1
|
Mamindla A, Murugan D, Varadhan M, Ajaykamal T, Rangasamy L, Palaniandavar M, Rajendiran V. Mixed-ligand copper(ii)-diimine complexes of 3-formylchromone- N 4-phenyl thiosemicarbazone: 5,6-dmp co-ligand confers enhanced cytotoxicity. RSC Adv 2024; 14:31704-31722. [PMID: 39376525 PMCID: PMC11457010 DOI: 10.1039/d4ra04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
The promising biological applications of thiosemicarbazone derivatives have inspired the design, synthesis, and study of their Cu(ii) complexes for anticancer therapeutic applications. Herein, we have evaluated the DNA/protein binding, DNA cleaving, and cytotoxic properties of four mixed-ligand Cu(ii) complexes of the type [Cu(L)(diimine)](NO3) 1-4, where HL is 4-oxo-4H-chromene-3-carbaldehyde-4(N)-phenylthiosemicarbazone and diimine is 2,2'-bipyridine (bpy, 1) 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), or dipyrido-[3,2-f:2',3'-h]-quinoxaline (dpq, 4). Interestingly, complex 3 with higher lipophilicity shows stronger DNA binding and oxidative DNA cleavage, higher ROS production, and more reversible redox behaviour, resulting in its remarkable cytotoxicity (IC50, 1.26 μM) against HeLa cervical cancer cells, and rendering it 5 times more potent than the widely used drug cisplatin. The same complex induces enhanced apoptotic cell death on HeLa cells but lower toxicity towards the non-cancerous PBMC cells. Molecular docking studies suggest that all the complexes bind in the minor groove of DNA and subdomain II of HSA, which is in close agreement with the experimental results. Also, 3 shows cytotoxicity higher than the analogous mixed ligand Cu(ii) complexes, reported already, emphasizing the importance of co-ligand in tuning the anticancer activity.
Collapse
Affiliation(s)
- Anjaneyulu Mamindla
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | - Manikandan Varadhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| | | | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT) Vellore 632014 Tamilnadu India
| | | | - Venugopal Rajendiran
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu Thiruvarur 610005 India
| |
Collapse
|
2
|
Saif MZ, Esha NJI, Quayum ST, Rahman S, Al-Gawati MA, Alsowygh G, Albrithen H, Alodhayb AN, Poirier RA, Uddin KM. Investigating the potential of 6-substituted 3-formyl chromone derivatives as anti-diabetic agents using in silico methods. Sci Rep 2024; 14:13221. [PMID: 38851807 PMCID: PMC11162442 DOI: 10.1038/s41598-024-63237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
In exploring nature's potential in addressing diabetes-related conditions, this study investigates the therapeutic capabilities of 3-formyl chromone derivatives. Utilizing in silico methodologies, we focus on 6-substituted 3-formyl chromone derivatives (1-16) to assess their therapeutic potential in treating diabetes. The research examined the formyl group at the chromone's C-3 position. ADMET, biological activities, were conducted along with B3LYP calculations using 3 different basis sets. The analogues were analyzed based on their parent structure obtained from PubChem. The HOMO-LUMO gap confirmed the bioactive nature of the derivatives, NBO analysis was performed to understand the charge transfer. PASS prediction revealed that 3-formyl chromone derivatives are potent aldehyde oxidase inhibitors, insulin inhibitors, HIF1A expression inhibitors, and histidine kinase. Molecular docking studies indicated that the compounds had a strong binding affinity with proteins, including CAD, BHK, IDE, HIF-α, p53, COX, and Mpro of SARS-CoV2. 6-isopropyl-3-formyl chromone (4) displayed the highest affinity for IDE, with a binding energy of - 8.5 kcal mol-1. This result outperformed the affinity of the reference standard dapagliflozin (- 7.9 kcal mol-1) as well as two other compounds that target human IDE, namely vitexin (- 8.3 kcal mol-1) and myricetin (- 8.4 kcal mol-1). MD simulations were revealed RMSD value between 0.2 and 0.5 nm, indicating the strength of the protein-ligand complex at the active site.
Collapse
Affiliation(s)
- Minhaz Zabin Saif
- Department of Biochemistry and Microbiology, North South University, Bashundhara,, Dhaka, 1217, Bangladesh
| | - Nusrat Jahan Ikbal Esha
- Department of Biochemistry and Microbiology, North South University, Bashundhara,, Dhaka, 1217, Bangladesh
| | - Syeda Tasnim Quayum
- Department of Biochemistry and Microbiology, North South University, Bashundhara,, Dhaka, 1217, Bangladesh
| | - Shofiur Rahman
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mahmoud A Al-Gawati
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ghadah Alsowygh
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamad Albrithen
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, 11451, Riyadh, Saudi Arabia
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdullah N Alodhayb
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, 11451, Riyadh, Saudi Arabia.
