1
|
Määttä A, Nixon R, Robinson N, Ambler CA, Goncalves K, Maltman V, Przyborski S. Regulation of epidermal proliferation and hair follicle cycling by synthetic photostable retinoid EC23. J Cosmet Dermatol 2023; 22:1658-1669. [PMID: 36718827 DOI: 10.1111/jocd.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Retinoid signaling is an important regulator of the epidermis and skin appendages. Therefore, synthetic retinoids have been developed for therapeutic use for skin disorders such as psoriasis and acne. AIMS In previous studies, we showed how the photostable retinoid EC23 induces neuronal differentiation in stem cell-like cell populations, and here, we aim to investigate its ability to influence epidermal and hair follicle growth. METHODS EC23 influence on skin biology was investigated initially in cultures of monolayer keratinocytes and three-dimentional in vitro models of skin, and finally in in vivo studies of mice back skin. RESULTS EC23 induces keratinocyte hyperproliferation in vitro and in vivo, and when applied to mouse skin increases the number of involucrin-positive suprabasal cell layers. These phenotypic changes are similar in skin treated with the natural retinoid all-trans retinoic acid (ATRA); however, EC23 is more potent; a tenfold lower dose of EC23 is sufficient to induce epidermal thickening, and resulting hyperproliferation is sustained for a longer time period after first dose. EC23 treatment resulted in a disorganized stratum corneum, reduced cell surface lipids and compromised barrier, similar to ATRA treatment. However, EC23 induces a rapid telogen to anagen transition and hair re-growth in 6-week-old mice with synchronously resting back skin follicles. The impact of EC23 on the hair cycle was surprising as similar results have not been seen with ATRA. CONCLUSIONS These data suggest that synthetic retinoid EC23 is a useful tool in exploring the turnover and differentiation of cells and has a potent effect on skin physiology.
Collapse
Affiliation(s)
- Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| | - Rebecca Nixon
- Department of Biosciences, Durham University, Durham, UK
| | - Neil Robinson
- Department of Biosciences, Durham University, Durham, UK
| | | | | | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, UK
| |
Collapse
|
2
|
Hudhud L, Chisholm DR, Whiting A, Steib A, Pohóczky K, Kecskés A, Szőke É, Helyes Z. Synthetic Diphenylacetylene-Based Retinoids Induce DNA Damage in Chinese Hamster Ovary Cells without Altering Viability. Molecules 2022; 27:molecules27030977. [PMID: 35164242 PMCID: PMC8840491 DOI: 10.3390/molecules27030977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
All-trans-retinoic acid (ATRA), the active metabolite of vitamin A, plays a pivotal role in cell differentiation, proliferation and embryonic development. It is an effective therapy for dermatological disorders and malignancies. ATRA is prone to isomerization and oxidation, which can affect its activity and selectivity. Novel diphenylacetylene-based ATRA analogues with increased stability can help to overcome these problems and may offer significant potential as therapeutics for a variety of cancers and neurodegenerative diseases, including amyotrophic lateral sclerosis. Here, we investigated the effects of these retinoids on cell viability and genotoxicity in the widely used model system of the rapidly proliferating Chinese hamster ovary cell line. DC360 is a fluorescent ATRA analogue and DC324 is a non-active derivative of DC360. EC23, DC525, DC540, DC645, and DC712 are promising analogues with increased bioactivity. The cytotoxic activity of the compounds was evaluated by ATP assay and DNA damage was tested by comet assay. No cytotoxicity was observed in the 10−6–10−5 M concentration range. All compounds induced DNA migration similar to ATRA, but DC324, DC360 and EC23 did so to a greater extent, particularly at higher concentrations. We believe that retinoid receptor-independent genotoxicity is a general characteristic of these compounds; however, further studies are needed to identify the molecular mechanisms and understand their complex biological functions.
Collapse
Affiliation(s)
- Lina Hudhud
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
| | - David R. Chisholm
- Department of Chemistry, Durham University, Durham DH1 3LE, UK; (D.R.C.); (A.W.)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Durham DH1 3LE, UK; (D.R.C.); (A.W.)
| | - Anita Steib
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Angéla Kecskés
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary; (L.H.); (A.S.); (K.P.); (A.K.); (É.S.)
