1
|
Su R, Liu R, Sun Y, Su H, Xing W. Rat copper transport protein 2 (CTR2) is involved in fertilization through interaction with IZUMO1 and JUNO. Theriogenology 2025; 231:160-170. [PMID: 39454481 DOI: 10.1016/j.theriogenology.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
In mammalian reproduction, testis-specific protein IZUMO1 and its receptor JUNO on the oocyte surface are essential for sperm-oocyte recognition, binding, and membrane fusion. However, these factors alone are insufficient to accomplish cytoplasmic membrane fusion. It is believed that other gametic proteins interact with them to facilitate sperm-oocyte interaction on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. In this study, Copper Transport Protein 2 (CTR2) has been identified on the head and mid-tail of rat spermatozoa as well as on the surface of oocytes. CTR2 directly interacts with both IZUMO1 and JUNO, colocalizing with IZUMO1 on the sperm head and with JUNO on the oocyte membrane. Treatment of the capacitated sperm and zona pellucida-free oocytes with anti-CTR2 antibody resulted in a significant decrease in fertilization rates in IVF experiments. These findings suggest that CTR2 plays an important role in mammalian fertilization by interacting with IZUMO1 and JUNO, providing new insights into the molecular mechanisms of mammalian sperm-oocyte adhesion and fusion.
Collapse
Affiliation(s)
- Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruizhuo Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Yangyang Sun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
2
|
Guo Y, Wang S, Liu Q, Dong Y, Liu Y. St-N, a novel alkaline derivative of stevioside, reverses docetaxel resistance by targeting lysosomes in vitro and in vivo. PLoS One 2024; 19:e0316268. [PMID: 39729512 DOI: 10.1371/journal.pone.0316268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/08/2024] [Indexed: 12/29/2024] Open
Abstract
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group. In this study, we found that docetaxel (Doc)-resistant prostate cancer (PCa) cells were sensitive to St-N. Mechanistically, the alkaline characteristic of St-N led to targeting lysosomes, as evidenced by lysosomal swelling and rupture through transmission electron microscopy and Lyso-tracker Red staining. St-N destabilized lysosomal membrane by impairing lysosomal membrane proteins and acid sphingomyelinase. As a result, St-N caused cathepsins to release from the lysosomes into the cytosol, eventually triggering apoptotic and necrotic cell death. Meanwhile, the cytoprotective role of lysosomal activation under docetaxel treatment was interrupted by St-N, leading to significant synergistic cytotoxicity of docetaxel and St-N. In docetaxel-resistant PCa homograft mice, St-N significantly inhibited the growth of RM-1/Doc homografts and enhanced the anticancer effects of docetaxel, but did not show significant toxicity. Taken together, these findings demonstrated that St-N reversed docetaxel resistance in vitro and in vivo by destabilizing lysosomal membranes to promote cell death, thus providing a strong rationale for applying St-N in docetaxel-resistant PCa.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shikang Wang
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qun Liu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Dong
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongqing Liu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
3
|
Hourtané O, Smith DS, Fortin C. Natural organic matter (NOM) can increase the uptake fluxes of three critical metals (Ga, La, Pt) in a unicellular green alga. CHEMOSPHERE 2024; 365:143311. [PMID: 39265737 DOI: 10.1016/j.chemosphere.2024.143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Critical metals such as gallium, lanthanum and platinum are considered essential in a modern economy and for the required energy transition. Their relatively recent and increasing use in new technologies have led to an increase in their environmental mobility. As they reach aquatic systems, these metals can interact with organic ligands and especially Natural Organic Matter (NOM). The formation of organic complexes would be expected to reduce metal bioavailability and uptake by living cells, according to the Biotic Ligand Model (BLM). However, exceptions to this model have been determined for several critical metals in the past. The present work compared internalization kinetics of Ga, La and Pt in the green alga Chlamydomonas reinhardtii in the presence of NOMs from different origins: humic and fulvic acids from Suwannee River as well as NOMs from Ontario (Bannister Lake and Luther Marsh). Complexation was determined using a partial ultrafiltration method allowing for a normalization of data based on speciation to compare all conditions based on the concentration of the metal that was not bound to NOM. While internalization metal fluxes varied greatly from one NOM source to the other, uptake was almost always significantly higher than expected based on metal speciation. Quite often, metal internalization fluxes were even significantly increased in the presence of NOM, for the same total metal exposure concentration. For instance, Pt internalization was twice greater in the presence of Bannister Lake NOM than it was in the absence of NOM. The assumption that such exceptions could be explained by NOM characteristics was contradicted by the variable results from one metal to another. To further explore this phenomenon, internalization mechanisms for these individual metals need to be elucidated. This is a necessary step to accurately estimate the risk posed by the presence of these metals in humic aquatic systems.