- Research Chair for Tribology, Surface, and Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Raymond A Poirier
- Department of Chemistry, Memorial University, St. John's, Newfoundland, A1B 3X7, Canada.
| | - Kabir M Uddin
- Department of Biochemistry and Microbiology, North South University, Bashundhara,, Dhaka, 1217, Bangladesh.
| |
Collapse
|
3
|
Copper(II) and oxidovanadium(IV) complexes of chromone Schiff bases as potential anticancer agents. J Biol Inorg Chem 2021; 27:89-109. [PMID: 34817681 DOI: 10.1007/s00775-021-01913-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022]
Abstract
We report the synthesis, characterization and biological screening of new chromone Schiff bases derived from the condensation of three 6-substituted-3-formyl-chromones with pyridoxal (HL1-3) and its Cu(II) complexes [Cu(L1-3)Cl], 1-3. For the 6-methyl derivative, HL2, the VIVO-complex [VO(L2)Cl] (5), as well as ternary Cu and VIVO complexes with 1,10-phenanthroline (phen), [Cu(L2)(phen)Cl] (4) and [VO(L2)(phen)Cl] (6), were also prepared and evaluated. Their stability in aqueous medium and radical scavenging activity toward DPPH are screened, with [Cu(L2)(phen)Cl] (4) showing hydrolytic stability and [VO(L2)(phen)Cl] (6) high radical scavenging activity. Spectroscopic studies establish bovine serum albumin (BSA), a model for HSA, as a potential reversible carrier of [Cu(L2)(phen)Cl] in blood with KBC ≈ 105 M-1. The cytotoxic activity of a group of compounds is evaluated against a panel of human cancer cell lines of different origin (ovary, cervix, brain and breast) and compared to normal cells. Our results indicate that Cu complexes are more cytotoxic than the ligands but not selective towards cancer cells. The most potent complexes (4 and 6) are further evaluated for their apoptotic potential, induction of reactive oxygen species (ROS) and genotoxicity. Both complexes efficiently triggered cell death through apoptosis as evaluated by DNA morphology and TUNEL assay, increased ROS formation as determined by DCFDA (2',7'-dichlorodihydrofluorescein diacetate) analysis, and induced genotoxic damage as visualized via COMET assay in all cancer cells under study. Therefore, 4 and 6 may be potential precursor anticancer molecules, yet they need to be targeted toward cancer cells.
Collapse
|
4
|
Thorat NM, Sarkate AP, Lokwani DK, Tiwari SV, Azad R, Thopate SR. N-Benzylation of 6-aminoflavone by reductive amination and efficient access to some novel anticancer agents via topoisomerase II inhibition. Mol Divers 2020; 25:937-948. [PMID: 32249379 DOI: 10.1007/s11030-020-10079-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/23/2020] [Indexed: 01/07/2023]
Abstract
Series of novel N-benzyl derivatives of 6-aminoflavone (9a-n) were synthesized and evaluated for anticancer and topoisomerase II enzyme inhibition activity. All the synthesized compounds were screened for in vitro anticancer activity against human breast cancer cell line (MCF-7) and human lung cancer cell line (A-549). Among the synthesized compounds, 9f and 9g were found to be the most potent anticancer agents against human breast cancer cell line (MCF-7) with IC50 values of 9.35 µM and 9.58 µM, respectively. Compounds 9b, 9c and 9n exhibited promising anticancer activity against human lung cancer cell line (A-549) with 43.71%, 46.48% and 44.26% inhibition at the highest concentration of 10 µM, respectively. Compounds 9c, 9f and 9g have ability to inhibit the topoisomerase II enzyme. Compound 9f showed most potent topoisomerase II enzyme inhibition activity with IC50 value of 12.11 µM. Further, these compounds have a high potential to be developed as a promising topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Nitin M Thorat
- Department of Chemistry, Prof. John Barnabas Post Graduate School for Biological Studies, Ahmednagar College, Ahmednagar, Station Road, Ahmednagar, Maharashtra, 414001, India.,Department of Chemistry, Maharaja Jivajirao Shinde Arts, Science, Commerce College, Shrigonda, Maharashtra, 413701, India
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India
| | - Deepak K Lokwani
- Department of Pharmaceutical Chemistry, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Shailee V Tiwari
- Department of Pharmaceutical Chemistry, Durgamata Institute of Pharmacy, Dharmapuri, Parbhani, Maharashtra, 431401, India
| | - Rajaram Azad
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India
| | - Shankar R Thopate
- Department of Chemistry, Prof. John Barnabas Post Graduate School for Biological Studies, Ahmednagar College, Ahmednagar, Station Road, Ahmednagar, Maharashtra, 414001, India. .,Department of Chemistry, Shri Sadguru Gangageer Maharaj Science, Gautam Arts and Sanjivani Commerce College, Kopargaon, Dist. Ahmednagar, Maharashtra, 423 601, India.
