1
|
Vanichtanankul J, Yoomuang A, Taweechai S, Saeyang T, Pengon J, Yuvaniyama J, Tarnchompoo B, Yuthavong Y, Kamchonwongpaisan S. Structural Insight into Effective Inhibitors' Binding to Toxoplasma gondii Dihydrofolate Reductase Thymidylate Synthase. ACS Chem Biol 2022; 17:1691-1702. [PMID: 35715223 DOI: 10.1021/acschembio.1c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyrimethamine (Pyr), a known dihydrofolate reductase (DHFR) inhibitor, has long been used to treat toxoplasmosis caused by Toxoplasma gondii (Tg) infection. However, Pyr is effective only at high doses with associated toxicity to patients, calling for safer alternative treatments. In this study, we investigated a series of Pyr analogues, previously developed as DHFR inhibitors of Plasmodium falciparum bifunctional DHFR-thymidylate synthase (PfDHFR-TS), for their activity against T. gondii DHFR-TS (TgDHFR-TS). Of these, a set of compounds with a substitution at the C6 position of the pyrimidine ring exhibited high binding affinities (in a low nanomolar range) against TgDHFR-TS and in vitro T. gondii inhibitory activity. Three-dimensional structures of TgDHFR-TS reported here include the ternary complexes with Pyr, P39, or P40. A comparison of these structures showed the minor steric strain between the p-chlorophenyl group of Pyr and Thr83 of TgDHFR-TS. Such a conflict was relieved in the complexes with the two analogues, P39 and P40, explaining their highest binding affinities described herein. Moreover, these structures suggested that the hydrophobic environment in the active-site pocket could be used for drug design to increase the potency and selectivity of antifolate inhibitors. These findings would accelerate the development of new antifolate drugs to treat toxoplasmosis.
Collapse
Affiliation(s)
- Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Aphisit Yoomuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Supannee Taweechai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanaya Saeyang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jutharat Pengon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jirundon Yuvaniyama
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Bongkoch Tarnchompoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Ruiz VG, Czyzyk DJ, Kumar VP, Jorgensen WL, Anderson KS. Targeting the TS dimer interface in bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa: Virtual screening identifies novel TS allosteric inhibitors. Bioorg Med Chem Lett 2020; 30:127292. [PMID: 32631514 PMCID: PMC7376443 DOI: 10.1016/j.bmcl.2020.127292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Effective therapies are lacking to treat gastrointestinal infections caused by the genus Cryptosporidium, which can be fatal in the immunocompromised. One target of interest is Cryptosporidium hominis (C. hominis) thymidylate synthase-dihydrofolate reductase (ChTS-DHFR), a bifunctional enzyme necessary for DNA biosynthesis. Targeting the TS-TS dimer interface is a novel strategy previously used to identify inhibitors against the related bifunctional enzyme in Toxoplasma gondii. In the present study, we target the ChTS dimer interface through homology modeling and high-throughput virtual screening to identifying allosteric, ChTS-specific inhibitors. Our work led to the discovery of methylenedioxyphenyl-aminophenoxypropanol analogues which inhibit ChTS activity in a manner that is both dose-dependent and influenced by the conformation of the enzyme. Preliminary results presented here include an analysis of structure activity relationships and a ChTS-apo crystal structure of ChTS-DHFR supporting the continued development of inhibitors that stabilize a novel pocket formed in the open conformation of ChTS-TS.
Collapse
Affiliation(s)
- Victor G Ruiz
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Daniel J Czyzyk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Vidya P Kumar
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Structure activity relationship towards design of cryptosporidium specific thymidylate synthase inhibitors. Eur J Med Chem 2019; 183:111673. [PMID: 31536894 DOI: 10.1016/j.ejmech.2019.111673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 02/08/2023]
Abstract
Cryptosporidiosis is a human gastrointestinal disease caused by protozoans of the genus Cryptosporidium, which can be fatal in immunocompromised individuals. The essential enzyme, thymidylate synthase (TS), is responsible for de novo synthesis of deoxythymidine monophosphate. The TS active site is relatively conserved between Cryptosporidium and human enzymes. In previous work, we identified compound 1, (2-amino-4-oxo-4,7-dihydro-pyrrolo[2,3-d]pyrimidin-methyl-phenyl-l-glutamic acid), as a promising selective Cryptosporidium hominis TS (ChTS) inhibitor. In the present study, we explore the structure-activity relationship around 1 glutamate moiety by synthesizing and biochemically evaluating the inhibitory activity of analogues against ChTS and human TS (hTS). X-Ray crystal structures were obtained for compounds bound to both ChTS and hTS. We establish the importance of the 2-phenylacetic acid moiety methylene linker in optimally positioning compounds 23, 24, and 25 within the active site. Moreover, through the comparison of structural data for 5, 14, 15, and 23 bound in both ChTS and hTS identified that active site rigidity is a driving force in determining inhibitor selectivity.