Collapse
Affiliation(s)
- Océane Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - D Scott Smith
- Wilfid-Laurier University, University Ave W, Waterloo, ON N2L 3C5, Canada
| | - Claude Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
4
|
Yang B, Kou R, Wang H, Wang A, Wang L, Sun S, Shi M, Zhao S, Wang Y, Wang Y, Wu J, Wu F, Yang F, Qu M, Yu W, Gao Z. Improved efficacy of cisplatin delivery by peanut agglutinin‑modified liposomes in non‑small cell lung cancer. Int J Mol Med 2024; 54:70. [PMID: 38963035 PMCID: PMC11232663 DOI: 10.3892/ijmm.2024.5394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
Globally, non‑small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre‑preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP‑loaded PNA‑modified liposomes (CDDP‑PNA‑Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP‑PNA‑Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti‑tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)‑loaded PNA‑modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP‑PNA‑Lip resulted in a 2.65‑fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand‑modified liposomes may significantly improve its tumour‑targeting capabilities, providing valuable insights for clinical drug development.
Collapse
Affiliation(s)
- Ben Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Rongguan Kou
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Hui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Anping Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Lili Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Sipeng Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Mengqi Shi
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Shouzhen Zhao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yubing Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Yi Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingliang Wu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fei Wu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Fan Yang
- Department of Research and Development, Shandong Kanghua Biotechnology Co., Ltd., Weifang, Shandong 261057, P.R. China
| | - Meihua Qu
- Translational Medical Centre, Weifang Second People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Wenjing Yu
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
5
|
Grover K, Koblova A, Pezacki AT, Chang CJ, New EJ. Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals. Chem Rev 2024; 124:5846-5929. [PMID: 38657175 PMCID: PMC11485196 DOI: 10.1021/acs.chemrev.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Although transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity. At the same time, imbalances in transition metal pools can be detrimental to health. Modern analytical techniques are helping to illuminate the workings of metal homeostasis at a molecular and atomic level, their spatial localization in real time, and the implications of metal dysregulation in disease pathogenesis. Fluorescence microscopy has proven to be one of the most promising non-invasive methods for studying metal pools in biological samples. The accuracy and sensitivity of bioimaging experiments are predominantly determined by the fluorescent metal-responsive sensor, highlighting the importance of rational probe design for such measurements. This review covers activity- and binding-based fluorescent metal sensors that have been applied to cellular studies. We focus on the essential redox-active metals: iron, copper, manganese, cobalt, chromium, and nickel. We aim to encourage further targeted efforts in developing innovative approaches to understanding the biological chemistry of redox-active metals.
Collapse
Affiliation(s)
- Karandeep Grover
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alla Koblova
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley 94720, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley 94720, CA, USA
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Hourtané O, Gonzalez P, Feurtet-Mazel A, Kochoni E, Fortin C. Potential cellular targets of platinum in the freshwater microalgae Chlamydomonas reinhardtii and Nitzschia palea revealed by transcriptomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:281-295. [PMID: 38478139 DOI: 10.1007/s10646-024-02746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Platinum group element levels have increased in natural aquatic environments in the last few decades, in particular as a consequence of the use of automobile catalytic converters on a global scale. Concentrations of Pt over tens of μg L-1 have been observed in rivers and effluents. This raises questions regarding its possible impacts on aquatic ecosystems, as Pt natural background concentrations are extremely low to undetectable. Primary producers, such as microalgae, are of great ecological importance, as they are at the base of the food web. The purpose of this work was to better understand the impact of Pt on a cellular level for freshwater unicellular algae. Two species with different characteristics, a green alga C. reinhardtii and a diatom N. palea, were studied. The bioaccumulation of Pt as well as its effect on growth were quantified. Moreover, the induction or repression factors of 16 specific genes were determined and allowed for the determination of possible intracellular effects and pathways of Pt. Both species seemed to be experiencing copper deficiency as suggested by inductions of genes linked to copper transporters. This is an indication that Pt might be internalized through the Cu(I) metabolic pathway. Moreover, Pt could possibly be excreted using an efflux pump. Other highlights include a concentration-dependent negative impact of Pt on mitochondrial metabolism for C. reinhardtii which is not observed for N. palea. These findings allowed for a better understanding of some of the possible impacts of Pt on freshwater primary producers, and also lay the foundations for the investigation of pathways for Pt entry at the base of the aquatic food web.