| |
Collapse
|
5
|
Arjmand F, Afsan Z, Roisnel T. Design, synthesis and characterization of novel chromone based-copper(ii) antitumor agents with N, N-donor ligands: comparative DNA/RNA binding profile and cytotoxicity. RSC Adv 2018; 8:37375-37390. [PMID: 35557803 PMCID: PMC9089433 DOI: 10.1039/c8ra06722h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/23/2018] [Indexed: 01/05/2023] Open
Abstract
A series of new chromone based-Cu(ii) complexes 1-3 derived from bioactive pharmacophore, 3-formylchromone and N,N-donor ligands viz., 1,10-phenanthroline, 2,2'-bipyridine and 1R,2R-DACH were synthesized as potential antitumor agents and thoroughly characterized by UV-vis, FT-IR, EPR, ESI-MS and elemental analysis. Single X-crystal diffraction studies of complex 2 revealed triclinic P1̄ space group with square pyramidal geometry around the Cu(ii) center. Comparative in vitro binding studies with ct-DNA and tRNA were carried out using absorption and emission titration experiments which revealed intercalative mode of binding with higher binding propensity of complexes 1-3 towards tRNA as compared to ct-DNA. Additionally, complex 1 exhibited high binding affinity among all the three complexes due to the involvement of phen co-ligands via π-stacking interactions in between nucleic acid base pairs. Furthermore, Hirshfeld surface analysis was carried out for complex 2 to investigate various intra and intermolecular non-covalent interactions (H-bonding, C-H⋯π etc.) accountable for stabilization of crystal lattice. The cleavage activity of complex 1 was performed by gel electrophoretic assay with pBR322 DNA and tRNA which revealed efficient DNA/tRNA cleaving ability of complex, suggesting tRNA cleavage both concentration and time dependent. Furthermore, in vitro cytotoxic activity of complexes 1-3 on a selected panel of human cancer cell lines was performed which revealed that all three complexes exhibited remarkably good cytotoxic activity with GI50 value < 10 μg mL-1 (<20 μM).
Collapse
Affiliation(s)
- Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +91 5712703893
| | - Zeenat Afsan
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India +91 5712703893
| | - Thierry Roisnel
- Institut des Sciences Chimiques de Rennes, UMR 6226, Université de Rennes 1 Campus de Beaulieu Bâtiment 10B, Bureau 15335042 Rennes France
| |
Collapse
|
6
|
Kalaiarasi G, Rex Jeya Rajkumar S, Dharani S, Rath NP, Prabhakaran R. New cationic and neutral copper(II) complexes containing 7-hydroxy-4-oxo-4[H]-chromene derived ONO pincer ligands: Synthesis, characterization and in vitro biological evaluations. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:77-88. [DOI: 10.1016/j.jphotobiol.2018.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 01/16/2023]
|
7
|
Singh G, Gupta N, Gupta V, Ishar MPS. Reduction of chromano–piperidine-fused isoxazolidines: Tandem intramolecular rearrangements leading to 2-(methylamino)-4-oxo- N -phenyl- N -propyl-4 H -chromene-3-carboxamide. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Usman M, Zaki M, Khan RA, Alsalme A, Ahmad M, Tabassum S. Coumarin centered copper( ii) complex with appended-imidazole as cancer chemotherapeutic agents against lung cancer: molecular insight via DFT-based vibrational analysis. RSC Adv 2017; 7:36056-36071. [DOI: 10.1039/c7ra05874h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Synthesis and structural characterization of the novel copper complex, DFT based vibrational analysis, DNA binding studies. In vitro cytotoxicity against A549 cancer cell lines and estimation of GSH, ROS, LPO levels, have been reported.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Mehvash Zaki
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Rais Ahmad Khan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| |
Collapse
|
9
|
