. YHI9 and YMR130W encode proteins of unknown functions. Laboratory testing of deletion strains gal7Δ, ymr130wΔ, and yhi9Δ implicated all 3 genes in Homologous Recombination (HR) and/or Non-Homologous End Joining (NHEJ) repair pathways, and enhanced sensitivity to DNA damage-inducing drugs suggested involvement in the broader DNA damage repair machinery. A subsequent genetic interaction analysis revealed interconnections of these three genes, most strikingly through SIR2, SIR3 and SIR4 that are involved in chromatin regulation and DNA damage repair network.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Taylor Potter
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Mohsen Hooshyar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Daniel Burnside
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada.
| | - Houman Moteshareie
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| | - Myron Smith
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada; Department of Biology, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5’-UTRs. Mol Cell Biochem 2022; 477:2643-2656. [DOI: 10.1007/s11010-022-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
9
|
Cooper DG, Jiang Y, Skuodas S, Wang L, Fassler JS. Possible Role for Allelic Variation in Yeast MED15 in Ecological Adaptation. Front Microbiol 2021; 12:741572. [PMID: 34733258 PMCID: PMC8558680 DOI: 10.3389/fmicb.2021.741572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The propensity for Saccharomyces cerevisiae yeast to ferment sugars into ethanol and CO2 has long been useful in the production of a wide range of food and drink. In the production of alcoholic beverages, the yeast strain selected for fermentation is crucial because not all strains are equally proficient in tolerating fermentation stresses. One potential mechanism by which domesticated yeast may have adapted to fermentation stresses is through changes in the expression of stress response genes. MED15 is a general transcriptional regulator and RNA Pol II Mediator complex subunit which modulates the expression of many metabolic and stress response genes. In this study, we explore the role of MED15 in alcoholic fermentation. In addition, we ask whether MED15 alleles from wine, sake or palm wine yeast improve fermentation activity and grape juice fermentation stress responses. And last, we investigate to what extent any differences in activity are due to allelic differences in the lengths of three polyglutamine tracts in MED15. We find that strains lacking MED15 are deficient in fermentation and fermentation stress responses and that MED15 alleles from alcoholic beverage yeast strains can improve both the fermentation capacity and the response to ethanol stresses when transplanted into a standard laboratory strain. Finally, we find that polyglutamine tract length in the Med15 protein is one determinant in the efficiency of the alcoholic fermentation process. These data lead to a working model in which polyglutamine tract length and other types of variability within transcriptional hubs like the Mediator subunit, Med15, may contribute to a reservoir of transcriptional profiles that may provide a fitness benefit in the face of environmental fluctuations.
Collapse
Affiliation(s)
- David G Cooper
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Yishuo Jiang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Sydney Skuodas
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Luying Wang
- Biology Department, University of Iowa, Iowa City, IA, United States
| | - Jan S Fassler
- Biology Department, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Garg M, Poornima G, Rajyaguru PI. Elucidation of the RNA-granule inducing sodium azide stress response through transcriptome analysis. Genomics 2020; 112:2978-2989. [PMID: 32437849 PMCID: PMC7116212 DOI: 10.1016/j.ygeno.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
Abstract
Sodium azide is a commonly used cytochrome oxidase inhibitor that leads to translation repression and RNA granule assembly. The global changes in mRNA abundance in response to this stressor are unknown. RGG-motif proteins Scd6 and Sbp1 are translation-repressors and decapping-activators that localize to and affect the assembly of RNA granules in response to sodium azide stress. Transcriptome-wide effects of these proteins remain unknown. To address this, we have sequenced transcriptome of the: a) wild type strain under unstressed and sodium azide stress, b) Δscd6 and Δsbp1 strains under unstressed and sodium azide stress. Transcriptome analysis identified altered abundance of many transcripts belonging to stress-responsive pathways which were further validated by qRT-PCR results. Abundance of several transcripts was altered in Δscd6/Δsbp1 under normal conditions and upon stress. Overall, this study provides critical insights into transcriptome changes in response to sodium azide stress and the role of RGG-motif proteins in these changes.