- Correspondence: ; Tel.: +36-72536000 (ext. 35591) or +36-204501639
| |
Collapse
|
3
|
Abstract
This chapter has been conceived as an introductory text to aid in the understanding of the key design strategies for the development of synthetic analogs of endogenous retinoids as ligands for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). The structure and binding characteristics of the endogenous retinoids are first explained to put the main chemical design challenges in context. Existing biochemical and structural data is then used to describe the guiding principles used to develop agonists and antagonists of the RARs and RXRs. In light of the increasing proliferation of biophysical methods that employ fluorescence measurements or molecular tags, we also examine the application of retinoids as probes and the chemical principles required to develop these tools.
Collapse
Affiliation(s)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, United Kingdom
| |
Collapse
|
4
|
Tang NT, D. Snook R, Brown MD, Haines BA, Ridley A, Gardner P, Denbigh JL. Fatty-Acid Uptake in Prostate Cancer Cells Using Dynamic Microfluidic Raman Technology. Molecules 2020; 25:E1652. [PMID: 32260207 PMCID: PMC7180971 DOI: 10.3390/molecules25071652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells.
Collapse
Affiliation(s)
- Nga-Tsing Tang
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Richard D. Snook
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Mick D. Brown
- Division of Cancer Sciences, University of Manchester, Manchester M20 4GJ, UK;
| | - Bryan A. Haines
- Fluxion BioSciences, 1600 Harbor Bay Parkway, #150, Alameda, CA 94502, USA;
| | - Andrew Ridley
- Labtech International Ltd., Mytogen House, 11 Browning Road, Heathfield, East Sussex TN21 8DB, UK;
| | - Peter Gardner
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (N.-T.T.); (R.D.S.)
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, UK
| | - Joanna L. Denbigh
- Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| |
Collapse
|
5
|
Tomlinson CW, Whiting A. The development of methodologies for high-throughput retinoic acid binding assays in drug discovery and beyond. Methods Enzymol 2020; 637:539-560. [DOI: 10.1016/bs.mie.2020.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Khatib T, Chisholm DR, Whiting A, Platt B, McCaffery P. Decay in Retinoic Acid Signaling in Varied Models of Alzheimer's Disease and In-Vitro Test of Novel Retinoic Acid Receptor Ligands (RAR-Ms) to Regulate Protective Genes. J Alzheimers Dis 2020; 73:935-954. [PMID: 31884477 PMCID: PMC7081102 DOI: 10.3233/jad-190931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
Retinoic acid has been previously proposed in the treatment of Alzheimer's disease (AD). Here, five transgenic mouse models expressing AD and frontotemporal dementia risk genes (i.e., PLB2APP, PLB2TAU, PLB1Double, PLB1Triple, and PLB4) were used to investigate if consistent alterations exist in multiple elements of the retinoic acid signaling pathway in these models. Many steps of the retinoic acid signaling pathway including binding proteins and metabolic enzymes decline, while the previously reported increase in RBP4 was only consistent at late (6 months) but not early (3 month) ages. The retinoic acid receptors were exceptional in their consistent decline in mRNA and protein with transcript decline of retinoic acid receptors β and γ by 3 months, before significant pathology, suggesting involvement in early stages of disease. Decline in RBP1 transcript may also be an early but not late marker of disease. The decline in the retinoic acid signaling system may therefore be a therapeutic target for AD and frontotemporal dementia. Thus, novel stable retinoic acid receptor modulators (RAR-Ms) activating multiple genomic and non-genomic pathways were probed for therapeutic control of gene expression in rat primary hippocampal and cortical cultures. RAR-Ms promoted the non-amyloidogenic pathway, repressed lipopolysaccharide induced inflammatory genes and induced genes with neurotrophic action. RAR-Ms had diverse effects on gene expression allowing particular RAR-Ms to be selected for maximal therapeutic effect. Overall the results demonstrated the early decline of retinoic acid signaling in AD and frontotemporal dementia models and the activity of stable and potent alternatives to retinoic acid as potential therapeutics.