Collapse
Affiliation(s)
- O Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| | - P Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - A Feurtet-Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - E Kochoni
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - C Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
7
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
8
|
Shirbhate E, Singh V, Mishra A, Jahoriya V, Veerasamy R, Tiwari AK, Rajak H. Targeting Lysosomes: A Strategy Against Chemoresistance in Cancer. Mini Rev Med Chem 2024; 24:1449-1468. [PMID: 38343053 DOI: 10.2174/0113895575287242240129120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 07/23/2024]
Abstract
Chemotherapy is still the major method of treatment for many types of cancer. Curative cancer therapy is hampered significantly by medication resistance. Acidic organelles like lysosomes serve as protagonists in cellular digestion. Lysosomes, however, are gaining popularity due to their speeding involvement in cancer progression and resistance. For instance, weak chemotherapeutic drugs of basic nature permeate through the lysosomal membrane and are retained in lysosomes in their cationic state, while extracellular release of lysosomal enzymes induces cancer, cytosolic escape of lysosomal hydrolases causes apoptosis, and so on. Drug availability at the sites of action is decreased due to lysosomal drug sequestration, which also enhances cancer resistance. This review looks at lysosomal drug sequestration mechanisms and how they affect cancer treatment resistance. Using lysosomes as subcellular targets to combat drug resistance and reverse drug sequestration is another method for overcoming drug resistance that is covered in this article. The present review has identified lysosomal drug sequestration as one of the reasons behind chemoresistance. The article delves deeper into specific aspects of lysosomal sequestration, providing nuanced insights, critical evaluations, or novel interpretations of different approaches that target lysosomes to defect cancer.
Collapse
Affiliation(s)
- Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Vaibhav Singh
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Varsha Jahoriya
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy; UAMS - University of Arkansas for Medical Sciences, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidas University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
9
|
Guan D, Zhao L, Shi X, Ma X, Chen Z. Copper in cancer: From pathogenesis to therapy. Biomed Pharmacother 2023; 163:114791. [PMID: 37105071 DOI: 10.1016/j.biopha.2023.114791] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
One of the basic trace elements for the structure and metabolism of human tissue is copper. However, as a heavy metal, excessive intake or abnormal accumulation of copper in the body can cause inevitable damage to the organism because copper can result in direct injury to various cell components or disruption of the redox balance, eventually leading to cell death. Interestingly, a growing body of research reports that diverse cancers have raised serum and tumor copper levels. Tumor cells depend on more copper for their metabolism than normal cells, and a decrease in copper or copper overload can have a detrimental effect on tumor cells. New modalities for identifying and characterizing copper-dependent signals offer translational opportunities for tumor therapy, but their mechanisms remain unclear. Therefore, this article summarizes what we currently know about the correlation between copper and cancer and describes the characteristics of copper metabolism in tumor cells and the prospective application of copper-derived therapeutics.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lihui Zhao
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xin Shi
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Xiaoling Ma
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China; Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China.
| | - Zhou Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China; The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Kong FS, Ren CY, Jia R, Zhou Y, Chen JH, Ma Y. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med Genomics 2023; 16:61. [PMID: 36973786 PMCID: PMC10041742 DOI: 10.1186/s12920-023-01489-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Solute Carrier Family 31 Member 1 (SLC31A1) has recently been identified as a cuproptosis-regulatory gene. Recent studies have indicated that SLC31A1 may play a role in colorectal and lung cancer tumorigenesis. However, the role of SLC31A1 and its cuproptosis-regulatory functions in multiple tumor types remains to be further elucidated. METHODS Online websites and datasets such as HPA, TIMER2, GEPIA, OncoVar, and cProSite were used to extract data on SLC31A1 in multiple cancers. DAVID and BioGRID were used to conduct functional analysis and construct the protein-protein interaction (PPI) network, respectively. The protein expression data of SLC31A1 was obtained from the cProSite database. RESULTS The Cancer Genome Atlas (TCGA) datasets showed increased SLC31A1 expression in tumor tissues compared with non-tumor tissues in most tumor types. In patients with tumor types including adrenocortical carcinoma, low-grade glioma, or mesothelioma, higher SLC31A1 expression was associated with shorter overall survival and disease-free survival. S105Y was the most prevalent point mutation in SLC31A1 in TCGA pan-cancer datasets. Moreover, SLC31A1 expression was positively correlated with the infiltration of immune cells such as macrophages and neutrophils in tumor tissues in several tumor types. Functional enrichment analysis showed that SLC31A1 co-expressed genes were involved in protein binding, integral components of the membrane, metabolic pathways, protein processing, and endoplasmic reticulum. Copper Chaperone For Superoxide Dismutase, Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha and Solute Carrier Family 31 Member 2 were copper homeostasis-regulated genes shown in the PPI network, and their expression was positively correlated with SLC31A1. Analysis showed there was a correlation between SLC31A1 protein and mRNA in various tumors. CONCLUSIONS These findings demonstrated that SLC31A1 is associated with multiple tumor types and disease prognosis. SLC31A1 may be a potential key biomarker and therapeutic target in cancers.