Collapse
Affiliation(s)
- Mani Garg
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
11
|
Hajikarimlou M, Hunt K, Kirby G, Takallou S, Jagadeesan SK, Omidi K, Hooshyar M, Burnside D, Moteshareie H, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Lithium Chloride Sensitivity in Yeast and Regulation of Translation. Int J Mol Sci 2020; 21:ijms21165730. [PMID: 32785068 PMCID: PMC7461102 DOI: 10.3390/ijms21165730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lithium chloride (LiCl) has been used as a treatment option for those living with bipolar disorder (BD). As a result, many studies have been conducted to examine its mode of action, toxicity, and downstream cellular responses. We know that LiCl is able to affect cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3, which are considered to be important in regulating gene expression at the translational level. However, additional downstream effects require further investigation, especially in translation pathway. In yeast, LiCl treatment affects the expression, and thus the activity, of PGM2, a phosphoglucomutase involved in sugar metabolism. Inhibition of PGM2 leads to the accumulation of intermediate metabolites of galactose metabolism causing cell toxicity. However, it is not fully understood how LiCl affects gene expression in this matter. In this study, we identified three genes, NAM7, PUS2, and RPL27B, which increase yeast LiCl sensitivity when deleted. We further demonstrate that NAM7, PUS2, and RPL27B influence translation and exert their activity through the 5′-Untranslated region (5′-UTR) of PGM2 mRNA in yeast.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Kathryn Hunt
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Grace Kirby
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1Y 4X2, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Correspondence:
| |
Collapse
|
12
|
Hajikarimlou M, Moteshareie H, Omidi K, Hooshyar M, Shaikho S, Kazmirchuk T, Burnside D, Takallou S, Zare N, Jagadeesan SK, Puchacz N, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Sensitivity of yeast to lithium chloride connects the activity of YTA6 and YPR096C to translation of structured mRNAs. PLoS One 2020; 15:e0235033. [PMID: 32639961 PMCID: PMC7343135 DOI: 10.1371/journal.pone.0235033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Lithium Chloride (LiCl) toxicity, mode of action and cellular responses have been the subject of active investigations over the past decades. In yeast, LiCl treatment is reported to reduce the activity and alters the expression of PGM2, a gene that encodes a phosphoglucomutase involved in sugar metabolism. Reduced activity of phosphoglucomutase in the presence of galactose causes an accumulation of intermediate metabolites of galactose metabolism leading to a number of phenotypes including growth defect. In the current study, we identify two understudied yeast genes, YTA6 and YPR096C that when deleted, cell sensitivity to LiCl is increased when galactose is used as a carbon source. The 5’-UTR of PGM2 mRNA is structured. Using this region, we show that YTA6 and YPR096C influence the translation of PGM2 mRNA.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Narges Zare
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Nathalie Puchacz
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Canada
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Perea-García A, Miró P, Jiménez-Lorenzo R, Martínez-Pastor MT, Puig S. Sequential recruitment of the mRNA decay machinery to the iron-regulated protein Cth2 in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194595. [PMID: 32565401 DOI: 10.1016/j.bbagrm.2020.194595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 01/24/2023]
Abstract
Post-transcriptional factors importantly contribute to the rapid and coordinated expression of the multiple genes required for the adaptation of living organisms to environmental stresses. In the model eukaryote Saccharomyces cerevisiae, a conserved mRNA-binding protein, known as Cth2, modulates the metabolic response to iron deficiency. Cth2 is a tandem zinc-finger (TZF)-containing protein that co-transcriptionally binds to adenine/uracil-rich elements (ARE) present in the 3'-untranslated region of iron-related mRNAs to promote their turnover. The nuclear binding of Cth2 to mRNAs via its TZFs is indispensable for its export to the cytoplasm. Although Cth2 nucleocytoplasmic transport is essential for its regulatory function, little is known about the recruitment of the mRNA degradation machinery. Here, we investigate the sequential assembly of mRNA decay factors during Cth2 shuttling. By using an enzymatic in vivo proximity assay called M-track, we show that Cth2 associates to the RNA helicase Dhh1 and the deadenylase Pop2/Caf1 before binding to its target mRNAs. The recruitment of Dhh1 to Cth2 requires the integrity of the Ccr4-Pop2 deadenylase complex, whereas the interaction between Cth2 and Pop2 needs Ccr4 but not Dhh1. M-track assays also show that Cth2-binding to ARE-containing mRNAs is necessary for the interaction between Cth2 and the exonuclease Xrn1. The importance of these interactions is highlighted by the specific growth defect in iron-deficient conditions displayed by cells lacking Dhh1, Pop2, Ccr4 or Xrn1. These results exemplify the stepwise process of assembly of different mRNA decay factors onto an mRNA-binding protein during the mechanism of post-transcriptional regulation.