Collapse
Affiliation(s)
- Thabat Khatib
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, UK
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
7
|
Drowley L, McPheat J, Nordqvist A, Peel S, Karlsson U, Martinsson S, Müllers E, Dellsén A, Knight S, Barrett I, Sánchez J, Magnusson B, Greber B, Wang QD, Plowright AT. Discovery of retinoic acid receptor agonists as proliferators of cardiac progenitor cells through a phenotypic screening approach. Stem Cells Transl Med 2019; 9:47-60. [PMID: 31508905 PMCID: PMC6954720 DOI: 10.1002/sctm.19-0069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of small molecules with the potential to selectively proliferate cardiac progenitor cells (CPCs) will aid our understanding of the signaling pathways and mechanisms involved and could ultimately provide tools for regenerative therapies for the treatment of post‐MI cardiac dysfunction. We have used an in vitro human induced pluripotent stem cell‐derived CPC model to screen a 10,000‐compound library containing molecules representing different target classes and compounds reported to modulate the phenotype of stem or primary cells. The primary readout of this phenotypic screen was proliferation as measured by nuclear count. We identified retinoic acid receptor (RAR) agonists as potent proliferators of CPCs. The CPCs retained their progenitor phenotype following proliferation and the identified RAR agonists did not proliferate human cardiac fibroblasts, the major cell type in the heart. In addition, the RAR agonists were able to proliferate an independent source of CPCs, HuES6. The RAR agonists had a time‐of‐differentiation‐dependent effect on the HuES6‐derived CPCs. At 4 days of differentiation, treatment with retinoic acid induced differentiation of the CPCs to atrial cells. However, after 5 days of differentiation treatment with RAR agonists led to an inhibition of terminal differentiation to cardiomyocytes and enhanced the proliferation of the cells. RAR agonists, at least transiently, enhance the proliferation of human CPCs, at the expense of terminal cardiac differentiation. How this mechanism translates in vivo to activate endogenous CPCs and whether enhancing proliferation of these rare progenitor cells is sufficient to enhance cardiac repair remains to be investigated.
Collapse
Affiliation(s)
- Lauren Drowley
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Jane McPheat
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Anneli Nordqvist
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | | | - Ulla Karlsson
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sofia Martinsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Erik Müllers
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Anita Dellsén
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Ian Barrett
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - José Sánchez
- Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Qing-Dong Wang
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| | - Alleyn T Plowright
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, Gothenburg, Sweden
| |
Collapse
|
8
|
Genomic and non-genomic pathways are both crucial for peak induction of neurite outgrowth by retinoids. Cell Commun Signal 2019; 17:40. [PMID: 31046795 PMCID: PMC6498645 DOI: 10.1186/s12964-019-0352-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid (RA) is the active metabolite of vitamin A and essential for many physiological processes, particularly the induction of cell differentiation. In addition to regulating genomic transcriptional activity via RA receptors (RARs) and retinoid X receptors (RXRs), non-genomic mechanisms of RA have been described, including the regulation of ERK1/2 kinase phosphorylation, but are poorly characterised. In this study, we test the hypothesis that genomic and non-genomic mechanisms of RA are regulated independently with respect to the involvement of ligand-dependent RA receptors. A panel of 28 retinoids (compounds with vitamin A-like activity) showed a marked disparity in genomic (gene expression) versus non-genomic (ERK1/2 phosphorylation) assays. These results demonstrate that the capacity of a compound to activate gene transcription does not necessarily correlate with its ability to regulate a non-genomic activity such as ERK 1/2 phosphorylation. Furthermore, a neurite outgrowth assay indicated that retinoids that could only induce either genomic, or non-genomic activities, were not strong promoters of neurite outgrowth, and that activities with respect to both transcriptional regulation and ERK1/2 phosphorylation produced maximum neurite outgrowth. These results suggest that the development of effective retinoids for clinical use will depend on the selection of compounds which have maximal activity in non-genomic as well as genomic assays.