Collapse
Affiliation(s)
- Fan-Sheng Kong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruofan Jia
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Zhou
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China.
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China.
| | - Yaping Ma
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
Qiao H, Chen Z, Fu S, Yu X, Sun M, Zhai Y, Sun J. Emerging platinum(0) nanotherapeutics for efficient cancer therapy. J Control Release 2022; 352:276-287. [PMID: 36273531 DOI: 10.1016/j.jconrel.2022.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Platinum (Pt)-based chemotherapy has been necessary for clinical cancer treatment. However, traditional bivalent drugs are hindered by poor physicochemical properties, severe toxic side effects, and drug resistance. Currently, elemental Pt(0) nanotherapeutics (NTs) have emerged to tackle the dilemma. The inherent acid-responsiveness of Pt(0) NTs could help to improve tumor selectivity and alleviate toxic effects. Moreover, the metal nature of Pt facilitates the great combination of Pt(0) NTs with photothermal and photodynamic therapy and imaging-guided diagnosis. Based on recent important researches, this review provides an updated introduction to Pt(0) NTs. First, the challenges of traditional Pt-based chemotherapy have been outlined. Then, Pt(0) NTs with multiple applications of tumor theranostics have been overviewed. Furthermore, the combinations of Pt(0) NTs with other therapeutical modalities are introduced. Last but not least, we envision the possible challenges and prospects associated with Pt(0) NTs.
Collapse
Affiliation(s)
- Han Qiao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhichao Chen
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiang Yu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
12
|
de Brito RV, Mancini MW, Palumbo MDN, de Moraes LHO, Rodrigues GJ, Cervantes O, Sercarz JA, Paiva MB. The Rationale for "Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin" Approach for Cancer Treatment. Int J Mol Sci 2022; 23:5934. [PMID: 35682611 PMCID: PMC9180481 DOI: 10.3390/ijms23115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is one of the most widely used anticancer drugs in the treatment of various types of solid human cancers, as well as germ cell tumors, sarcomas, and lymphomas. Strong evidence from research has demonstrated higher efficacy of a combination of cisplatin and derivatives, together with hyperthermia and light, in overcoming drug resistance and improving tumoricidal efficacy. It is well known that the antioncogenic potential of CDDP is markedly enhanced by hyperthermia compared to drug treatment alone. However, more recently, accelerators of high energy particles, such as synchrotrons, have been used to produce powerful and monochromatizable radiation to induce an Auger electron cascade in cis-platinum molecules. This is the concept that makes photoactivation of cis-platinum theoretically possible. Both heat and light increase cisplatin anticancer activity via multiple mechanisms, generating DNA lesions by interacting with purine bases in DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. For the past twenty-seven years, our group has developed infrared photo-thermal activation of cisplatin for cancer treatment from bench to bedside. The future development of photoactivatable prodrugs of platinum-based agents injected intratumorally will increase selectivity, lower toxicity and increase efficacy of this important class of antitumor drugs, particularly when treating tumors accessible to laser-based fiber-optic devices, as in head and neck cancer. In this article, the mechanistic rationale of combined intratumor injections of cisplatin and laser-induced thermal therapy (CDDP-LITT) and the clinical application of such minimally invasive treatment for cancer are reviewed.