Collapse
Affiliation(s)
- Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | - Pilar Miró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | - Rafael Jiménez-Lorenzo
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna (Valencia), Spain.
| |
Collapse
|
14
|
Santomartino R, Ottaviano D, Camponeschi I, Landicho TAA, Falato L, Visca A, Soulard A, Lemaire M, Bianchi MM. The hypoxic expression of the glucose transporter RAG1 reveals the role of the bHLH transcription factor Sck1 as a novel hypoxic modulator in Kluyveromyces lactis. FEMS Yeast Res 2020; 19:5519861. [PMID: 31210264 DOI: 10.1093/femsyr/foz041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.
Collapse
Affiliation(s)
- Rosa Santomartino
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Ottaviano
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Camponeschi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Luca Falato
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Visca
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Alexandre Soulard
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Marc Lemaire
- Université Lyon 1, CNRS, INSA de Lyon, UMR5240 Microbiologie, Adaptation et Pathogénie, Génétique Moléculaire des Levures, Villeurbanne F69622, France
| | - Michele Maria Bianchi
- Sapienza Università di Roma, Dept. Biologia e Biotecnologie C. Darwin, p.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Jordá T, Romero AM, Perea-García A, Rozès N, Puig S. The lipid composition of yeast cells modulates the response to iron deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158707. [PMID: 32251724 DOI: 10.1016/j.bbalip.2020.158707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023]
Abstract
Iron is a vital micronutrient for all eukaryotes because it participates as a redox cofactor in multiple metabolic pathways, including lipid biosynthesis. In response to iron deficiency, the Saccharomyces cerevisiae iron-responsive transcription factor Aft1 accumulates in the nucleus and activates a set of genes that promote iron acquisition at the cell surface. In this study, we report that yeast cells lacking the transcription factor Mga2, which promotes the expression of the iron-dependent Δ9-fatty acid desaturase Ole1, display a defect in the activation of the iron regulon during the adaptation to iron limitation. Supplementation with exogenous unsaturated fatty acids (UFAs) or OLE1 expression rescues the iron regulon activation defect of mga2Δ cells. These observations and fatty acid measurements suggest that the mga2Δ defect in iron regulon expression is due to low UFA levels. Subcellular localization studies reveal that low UFAs cause a mislocalization of Aft1 protein to the vacuole upon iron deprivation that prevents its nuclear accumulation. These results indicate that Mga2 and Ole1 are essential to maintain the UFA levels required for Aft1-dependent activation of the iron regulon in response to iron deficiency, and directly connect the biosynthesis of fatty acids to the response to iron depletion.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), , Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
16
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Romero AM, Jordá T, Rozès N, Martínez-Pastor MT, Puig S. Regulation of yeast fatty acid desaturase in response to iron deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:657-668. [PMID: 29627385 DOI: 10.1016/j.bbalip.2018.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
Abstract
Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses.