Collapse
|
9
|
A Bioluminescence Reporter Assay for Retinoic Acid Control of Translation of the GluR1 Subunit of the AMPA Glutamate Receptor. Mol Neurobiol 2019; 56:7074-7084. [PMID: 30972628 PMCID: PMC6728294 DOI: 10.1007/s12035-019-1571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023]
Abstract
Retinoic acid (RA) regulates numerous aspects of central nervous system function through modulation of gene transcription via retinoic acid receptors (RARs). However, RA has important roles independent of gene transcription (non-genomic actions) and in the brain a crucial regulator of homeostatic plasticity is RAR control of glutamate receptor subunit 1 (GluR1) translation. An assay to quantify RAR regulation of GluR1 translation would be beneficial both to study the molecular components regulating this system and screen drugs that influence this critical mechanism for learning and memory in the brain. A bioluminescence reporter assay was developed that expresses firefly luciferase under the control of the GluR1 5' untranslated region bound by RAR. This assay was introduced into SH-SY5Y cells and used to demonstrate the role of RARα in RA regulation of GluR1 translation. A screen of synthetic RAR and RXR ligands indicated that only a subset of these ligands activated GluR1 translation. The results demonstrate the practicality of this assay to explore the contribution of RARα to this pathway and that the capacity of RAR ligands to activate translation is a quality restricted to a limited number of compounds, with implications for their RAR selectivity and potentially their specificity in drug use.
Collapse
|
10
|
Chisholm DR, Lamb R, Pallett T, Affleck V, Holden C, Marrison J, O'Toole P, Ashton PD, Newling K, Steffen A, Nelson AK, Mahler C, Valentine R, Blacker TS, Bain AJ, Girkin J, Marder TB, Whiting A, Ambler CA. Photoactivated cell-killing involving a low molecular weight, donor-acceptor diphenylacetylene. Chem Sci 2019; 10:4673-4683. [PMID: 31123578 PMCID: PMC6495688 DOI: 10.1039/c9sc00199a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023] Open
Abstract
Drug-like, donor–acceptor diphenylacetylenes cause efficient cell death upon photoactivation and hence have potential phototherapeutic applications.
Photoactivation of photosensitisers can be utilised to elicit the production of ROS, for potential therapeutic applications, including the destruction of diseased tissues and tumours. A novel class of photosensitiser, exemplified by DC324, has been designed possessing a modular, low molecular weight and ‘drug-like’ structure which is bioavailable and can be photoactivated by UV-A/405 nm or corresponding two-photon absorption of near-IR (800 nm) light, resulting in powerful cytotoxic activity, ostensibly through the production of ROS in a cellular environment. A variety of in vitro cellular assays confirmed ROS formation and in vivo cytotoxic activity was exemplified via irradiation and subsequent targeted destruction of specific areas of a zebrafish embryo.
Collapse
Affiliation(s)
- David R Chisholm
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK .
| | - Rebecca Lamb
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| | - Tommy Pallett
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK.,Biophysical Sciences Institute , Department of Physics , Durham University , South Road , Durham , DH1 3LE , UK
| | - Valerie Affleck
- LightOx Limited , Wynyard Park House , Wynyard Avenue, Wynyard , Billingham , TS22 5TB , UK
| | - Claire Holden
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK . .,Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| | - Joanne Marrison
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Peter O'Toole
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Peter D Ashton
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Katherine Newling
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Andreas Steffen
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Amanda K Nelson
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Christoph Mahler
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Thomas S Blacker
- Department of Physics & Astronomy , University College London , Gower Street , London , WC1E 6BT , UK
| | - Angus J Bain
- Department of Physics & Astronomy , University College London , Gower Street , London , WC1E 6BT , UK
| | - John Girkin
- Biophysical Sciences Institute , Department of Physics , Durham University , South Road , Durham , DH1 3LE , UK
| | - Todd B Marder
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Andrew Whiting
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK .
| | - Carrie A Ambler
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| |
Collapse
|
11
|
Chisholm DR, Tomlinson CWE, Zhou GL, Holden C, Affleck V, Lamb R, Newling K, Ashton P, Valentine R, Redfern C, Erostyák J, Makkai G, Ambler CA, Whiting A, Pohl E. Fluorescent Retinoic Acid Analogues as Probes for Biochemical and Intracellular Characterization of Retinoid Signaling Pathways. ACS Chem Biol 2019; 14:369-377. [PMID: 30707838 DOI: 10.1021/acschembio.8b00916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoids, such as all- trans-retinoic acid (ATRA), are endogenous signaling molecules derived from vitamin A that influence a variety of cellular processes through mediation of transcription events in the cell nucleus. Because of these wide-ranging and powerful biological activities, retinoids have emerged as therapeutic candidates of enormous potential. However, their use has been limited, to date, due to a lack of understanding of the complex and intricate signaling pathways that they control. We have designed and synthesized a family of synthetic retinoids that exhibit strong, intrinsic, solvatochromatic fluorescence as multifunctional tools to interrogate these important biological activities. We utilized the unique photophysical characteristics of these fluorescent retinoids to develop a novel in vitro fluorometric binding assay to characterize and quantify their binding to their cellular targets, including cellular retinoid binding protein II (CRABPII). The dihydroquinoline retinoid, DC360, exhibited particularly strong binding ( Kd = 34.0 ± 2.5 nM), and we further used X-ray crystallography to determine the structure of the DC360-CRABPII complex to 1.8 Å, which showed that DC360 occupies the known hydrophobic retinoid binding pocket. Finally, we used confocal fluorescence microscopy to image the cellular behavior of the compounds in cultured human epithelial cells, highlighting a fascinating nuclear localization, and used RNA sequencing to confirm that the compounds regulate cellular processes similar to those of ATRA. We anticipate that the unique properties of these fluorescent retinoids can now be used to cast new light on the vital and highly complex retinoid signaling pathway.
Collapse
Affiliation(s)
- David R. Chisholm
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Charles W. E. Tomlinson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Garr-Layy Zhou
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Claire Holden
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Valerie Affleck
- LightOx Limited, Wynyard Park House, Wynyard Avenue, Wynyard, Billingham TS22 5TB, U.K
| | - Rebecca Lamb
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Katherine Newling
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York YO10 5DD, U.K
| | - Peter Ashton
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, York YO10 5DD, U.K
| | - Roy Valentine
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, U.K
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, U.K
| | - János Erostyák
- University of Pecs, Szentagothai Research Centre, Spectroscopy Research Group, Ifjusag u. 20, H-7624 Pecs, Hungary
- University of Pecs, Faculty of Sciences, Ifjusag u. 6, H-7624 Pecs, Hungary
| | - Geza Makkai
- University of Pecs, Szentagothai Research Centre, Spectroscopy Research Group, Ifjusag u. 20, H-7624 Pecs, Hungary
- University of Pecs, Faculty of Sciences, Ifjusag u. 6, H-7624 Pecs, Hungary
| | - Carrie A. Ambler
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Ehmke Pohl
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
12
|
Gala de Pablo J, Chisholm DR, Steffen A, Nelson AK, Mahler C, Marder TB, Peyman SA, Girkin JM, Ambler CA, Whiting A, Evans SD. Tandem fluorescence and Raman (fluoRaman) characterisation of a novel photosensitiser in colorectal cancer cell line SW480. Analyst 2019; 143:6113-6120. [PMID: 30468234 PMCID: PMC6336151 DOI: 10.1039/c8an01461b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel photosensitiser, DC473, designed with solvatochromatic fluorescence and distinct Raman signal, is detected with tandem fluoRaman in SW480 cells.