Collapse
Affiliation(s)
- Renan Vieira de Brito
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Marília Wellichan Mancini
- Biophotonics Department, Institute of Research and Education in the Health Area (NUPEN), Sao Carlos 13562-030, SP, Brazil;
| | - Marcel das Neves Palumbo
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Luis Henrique Oliveira de Moraes
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Gerson Jhonatan Rodrigues
- Department of Physiological Sciences, Federal University of Sao Carlos (UFSCar), Sao Carlos 13565-905, SP, Brazil; (L.H.O.d.M.); (G.J.R.)
| | - Onivaldo Cervantes
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
| | - Joel Avram Sercarz
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Marcos Bandiera Paiva
- Department of Otolaryngology and Head and Neck Surgery, Federal University of São Paulo (UNIFESP), Sao Paulo 04023-062, SP, Brazil; (R.V.d.B.); (M.d.N.P.); (O.C.)
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
13
|
Lelièvre P, Sancey L, Coll JL, Deniaud A, Busser B. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers (Basel) 2020; 12:E3594. [PMID: 33271772 PMCID: PMC7760327 DOI: 10.3390/cancers12123594] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
In the human body, copper (Cu) is a major and essential player in a large number of cellular mechanisms and signaling pathways. The involvement of Cu in oxidation-reduction reactions requires close regulation of copper metabolism in order to avoid toxic effects. In many types of cancer, variations in copper protein levels have been demonstrated. These variations result in increased concentrations of intratumoral Cu and alterations in the systemic distribution of copper. Such alterations in Cu homeostasis may promote tumor growth or invasiveness or may even confer resistance to treatments. Once characterized, the dysregulated Cu metabolism is pinpointing several promising biomarkers for clinical use with prognostic or predictive capabilities. The altered Cu metabolism in cancer cells and the different responses of tumor cells to Cu are strongly supporting the development of treatments to disrupt, deplete, or increase Cu levels in tumors. The metallic nature of Cu as a chemical element is key for the development of anticancer agents via the synthesis of nanoparticles or copper-based complexes with antineoplastic properties for therapy. Finally, some of these new therapeutic strategies such as chelators or ionophores have shown promising results in a preclinical setting, and others are already in the clinic.
Collapse
Affiliation(s)
- Pierre Lelièvre
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Lucie Sancey
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
| | - Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Benoit Busser
- Institute for Advanced Biosciences, UGA INSERM U1209 CNRS UMR5309, 38700 La Tronche, France; (P.L.); (L.S.); (J.-L.C.)
- Department of Clinical Biochemistry, Grenoble Alpes University Hospital, 38043 Grenoble, France
| |
Collapse
|
14
|
Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, Yu L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front Pharmacol 2020; 11:343. [PMID: 32265714 PMCID: PMC7100275 DOI: 10.3389/fphar.2020.00343] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/09/2020] [Indexed: 01/17/2023] Open
Abstract
Platinum-based anticancer drugs, including cisplatin, carboplatin, oxaliplatin, nedaplatin, and lobaplatin, are heavily applied in chemotherapy regimens. However, the intrinsic or acquired resistance severely limit the clinical application of platinum-based treatment. The underlying mechanisms are incredibly complicated. Multiple transporters participate in the active transport of platinum-based antitumor agents, and the altered expression level, localization, or activity may severely decrease the cellular platinum accumulation. Detoxification components, which are commonly increasing in resistant tumor cells, can efficiently bind to platinum agents and prevent the formation of platinum–DNA adducts, but the adducts production is the determinant step for the cytotoxicity of platinum-based antitumor agents. Even if adequate adducts have formed, tumor cells still manage to survive through increased DNA repair processes or elevated apoptosis threshold. In addition, autophagy has a profound influence on platinum resistance. This review summarizes the critical participators of platinum resistance mechanisms mentioned above and highlights the most potential therapeutic targets or predicted markers. With a deeper understanding of the underlying resistance mechanisms, new solutions would be produced to extend the clinical application of platinum-based antitumor agents largely.