Collapse
|
4
|
Ruiz V, Czyzyk DJ, Valhondo M, Jorgensen WL, Anderson KS. Novel allosteric covalent inhibitors of bifunctional Cryptosporidium hominis TS-DHFR from parasitic protozoa identified by virtual screening. Bioorg Med Chem Lett 2019; 29:1413-1418. [PMID: 30929953 DOI: 10.1016/j.bmcl.2019.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/20/2022]
Abstract
Protozoans of the genus Cryptosporidium are the causative agent of the gastrointestinal disease, cryptosporidiosis, which can be fatal in immunocompromised individuals. Cryptosporidium hominis (C. hominis) bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in the folate biosynthesis pathway and a molecular target for inhibitor design. Previous studies have demonstrated the importance of the ChTS-DHFR linker region "crossover helix" to the enzymatic activity and stability of the ChDHFR domain. We conducted a virtual screen of a novel non-active site pocket located at the interface of the ChDHFR domain and crossover helix. From this screen we have identified and characterized a noncompetitive inhibitor, compound 15, a substituted diphenyl thiourea. Through subsequent structure activity relationship studies, we have identified a time-dependent inhibitor lead, compound 15D17, a thiol-substituted 2-hydroxy-N-phenylbenzamide, which is selective for ChTS-DHFR, and whose effects appear to be mediated by covalent bond formation with a non-catalytic cysteine residue adjacent to the non-active site pocket.
Collapse
Affiliation(s)
- Victor Ruiz
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Daniel J Czyzyk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Margarita Valhondo
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA
| | - William L Jorgensen
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT 06520-8107, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Hu X, Dawson SJ, Mandal PK, de Hatten X, Baptiste B, Huc I. Optimizing side chains for crystal growth from water: a case study of aromatic amide foldamers. Chem Sci 2017; 8:3741-3749. [PMID: 28553532 PMCID: PMC5428020 DOI: 10.1039/c7sc00430c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/08/2017] [Indexed: 01/16/2023] Open
Abstract
The growth of crystals of aromatic compounds from water much depends on the nature of the water solubilizing functions that they carry. Rationalizing crystallization from water, and structure elucidation, of aromatic molecular and supramolecular systems is of general value across various fields of chemistry. Taking helical aromatic foldamers as a test case, we have validated several short polar side chains as efficient substituents to provide both solubility in, and crystal growth ability from, water. New 8-amino-2-quinolinecarboxylic acids bearing charged or neutral aminomethyl, carboxymethyl, sulfonic acid, or bis(hydroxymethyl)-methoxy side chains in position 4 or 5, were prepared on a multi gram scale. Fmoc protection of the main chain amine and suitable protections of the side chains ensured compatibility with solid phase synthesis. One tetrameric and five octameric oligoamides displaying these side chains were synthesized and shown to be soluble in water. In all cases but one, crystals were obtained using the hanging drop method, thus validating the initial design principle to combine polarity and rigidity. The only case that resisted crystallization appeared to be due to exceedingly high water solubility endowed by eight sulfonic acid functions. The neutral side chain did provide crystal growth ability from water but contributed poorly to solubility.
Collapse
Affiliation(s)
- Xiaobo Hu
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Simon J Dawson
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Pradeep K Mandal
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Xavier de Hatten
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Benoit Baptiste
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| | - Ivan Huc
- Université de Bordeaux , CNRS , IPB , CBMN , UMR 5248 , Institut Européen de Chimie et Biologie , 2 Rue Escarpit , 33600 Pessac , France .
| |
Collapse
|
6
|
Anderson KS. Understanding the molecular mechanism of substrate channeling and domain communication in protozoal bifunctional TS-DHFR. Protein Eng Des Sel 2017; 30:253-261. [PMID: 28338744 PMCID: PMC6438133 DOI: 10.1093/protein/gzx004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 11/13/2022] Open
Abstract
Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Leishmania major (Lm), Plasmodium falciparum (Pf), Toxoplasma gondii (Tg) and Cryptosporidium hominis (Ch), contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the two sequential catalytic activities contained on a single polypeptide chain. It has been suggested that the bifunctional nature of the two catalytic activities may enable substrate channeling. The 3D structures for each of these enzymes reveals distinct features for each species. While three of the four species (Pf, Tg and Ch) contain a junctional region linking the two domains, this is lacking in Lm. The Lm and Pf contain N-terminal amino acid extensions. A multidisciplinary approach using structural studies and transient kinetic analyses combined with mutational analysis has investigated the roles of these unique structural features for each enzyme. Additionally, the possibility of substrate channeling behavior was explored. These studies have identified unique, functional regions in both the TS and DHFR domains that govern efficient catalysis for each species. Surprisingly, even though there are structural similarities among the species, each is regulated in a distinct manner. This structural and mechanistic information was also used to exploit species-specific inhibitor design.