The development of new imaging tools, molecules and modalities is crucial to understanding biological processes and the localised cellular impact of bioactive compounds. A small molecule photosensitiser, DC473, has been designed to be both highly fluorescent and to exhibit a strong Raman signal in the cell-silent region of the Raman spectrum due to a diphenylacetylene structure. DC473 has been utilised to perform a range of novel tandem fluorescence and Raman (fluoRaman) imaging experiments, enabling a thorough examination of the compound's cellular localisation, exemplified in colorectal cancer cells (SW480). This multifunctional fluoRaman imaging modality revealed the presence of the compound in lipid droplets and only a weak signal in the cytosol, by both Raman and fluorescence imaging. In addition, Raman microscopy detected the compound in a cell compartment we labelled as the nucleolus, whereas fluorescence microscopy did not detect the fluoRaman probe due to solvatochromatic effects in a local polar environment. This last finding was only possible with the use of tandem confocal Raman and fluorescence methods. By following the approach detailed herein, incorporation of strong Raman functional groups into fluorophores can enable a plethora of fluoRaman experiments, shedding further light on potential drug compound's cellular behaviour and biological activity.
Collapse
Affiliation(s)
- Julia Gala de Pablo
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tomlinson CWE, Chisholm DR, Valentine R, Whiting A, Pohl E. Novel Fluorescence Competition Assay for Retinoic Acid Binding Proteins. ACS Med Chem Lett 2018; 9:1297-1300. [PMID: 30613343 PMCID: PMC6295855 DOI: 10.1021/acsmedchemlett.8b00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
![]()
Vitamin
A derived retinoid compounds have multiple, powerful roles
in the cellular growth and development cycle and, as a result, have
attracted significant attention from both academic and pharmaceutical
research in developing and characterizing synthetic retinoid analogues.
Simplifying the hit development workflow for retinoid signaling will
improve options available for tackling related pathologies, including
tumor growth and neurodegeneration. Here, we present a novel assay
that employs an intrinsically fluorescent synthetic retinoid, DC271,
which allows direct measurement of the binding of nonlabeled compounds
to relevant proteins. The method allows for straightforward initial
measurement of binding using existing compound libraries and is followed
by calculation of binding constants using a dilution series of plausible
hits. The ease of use, high throughput format, and measurement of
both qualitative and quantitative binding offer a new direction for
retinoid-related pharmacological development.
Collapse
Affiliation(s)
- Charles W. E. Tomlinson
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - Roy Valentine
- High Force Research Ltd., Bowburn North Industrial Estate, Bowburn, Durham, DH6 5PF, U.K
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| |
Collapse
|
14
|
Goncalves K, Przyborski S. The utility of stem cells for neural regeneration. Brain Neurosci Adv 2018; 2:2398212818818071. [PMID: 32166173 PMCID: PMC7058206 DOI: 10.1177/2398212818818071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The use of stem cells in biomedical research is an extremely active area of science. This is because they provide tools that can be used both in vivo and vitro to either replace cells lost in degenerative processes, or to model such diseases to elucidate their underlying mechanisms. This review aims to discuss the use of stem cells in terms of providing regeneration within the nervous system, which is particularly important as neurons of the central nervous system lack the ability to inherently regenerate and repair lost connections. As populations are ageing, incidence of neurodegenerative diseases are increasing, highlighting the need to better understand the regenerative capacity and many uses of stem cells in this field.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe, Sedgefield, UK
| |
Collapse
|
15
|
Madden KS, Laroche B, David S, Batsanov AS, Thompson D, Knowles JP, Whiting A. Approaches to Styrenyl Building Blocks for the Synthesis of Polyene Xanthomonadin and its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katrina S. Madden
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Benjamin Laroche
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Sylvain David
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Andrei S. Batsanov
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Daniel Thompson
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Jonathan P. Knowles
- Department of Chemistry; University fo Bristol; Cantock's Close BS8 1TS Bristol, Avon UK
| | - Andrew Whiting
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| |
Collapse
|
16
|
Haffez H, Chisholm DR, Tatum NJ, Valentine R, Redfern C, Pohl E, Whiting A, Przyborski S. Probing biological activity through structural modelling of ligand-receptor interactions of 2,4-disubstituted thiazole retinoids. Bioorg Med Chem 2018; 26:1560-1572. [PMID: 29439915 PMCID: PMC5933457 DOI: 10.1016/j.bmc.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