Collapse
Affiliation(s)
- Jiabei Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Urology, Cancer Hospital of Zhejiang Province, Hangzhou, China
| | - Junqing Liu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Yu Z, Cao W, Ren Y, Zhang Q, Liu J. ATPase copper transporter A, negatively regulated by miR-148a-3p, contributes to cisplatin resistance in breast cancer cells. Clin Transl Med 2020; 10:57-73. [PMID: 32508020 PMCID: PMC7240853 DOI: 10.1002/ctm2.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Breast cancer is the leading cause of death among women. Cisplatin is an effective drug for breast cancer, but resistance often develops during long term chemotherapy. While the mechanism of chemotherapy resistance is still not fully understood. METHODS Survival analyses of ATP7A and ATP7B were used to evaluate their effects on the development of Breast invasive carcinoma (BRCA). Immunostaining, flow cytometry, and IC50 assay were utilized to examine the effects of ATP7A-siRNA combined with cisplatin on apoptosis in breast cancer cells. Q-PCR, western blotting, and dual-luciferase assay were employed to confirm ATP7A is a novel target gene of miR-148a-3p. RESULTS In this current study, we identified knocking-down ATP7A could enhance cytotoxicity treatment of cisplatin in breast cancer cells. We also demonstrated miR-148a-3p overexpression in BRCA cells increased the sensitivity to cisplatin, and subsequently enhanced DNA damage and apoptosis. Moreover, we found ATP7A is a novel target gene of miR-148a-3p. In brief, our results showed miR-148a could accelerate chemotherapy induced-apoptosis in breast cancer cells by inhibiting ATP7A expression. CONCLUSIONS Our results highlight that inhibition of ATP7A is a potential strategy for targeting breast cancer resistant to cisplatin, and we provided an interesting method to compare the involvement of various genes in the assessment of cisplatin resistance.
Collapse
Affiliation(s)
- Ze Yu
- Institute of tumor immunologyAffiliated Tumor HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Weifan Cao
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Yuan Ren
- Pediatric LaboratoryFirst affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qijia Zhang
- Hepatobiliary Internal MedicineZhuhai Integrated Traditional Chinese and Western Medicine HospitalZhuhaiChina
| | - Jia Liu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
16
|
Clerc M, Heinemann F, Spingler B, Gasser G. A Luminescent NOTA-Based Terbium(III) “Turn-Off” Sensor for Copper. Inorg Chem 2019; 59:669-677. [DOI: 10.1021/acs.inorgchem.9b02934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michèle Clerc
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Franz Heinemann
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| | - Bernhard Spingler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, F-75005 Paris, France
| |
Collapse
|
17
|
Sun CY, Nie J, Huang JP, Zheng GJ, Feng B. Targeting STAT3 inhibition to reverse cisplatin resistance. Biomed Pharmacother 2019; 117:109135. [DOI: 10.1016/j.biopha.2019.109135] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
|
18
|
Wang Y, Niu H, Hu Z, Zhu M, Wang L, Han L, Qian L, Tian K, Yuan H, Lou H. Targeting the lysosome by an aminomethylated Riccardin D triggers DNA damage through cathepsin B-mediated degradation of BRCA1. J Cell Mol Med 2018; 23:1798-1812. [PMID: 30565390 PMCID: PMC6378192 DOI: 10.1111/jcmm.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
RD-N, an aminomethylated derivative of riccardin D, is a lysosomotropic agent that can trigger lysosomal membrane permeabilization followed by cathepsin B (CTSB)-dependent apoptosis in prostate cancer (PCa) cells, but the underlying mechanisms remain unknown. Here we show that RD-N treatment drives CTSB translocation from the lysosomes to the nucleus where it promotes DNA damage by suppression of the breast cancer 1 protein (BRCA1). Inhibition of CTSB activity with its specific inhibitors, or by CTSB-targeting siRNA or CTSB with enzyme-negative domain attenuated activation of BRCA1 and DNA damage induced by RD-N. Conversely, CTSB overexpression resulted in inhibition of BRCA1 and sensitized PCa cells to RD-N-induced cell death. Furthermore, RD-N-induced cell death was exacerbated in BRCA1-deficient cancer cells. We also demonstrated that CTSB/BRCA1-dependent DNA damage was critical for RD-N, but not for etoposide, reinforcing the importance of CTSB/BRCA1 in RD-N-mediated cell death. In addition, RD-N synergistically increased cell sensitivity to cisplatin, and this effect was more evidenced in BRCA1-deficient cancer cells. This study reveals a novel molecular mechanism that RD-N promotes CTSB-dependent DNA damage by the suppression of BRCA1 in PCa cells, leading to the identification of a potential compound that target lysosomes for cancer treatment.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Huanmin Niu
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Zhongyi Hu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mengyuan Zhu
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Lining Wang
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| | - Lili Han
- School of Medicine, Shandong Yingcai University, Jinan, China
| | - Lilin Qian
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Keli Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Huiqing Yuan
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, China
| | - Hongxiang Lou
- Key Lab of Chemical Biology of Ministry of Education, Department of Natural Product Chemistry, School of Pharmaceutical sciences, Shandong University, Jinan, China
| |
Collapse
|
19
|
Phytochemicals: Current strategy to sensitize cancer cells to cisplatin. Biomed Pharmacother 2018; 110:518-527. [PMID: 30530287 DOI: 10.1016/j.biopha.2018.12.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-based chemotherapeutic regimens are the most frequently used adjuvant treatments for many types of cancer. However, the development of chemoresistance to cisplatin results in treatment failure. Despite the significant developments in understanding the mechanisms of cisplatin resistance, effective strategies to enhance the chemosensitivity of cisplatin are lacking. Phytochemicals are naturally occurring plant-based compounds that can augment the anti-cancer activity of cisplatin, with minimal side effects. Notably, some novel phytochemicals, such as curcumin, not only increase the efficacy of cisplatin but also decrease toxicity induced by cisplatin. However, the exact mechanisms underlying this process remain unclear. In this review, we discussed the progress made in utilizing phytochemicals to enhance the anti-cancer efficacy of cisplatin. We also presented some ideal phytochemicals as novel agents for counteracting cisplatin-induced organ damage.