Collapse
Affiliation(s)
- Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Nicolas Rozès
- Departament de Bioquímica i Biotecnología, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
18
|
Samanfar B, Shostak K, Moteshareie H, Hajikarimlou M, Shaikho S, Omidi K, Hooshyar M, Burnside D, Márquez IG, Kazmirchuk T, Naing T, Ludovico P, York-Lyon A, Szereszewski K, Leung C, Jin JY, Megarbane R, Smith ML, Babu M, Holcik M, Golshani A. The sensitivity of the yeast, Saccharomyces cerevisiae, to acetic acid is influenced by DOM34 and RPL36A. PeerJ 2017; 5:e4037. [PMID: 29158977 PMCID: PMC5691786 DOI: 10.7717/peerj.4037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked to acetic acid and heat shock stress responses in yeast. Both acetic acid and heat shock have been identified to trigger different cellular responses including reduction of global protein synthesis and induction of programmed cell death. Yeast HSC82 and HSP82 code for two important heat shock proteins that together account for 1–2% of total cellular proteins. Both proteins have been linked to responses to acetic acid and heat shock. In contrast to the overall rate of protein synthesis which is reduced, the expression of HSC82 and HSP82 is induced in response to acetic acid stress. In the current study we identified two yeast genes DOM34 and RPL36A that are linked to acetic acid and heat shock sensitivity. We investigated the influence of these genes on the expression of HSP proteins. Our observations suggest that Dom34 and RPL36A influence translation in a CAP-independent manner.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Kristina Shostak
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Ari-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Imelda Galván Márquez
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thet Naing
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Portugal
| | - Anna York-Lyon
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kama Szereszewski
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Cindy Leung
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jennifer Yixin Jin
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Rami Megarbane
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Martin Holcik
- Children's Hospital of Eastern Ontario Research Institute, Department of Pediatrics , University of Ottawa, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Abstract
Genetic variation among individuals within a population provides the raw material for phenotypic diversity upon which natural selection operates. Some given variants can act on multiple standing genomic variations simultaneously and release previously inaccessible phenotypes, leading to increased adaptive potential upon challenging environments. Previously, we identified such a variant related to a tRNA nonsense suppressor in yeast. When introduced into other genetic backgrounds, the suppressor led to an increased population phenotypic variance on various culture conditions, conferring background and environment specific selective advantages. Nonetheless, most isolates are intolerant to the suppressor on rich media due to a severe fitness cost. Here, we found that the tolerance to suppressor is related to a surprising level of fitness outburst, showing a trade-off effect to accommodate the cost of carrying the suppressor. To dissect the genetic basis of such trade-offs, we crossed strains with contrasting tolerance levels on rich media, and analyzed the fitness distribution patterns in the offspring. Combining quantitative tetrad analysis and bulk segregant analysis, we identified two genes, namely MKT1 and RGA1, involved in suppressor tolerance. We showed that alleles from the tolerant parent for both genes conferred a significant gain of fitness, which increased the suppressor tolerance. Our results present a detailed dissection of suppressor tolerance in yeast and provide insights into the molecular basis of trade-offs between fitness and evolutionary potential.
Collapse
Affiliation(s)
- Jing Hou
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| | - Joseph Schacherer
- Department of Genetics, Genomics and Microbiology, University of Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Simpkins JA, Rickel KE, Madeo M, Ahlers BA, Carlisle GB, Nelson HJ, Cardillo AL, Weber EA, Vitiello PF, Pearce DA, Vitiello SP. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration. Biol Open 2016; 5:689-97. [PMID: 27142334 PMCID: PMC4920189 DOI: 10.1242/bio.017517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. Summary: We identify genes that are differentially expressed in yeast lacking vacuolar cystine transporter Ers1p in order to find pathways, such as respiration and sulfur regulation, that are associated with cystine homeostasis.