Retinoids, such as all-trans-retinoic acid (ATRA), regulate cellular differentiation and signalling pathways in chordates by binding to nuclear retinoic acid receptors (RARα/β/γ). Polar interactions between receptor and ligand are important for binding and facilitating the non-polar interactions and conformational changes necessary for RAR-mediated transcriptional regulation. The constraints on activity and RAR-type specificity with respect to the structural link between the polar and non-polar functions of synthetic retinoids are poorly understood. To address this, predictions from in silico ligand-RAR docking calculations and molecular dynamics simulations for a small library of stable, synthetic retinoids (designated GZ series) containing a central thiazole linker structure and different hydrophobic region substituents, were tested using a ligand binding assay and a range of cellular biological assays. The docking analysis showed that these thiazole-containing retinoids were well suited to the binding pocket of RARα, particularly via a favorable hydrogen bonding interaction between the thiazole and Ser232 of RARα. A bulky hydrophobic region (i.e., present in compounds GZ23 and GZ25) was important for interaction with the RAR binding pockets. Ligand binding assays generally reflected the findings from in silico docking, and showed that GZ25 was a particularly strongly binding ligand for RARα/β. GZ25 also exhibited higher activity as an inducer of neuronal differentiation than ATRA and other GZ derivatives. These data demonstrate that GZ25 is a stable synthetic retinoid with improved activity which efficiently regulates neuronal differentiation and help to define the key structural requirements for retinoid activity enabling the design and development of the next generation of more active, selective synthetic retinoids as potential therapeutic regulators of neurogenesis.
Collapse
Key Words
- atra, all-trans retinoic acid
- af, activation function
- esi, electronic supplementary information
- gz, compound series code
- h12, helix 12
- lbd, ligand binding domain
- rar, retinoic acid receptor
- rare, retinoic acid response element
- rxr, retinoid x receptor
- ttn, 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene hydrophobic region
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Biochemistry and Molecular Biology, Pharmacy College, Helwan University, Cairo, Egypt; Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - David R Chisholm
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roy Valentine
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, UK
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK.
| | - Stefan Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
17
|
Haffez H, Khatib T, McCaffery P, Przyborski S, Redfern C, Whiting A. Neurogenesis in Response to Synthetic Retinoids at Different Temporal Scales. Mol Neurobiol 2018; 55:1942-1950. [PMID: 28244006 PMCID: PMC5840238 DOI: 10.1007/s12035-017-0440-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022]
Abstract
All-trans retinoic acid (ATRA) plays key roles in neurogenesis mediated by retinoic acid receptors (RARs). RARs are important targets for the therapeutic regulation of neurogenesis but effective drug development depends on modelling-based strategies to design high-specificity ligands in combination with good biological assays to discriminate between target-specificity and off-target effects. Using neuronal differentiation as a model, the aim of this study was to test the hypothesis that responses across different temporal scales and assay platforms can be used as comparable measures of retinoid activity. In biological assays based on cell phenotype or behaviour, two structurally similar synthetic retinoids, differing in RAR affinity and specificity, retained their relative activities across different temporal scales. In contrast, assays based on the transcriptional activation of specific genes in their normal genomic context were less concordant with biological assays. Gene-induction assays for retinoid activity as modulators of neurogenesis require careful interpretation in the light of variation in ligand-receptor affinity, receptor expression and gene function. A better characterization of neuronal phenotypes and their regulation by retinoids is badly needed as a framework for understanding how to regulate neuronal development.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham, UK
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Biochemistry and Molecular Biology, Pharmacy College Helwan University, Cairo, Egypt
| | - Thabat Khatib
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Peter McCaffery
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Stefan Przyborski
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Andrew Whiting
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham, UK
| |
Collapse
|
18
|
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MEDCHEMCOMM 2017; 8:578-592. [PMID: 30108774 PMCID: PMC6072416 DOI: 10.1039/c6md00680a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023]
Abstract
All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, β and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARβ binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARβ, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, β and γ.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