Collapse
|
20
|
Role of ZIP8 in regulation of cisplatin sensitivity through Bcl-2. Toxicol Appl Pharmacol 2018; 362:52-58. [PMID: 30342059 DOI: 10.1016/j.taap.2018.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
ZIP8 is a membrane transporter that facilitates the uptake of divalent metals (e.g., Zn, Mn, Fe, Cd) and the mineral selenite in anionic form. ZIP8 functionality has been recently reported to regulate cell proliferation, migration and cytoskeleton arrangement, exhibiting an essential role for normal physiology. In this study, we report a ZIP8 role in chemotherapy response. We show ZIP8 regulates cell sensitivity to the anti-cancer drug cisplatin. Overexpression of ZIP8 in mouse embryonic fibroblast (MEF) cells induces cisplatin sensitivity, while knockout of ZIP8 in leukemia HAP1 cells leads to cisplatin resistance. In ZIP8 altered cells and transgenic mice, we show cisplatin is not a direct ZIP8 substrate. Further studies demonstrate that ZIP8 regulates anti-apoptotic protein Bcl-2. ZIP8 overexpression decreases Bcl-2 levels in cultured cells, mice lung and liver tissue while loss of ZIP8 elevates Bcl-2 expression in HAP1 cells and liver tissue. We also observe that ZIP8 overexpression modulates cisplatin-induced cell apoptosis, manifested by the increased protein level of cleaved Caspase-3. Since Bcl-2 elevation was previously discovered to induce cisplatin drug resistance, our results suggest ZIP8 may modulate cisplatin drug responses as well as apoptosis through Bcl-2. We therefore conclude ZIP8 is a new molecule to be involved in cisplatin drug responses and is predicted as a genetic factor to be considered in cisplatin therapy.
Collapse
|
21
|
Zhang W, Shi H, Chen C, Ren K, Xu Y, Liu X, He L. Curcumin enhances cisplatin sensitivity of human NSCLC cell lines through influencing Cu-Sp1-CTR1 regulatory loop. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:51-61. [PMID: 30195880 DOI: 10.1016/j.phymed.2018.04.058] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/10/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin is a naturally occurring polyphenol which has been demonstrated to possess diverse biological activities. We previously reported that curcumin is a biologically active copper chelator with antitumor activity. Copper transporter 1 (CTR1) on the plasma membrane of eukaryotic cells mediates both copper as well as anticancer drug cisplatin uptake. PURPOSE This study aims to investigate whether curcumin enhances cisplatin sensitivity of human non-small cell lung cancer (NSCLC) through influencing Cu-Sp1-CTR1 regulatory loop. METHODS The combination effect of curcumin and cisplatin on cell proliferation and apoptosis was determined in vitro and in vivo. Platinum level in A549 cells and tumor tissue was measured by atomic absorption spectrometry (AAS). The binding ability of specificity protein 1 (Sp1) to CTR1 and Sp1 promoters was detected by ChIP assay and luciferase reporter assay system. RESULTS Here we show that combined curcumin and cisplatin treatment markedly inhibited A549 cells proliferation and induced its apoptosis. Using a mouse model of A549 xenograft, we demonstrated that curcumin inhibits copper influx and increases uptake of platinum ion in tumor. Curcumin treatment enhances the binding of Sp1 to CTR1 and Sp1 promoters, thus induces CTR1 expression and chemosensitization to cisplatin treatment. This process is regulated by the Cu-Sp1-CTR1 regulatory loop. Moreover, the enhancement mediated by curcumin on cisplatin therapeutic efficacy in cultured human NSCLC cell lines (A549, H460, H1299) was dependent on CTR1. CONCLUSIONS Our results demonstrated copper chelator curcumin enhances the benefits of platinum-containing chemotherapeutic agents and CTR1 could be a promising therapeutic target for non-small cell lung cancer treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hengfei Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China
| | - Changmai Chen
- School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ke Ren
- School of Basic Medical Sciences, Chengdu Medical College, Sichuan, China
| | - Yujun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Medical School, Nanjing University, Nanjing, China
| | - Xiaoyi Liu
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Long He