Collapse
Affiliation(s)
- Karen S. Anderson
- Departments of Pharmacology and Molecular Biophysics and Biochemistry,
Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| |
Collapse
|
7
|
Busschaert N, Thompson S, Hamilton AD. An α-helical peptidomimetic scaffold for dynamic combinatorial library formation. Chem Commun (Camb) 2017; 53:313-316. [DOI: 10.1039/c6cc07787k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel oligobenzamide-based α-helix mimetic was designed and synthesised with either imine or hydrazone functionalities that serve both to pre-organise the side-chain vectors to mimic the i, i + 4 and i + 7 residues of an α-helix, and to allow for the facile creation of dynamic libraries.
Collapse
Affiliation(s)
- Nathalie Busschaert
- Department of Chemistry
- New York University
- New York
- USA
- Chemistry Research Laboratory
| | - Sam Thompson
- Chemistry Research Laboratory
- University of Oxford
- UK
- Chemistry
- University of Southampton
| | - Andrew D. Hamilton
- Department of Chemistry
- New York University
- New York
- USA
- Chemistry Research Laboratory
| |
Collapse
|
8
|
Kulikov OV, Sevryugina YV, Mehmood A, Saraogi I. Characterization of aggregated morphologies derived from mono- and bis-arylbenzamides – potential alpha-helix mimetics. NEW J CHEM 2017. [DOI: 10.1039/c6nj03775e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the synthesis and self-assembly studies of a family of benzamide backbone oligomers bearing various alkyl side chains (e.g., isopropyl, isobutyl, and 2-ethylpentyl), which are potential alpha-helix mimetics capable of disrupting protein–protein interactions.
Collapse
Affiliation(s)
- Oleg V. Kulikov
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | - Arshad Mehmood
- Department of Chemistry
- Texas Christian University
- Fort Worth
- USA
| | - Ishu Saraogi
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
9
|
Mandal PK, Baptiste B, Langlois d'Estaintot B, Kauffmann B, Huc I. Multivalent Interactions between an Aromatic Helical Foldamer and a DNA G-Quadruplex in the Solid State. Chembiochem 2016; 17:1911-1914. [DOI: 10.1002/cbic.201600281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Pradeep K. Mandal
- University of Bordeaux; CBMN; UMR 5248); Institut Européen de Chimie et Biologie; 2 rue Escarpit 33600 Pessac France
- CNRS; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
- Bordeaux Institut National Polytechnique; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
| | - Benoît Baptiste
- University of Bordeaux; CBMN; UMR 5248); Institut Européen de Chimie et Biologie; 2 rue Escarpit 33600 Pessac France
- CNRS; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
- Bordeaux Institut National Polytechnique; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
| | - Béatrice Langlois d'Estaintot
- University of Bordeaux; CBMN; UMR 5248); Institut Européen de Chimie et Biologie; 2 rue Escarpit 33600 Pessac France
- CNRS; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
- Bordeaux Institut National Polytechnique; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- University of Bordeaux; IECB; UMS 3033); Institut Européen de Chimie et Biologie; 2 rue Escarpit 33600 Pessac France
- CNRS; IECB; UMS 3033); 2 rue Escarpit 33600 Pessac France
- INSERM; IECB; US001); 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- University of Bordeaux; CBMN; UMR 5248); Institut Européen de Chimie et Biologie; 2 rue Escarpit 33600 Pessac France
- CNRS; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
- Bordeaux Institut National Polytechnique; CBMN; UMR 5248); 2 rue Escarpit 33600 Pessac France
| |
Collapse
|
10
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
11
|
Jewginski M, Fischer L, Colombo C, Huc I, Mackereth CD. Solution Observation of Dimerization and Helix Handedness Induction in a Human Carbonic Anhydrase-Helical Aromatic Amide Foldamer Complex. Chembiochem 2016; 17:727-36. [PMID: 26807531 DOI: 10.1002/cbic.201500619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/18/2022]
Abstract
The design of synthetic foldamers to selectively bind proteins is currently hindered by the limited availability of molecular data to establish key features of recognition. Previous work has described dimerization of human carbonic anhydrase II (HCA) through self-association of a quinoline oligoamide helical foldamer attached to a tightly binding HCA ligand. A crystal structure of the complex provided atomic details to explain the observed induction of single foldamer helix handedness and revealed an unexpected foldamer-mediated dimerization. Here, we investigated the detailed behavior of the HCA-foldamer complex in solution by using NMR spectroscopy. We found that the ability to dimerize is buffer-dependent and uses partially distinct intermolecular contacts. The use of a foldamer variant incapable of self-association confirmed the ability to induce helix handedness separately from dimer formation and provided insight into the dynamics of enantiomeric selection.