Yousuf I, Arjmand F, Tabassum S, Toupet L, Khan RA, Siddiqui MA. Mechanistic insights into a novel chromone-appended Cu(II) anticancer drug entity: in vitro binding profile with DNA/RNA substrates and cytotoxic activity against MCF-7 and HepG2 cancer cells. Dalton Trans 2016; 44:10330-42. [PMID: 25970097 DOI: 10.1039/c5dt00770d] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new chromone-appended Cu(ii) drug entity () was designed and synthesized as a potential anticancer chemotherapeutic agent. The structural elucidation was carried out thoroughly by elemental analysis, FT-IR, EPR, ESI-MS and single crystal X-ray crystallography. Complex resulted from the in situ methoxylation reaction of the 3-formylchromone ligand and its subsequent complexation with the copper nitrate salt in a 2 : 1 ratio, respectively. crystallized in the monoclinic P21/c space group possessing the lattice parameters, a = 8.75 Å, b = 5.07 Å, c = 26.22 Å, α = γ = 90°, β = 96.3° per unit cell. Furthermore, in vitro interaction studies of with ct-DNA and tRNA were carried out which suggested more avid binding propensity towards the RNA target via intercalative mode, which was reflected from its Kb, K and Ksv values. The gel electrophoretic mobility assay was carried out on the pBR322 plasmid DNA substrate, to ascertain the cleaving ability and the mechanistic pathway in the presence of additives, and the results revealed the efficient cleaving ability of via the oxidative pathway. In vitro cell growth inhibition via the MTT assay was carried out to evaluate the cytotoxicity of complex and IC50 values were found to be in the range of 5-10 μg mL(-1) in HepG2 and MCF-7 cancer cell lines, which were found to be much lower than the IC50 values of previously reported similar Cu(ii) complexes. Additionally, in the presence of , reactive oxygen species (ROS) and thiobarbituric acid reactive substance (TBARS) levels in the tested cancer cell lines increased significantly, coupled with reduced glutathione (GSH) levels. Thus, our results suggested that ROS plays an important role in cell apoptosis induced by the Cu(ii) complex and validates its potential to act as a robust anticancer drug entity.
Collapse
Affiliation(s)
- Imtiyaz Yousuf
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | |
Collapse
|
10
|
Zhu H, Song Y, Wang Y, Zhao M, Ren Y, Wang Y, Zhao S, Wu J, Peng S. Design, synthesis and evaluation of a novel π–π stacking nano-intercalator as an anti-tumor agent. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00507h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A strategy for designing safe and effective π–π stacking nano-intercalators as anti-tumor agents was presented for the first time.
Collapse
Affiliation(s)
- Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Yuanbo Song
- Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Yi Ren
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Shurui Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials
- College of Pharmaceutical Sciences of Capital Medical University
- 100069 Beijing
| |
Collapse
|
11
|
Baviskar AT, Amrutkar SM, Trivedi N, Chaudhary V, Nayak A, Guchhait SK, Banerjee UC, Bharatam PV, Kundu CN. Switch in Site of Inhibition: A Strategy for Structure-Based Discovery of Human Topoisomerase IIα Catalytic Inhibitors. ACS Med Chem Lett 2015; 6:481-5. [PMID: 25941559 DOI: 10.1021/acsmedchemlett.5b00040] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/23/2015] [Indexed: 11/29/2022] Open
Abstract
A study of structure-based modulation of known ligands of hTopoIIα, an important enzyme involved in DNA processes, coupled with synthesis and in vitro assays led to the establishment of a strategy of rational switch in mode of inhibition of the enzyme's catalytic cycle. 6-Arylated derivatives of known imidazopyridine ligands were found to be selective inhibitors of hTopoIIα, while not showing TopoI inhibition and DNA binding. Interestingly, while the parent imidazopyridines acted as ATP-competitive inhibitors, arylated derivatives inhibited DNA cleavage similar to merbarone, indicating a switch in mode of inhibition from ATP-hydrolysis to the DNA-cleavage stage of catalytic cycle of the enzyme. The 6-aryl-imidazopyridines were relatively more cytotoxic than etoposide in cancer cells and less toxic to normal cells. Such unprecedented strategy will encourage research on "choice-based change" in target-specific mode of action for rapid drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Anmada Nayak
- School
of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | | | | | | | - Chanakya N. Kundu
- School
of Biotechnology, KIIT University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| |
Collapse
|