- Department of Biochemistry and Molecular Biology , Pharmacy College , Helwan University , Cairo , Egypt
| | - David R Chisholm
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Ehmke Pohl
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
| | - Christopher Redfern
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
| | - Andrew Whiting
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
19
|
Clarke KE, Tams DM, Henderson AP, Roger MF, Whiting A, Przyborski SA. A robust and reproducible human pluripotent stem cell derived model of neurite outgrowth in a three-dimensional culture system and its application to study neurite inhibition. Neurochem Int 2016; 106:74-84. [PMID: 28011165 PMCID: PMC5455986 DOI: 10.1016/j.neuint.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
The inability of neurites to grow and restore neural connections is common to many neurological disorders, including trauma to the central nervous system and neurodegenerative diseases. Therefore, there is need for a robust and reproducible model of neurite outgrowth, to provide a tool to study the molecular mechanisms that underpin the process of neurite inhibition and to screen molecules that may be able to overcome such inhibition. In this study a novel in vitro pluripotent stem cell based model of human neuritogenesis was developed. This was achieved by incorporating additional technologies, notably a stable synthetic inducer of neural differentiation, and the application of three-dimensional (3D) cell culture techniques. We have evaluated the use of photostable, synthetic retinoid molecules to promote neural differentiation and found that 0.01 μM EC23 was the optimal concentration to promote differentiation and neurite outgrowth from human pluripotent stem cells within our model. We have also developed a methodology to enable quick and accurate quantification of neurite outgrowth derived from such a model. Furthermore, we have obtained significant neurite outgrowth within a 3D culture system enhancing the level of neuritogenesis observed and providing a more physiological microenvironment to investigate the molecular mechanisms that underpin neurite outgrowth and inhibition within the nervous system. We have demonstrated a potential application of our model in co-culture with glioma cells, to recapitulate aspects of the process of neurite inhibition that may also occur in the injured spinal cord. We propose that such a system that can be utilised to investigate the molecular mechanisms that underpin neurite inhibition mediated via glial and neuron interactions. Development of a robust, novel neurite outgrowth assay from human pluripotent stem cell derived neural cell aggregates. Synthetic retinoids induce neural differentiation of pluripotent stem cells to a greater extent than natural ATRA. Neurospheres cultured on a 3D scaffold provide a more physiologically relevant model of neurite outgrowth. Suppression of neurite outgrowth by glioma cells in 3D enables the study of neurite inhibitory mechanisms in the glial scar.
Collapse
Affiliation(s)
- Kirsty E Clarke
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Daniel M Tams
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew P Henderson
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Mathilde F Roger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Stefan A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; ReproCELL Europe Ltd., NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
20
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
21
|
Fan TT, Cheng Y, Wang YF, Gui SY, Chen FH, Zhou Q, Wang Y. A novel all-trans retinoid acid derivative N-(3-trifluoromethyl- phenyl)- retinamide inhibits lung adenocarcinoma A549 cell migration through down-regulating expression of myosin light chain kinase. Asian Pac J Cancer Prev 2015; 15:7687-92. [PMID: 25292047 DOI: 10.7314/apjcp.2014.15.18.7687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)- retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. MATERIALS AND METHODS The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. RESULTS ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. CONCLUSIONS ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down- regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Respiratory Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
22
|
Madden KS, David S, Knowles JP, Whiting A. Heck–Mizoroki coupling of vinyliodide and applications in the synthesis of dienes and trienes. Chem Commun (Camb) 2015; 51:11409-12. [DOI: 10.1039/c5cc03273c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinyliodide reacts chemoselectively under Heck–Mizoroki conditions with terminal alkenes to give diene products, including vinyl boronate esters, and the resulting dienylboronate undergoes Suzuki–Miyaura coupling with aryl, heteroaryl and alkenyl halides to access dienes and trienes.
Collapse
|
23
|
Narvekar M, Xue HY, Tran NT, Mikhael M, Wong HL. A new nanostructured carrier design including oil to enhance the pharmaceutical properties of retinoid therapy and its therapeutic effects on chemo-resistant ovarian cancer. Eur J Pharm Biopharm 2014; 88:226-37. [DOI: 10.1016/j.ejpb.2014.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 02/06/2023]
|