Collapse
Affiliation(s)
- Michal Jewginski
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248).,Wrocław University of Technology, Faculty of Chemistry, Wrocław, Poland
| | - Lucile Fischer
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
| | - Cinzia Colombo
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France.,CNRS, CBMN (UMR 5248).,Bordeaux Institut National Polytechnique, CBMN (UMR 5248)
| | - Ivan Huc
- University of Bordeaux, CBMN (UMR 5248), Institut Européen de Chimie et Biologie, 2 rue Escarpit, 33600, Pessac, France. .,CNRS, CBMN (UMR 5248). .,Bordeaux Institut National Polytechnique, CBMN (UMR 5248).
| | - Cameron D Mackereth
- University of Bordeaux, ARNA (U1212), Institut Européen de Chimie et Biologie. .,INSERM, ARNA (U1212). .,CNRS, ARNA (UMR 5320), 2 rue Escarpit, 33600, Pessac, France.
| |
Collapse
|
12
|
Tsiamantas C, Dawson SJ, Huc I. Solid phase synthesis of oligoethylene glycol-functionalized quinolinecarboxamide foldamers with enhanced solubility properties. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Wilson AJ. Helix mimetics: Recent developments. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:33-40. [DOI: 10.1016/j.pbiomolbio.2015.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
|
14
|
Rodriguez-Marin S, Murphy NS, Shepherd HJ, Wilson AJ. Design, synthesis and conformational analyses of bifacial benzamide based foldamers. RSC Adv 2015. [DOI: 10.1039/c5ra20451h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two bifacial oligobenzamide based scaffolds that mimic the side chains at i, i + 3 and i + 4 positions of an alpha helix are presented.
Collapse
Affiliation(s)
- Silvia Rodriguez-Marin
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | - Natasha S. Murphy
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| | | | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds LS2 9JT
- UK
- Astbury Centre for Structural Molecular Biology
| |
Collapse
|
15
|
Barnard A, Miles JA, Burslem GM, Barker AM, Wilson AJ. Multivalent helix mimetics for PPI-inhibition. Org Biomol Chem 2015; 13:258-64. [DOI: 10.1039/c4ob02066a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multivalent helix mimetic is developed that inhibits the p53/hDM2 and induces dimerization/aggregation of its target – hDM2.
Collapse
Affiliation(s)
- Anna Barnard
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - Jennifer A. Miles
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - George M. Burslem
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| | - Amy M. Barker
- Astbury Centre for Structural and Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Molecular and Cellular Biology
| | - Andrew J. Wilson
- School of Chemistry
- University of Leeds
- Leeds
- UK
- Astbury Centre for Structural and Molecular Biology
| |
Collapse
|
16
|
Barnard A, Long K, Yeo DJ, Miles JA, Azzarito V, Burslem GM, Prabhakaran P, A. Edwards T, Wilson AJ. Orthogonal functionalisation of α-helix mimetics. Org Biomol Chem 2014; 12:6794-9. [PMID: 25065821 PMCID: PMC4157654 DOI: 10.1039/c4ob00915k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/07/2014] [Indexed: 12/26/2022]
Abstract
α-Helix mediated protein-protein interactions are of major therapeutic importance. As such, the design of inhibitors of this class of interaction is of significant interest. We present methodology to modify N-alkylated aromatic oligoamide α-helix mimetics using 'click' chemistry. The effect is shown to modulate the binding properties of a series of selective p53/hDM2 inhibitors.
Collapse
Affiliation(s)
- Anna Barnard
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Kérya Long
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - David J. Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Jennifer A. Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Valeria Azzarito
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - George M. Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Panchami Prabhakaran
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| | - Thomas A. Edwards
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
- School of Molecular and Cellular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
| | - Andrew J. Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK
- Astbury Centre for Structural and Molecular Biology , University of Leeds , Woodhouse Lane , Leeds , LS2 9JT , UK .
| |
Collapse
|