Collapse
Affiliation(s)
| | - Kirby E Rickel
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Marianna Madeo
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - Bethany A Ahlers
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | | | - Heidi J Nelson
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Andrew L Cardillo
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - Emily A Weber
- Biology Department, Augustana University, Sioux Falls, SD, USA 57197
| | - Peter F Vitiello
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | - David A Pearce
- Sanford Research Children's Health Research Center, Sioux Falls, SD, USA 57104
| | | |
Collapse
|
21
|
Zeng Y, Zheng J, Zhao J, Jia PR, Yang Y, Yang GJ, Ma JF, Gu YQ, Xu J. High expression of Naa10p associates with lymph node metastasis and predicts favorable prognosis of oral squamous cell carcinoma. Tumour Biol 2015; 37:6719-28. [PMID: 26662107 DOI: 10.1007/s13277-015-4563-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023] Open
Abstract
N-a-Acetyltransferase 10 protein (Naa10p) is a potential prognostic biomarker and a modulator of several types of cancer. Despite the efforts to elucidate the relationship between Naa10p expression and clinical prognosis, little is known about its expression and role in human oral squamous cell carcinoma (OSCC). In this study, we firstly detected the mRNA and protein levels of Naa10p in 10 paired OSCC tissue samples and found Naa10p was frequently overexpressed in the tumor tissues of patients with OSCC. Further detection by immunohistochemistry was used to examine Naa10p expression in 124 OSCC tumor specimens by tissue microarray (TMA), and a relative high level of Naa10p protein expression was found in 98 out of 124 cases (79.03 %). Additional analyses illustrated that Naa10p expression inversely correlated with clinical stage (p = 0.047), degree of lymph node status (p = 0.020), differentiation (p = 0.022), and recurrence (p = 0.016) of patients with OSCC. The survival analysis showed that patients with Naa10p-positive expression had a better prognosis for disease-free survival (DFS) or overall survival (OS) than those with Naa10p-negative expression (p = 0.003 for both). Furthermore, we assessed the effect of Naa10p knockdown on motility of oral cancer cells in vitro, and the results showed that Naa10p inhibit cell wound healing, migration, and invasion. In summary, our study illustrated that the expression of Naa10p had a potential value for predicting the progression of OSCC and prognosis of OSCC patients.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jun Zheng
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Juan Zhao
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Pei-Rong Jia
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yang Yang
- Department of Biochemistry and Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Guo-Jun Yang
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Jing-Feng Ma
- Department of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Yong-Qing Gu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiang Xu
- Department of Stomatology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
22
|
Molecular, Cellular, and Physiological Significance of N-Terminal Acetylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:267-305. [DOI: 10.1016/bs.ircmb.2015.01.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Samanfar B, Tan LH, Shostak K, Chalabian F, Wu Z, Alamgir M, Sunba N, Burnside D, Omidi K, Hooshyar M, Galván Márquez I, Jessulat M, Smith ML, Babu M, Azizi A, Golshani A. A global investigation of gene deletion strains that affect premature stop codon bypass in yeast, Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2014; 10:916-24. [PMID: 24535059 DOI: 10.1039/c3mb70501c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein biosynthesis is an orderly process that requires a balance between rate and accuracy. To produce a functional product, the fidelity of this process has to be maintained from start to finish. In order to systematically identify genes that affect stop codon bypass, three expression plasmids, pUKC817, pUKC818 and pUKC819, were integrated into the yeast non-essential loss-of-function gene array (5000 strains). These plasmids contain three different premature stop codons (UAA, UGA and UAG, respectively) within the LacZ expression cassette. A fourth plasmid, pUKC815 that carries the native LacZ gene was used as a control. Transformed strains were subjected to large-scale β-galactosidase lift assay analysis to evaluate production of β-galactosidase for each gene deletion strain. In this way 84 potential candidate genes that affect stop codon bypass were identified. Three candidate genes, OLA1, BSC2, and YNL040W, were further investigated, and were found to be important for cytoplasmic protein biosynthesis.
Collapse
Affiliation(s)
- Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Omidi K, Hooshyar M, Jessulat M, Samanfar B, Sanders M, Burnside D, Pitre S, Schoenrock A, Xu J, Babu M, Golshani A. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS One 2014; 9:e87248. [PMID: 24498054 PMCID: PMC3909046 DOI: 10.1371/journal.pone.0087248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.
Collapse
Affiliation(s)
- Katayoun Omidi
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Matthew Jessulat
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Megan Sanders
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sylvain Pitre
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Andrew Schoenrock
- Department of Computer Science, Carleton University, Ottawa, Ontario, Canada
| | - Jianhua Xu
- College of Pharmaceutical Sciences, Zhejian University, Hangzhou, Zhejiang, China
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|