- Department of Pathogen Biology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Zheng W, Li H, Chen W, Zhang J, Wang N, Guo X, Jiang X. Rapid Detection of Copper in Biological Systems Using Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703857. [PMID: 29493873 DOI: 10.1002/smll.201703857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/11/2018] [Indexed: 06/08/2023]
Abstract
A fast (1 min), straightforward but efficient, click chemistry-based system that enables the rapid detection of free copper (Cu) ions in either biological fluids or living cells without tedious pretreatment is provided. Cu can quickly induce the conjugation between graphene oxide (GO) and a fluorescent dye via click reaction. On the basis of the high specificity of bioorthogonal reaction and the effective quenching ability of GO, the assay studied in this paper can respond to Cu ions in less than 1 min with excellent selectivity and sensitivity, which is the fastest sensor for Cu as far as it is known. In addition, the application of this system is verified by performing assays in living cells and untreated urine samples from patients suffering from Wilson's Disease. Such a Cu detection system shows great promises in both fundamental research and routine clinical diagnostics.
Collapse
Affiliation(s)
- Wenshu Zheng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Huiling Li
- Department of Occupational Medicine and Clinical Toxicology, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, P. R. China
| | - Wenwen Chen
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
- Department of Biomedical Engineering, Medical school, Shenzhen University, Guangdong, 518020, P. R. China
| | - Jiangjiang Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Nuoxin Wang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| | - Xuefeng Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, P. R. China
- Sino-Danish College University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 2018; 233:4546-4562. [PMID: 29152737 DOI: 10.1002/jcp.26289] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal malignancy among the gynecological cancers, with a 5-year survival rate, mainly due to being diagnosed at advanced stages, recurrence and resistance to the current chemotherapeutic agents. Drug resistance is a complex phenomenon and the number of known involved genes and cross-talks between signaling pathways in this process is growing rapidly. Thus, discovering and understanding the underlying molecular mechanisms involved in chemo-resistance are crucial for management of treatment and identifying novel and effective drug targets as well as drug discovery to improve therapeutic outcomes. In this review, the major and recently identified molecular mechanisms of drug resistance in ovarian cancer from relevant literature have been investigated. In the final section of the paper, new approaches for studying detailed mechanisms of chemo-resistance have been briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Moghbelinejad
- Department of Biochemistry and Genetic, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
The combined activation of K Ca3.1 and inhibition of K v11.1/hERG1 currents contribute to overcome Cisplatin resistance in colorectal cancer cells. Br J Cancer 2017; 118:200-212. [PMID: 29161243 PMCID: PMC5785745 DOI: 10.1038/bjc.2017.392] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Platinum-based drugs such as Cisplatin are commonly employed for cancer treatment. Despite an initial therapeutic response, Cisplatin treatment often results in the development of chemoresistance. To identify novel approaches to overcome Cisplatin resistance, we tested Cisplatin in combination with K+ channel modulators on colorectal cancer (CRC) cells. Methods: The functional expression of Ca2+-activated (KCa3.1, also known as KCNN4) and voltage-dependent (Kv11.1, also known as KCNH2 or hERG1) K+ channels was determined in two CRC cell lines (HCT-116 and HCT-8) by molecular and electrophysiological techniques. Cisplatin and several K+ channel modulators were tested in vitro for their action on K+ currents, cell vitality, apoptosis, cell cycle, proliferation, intracellular signalling and Platinum uptake. These effects were also analysed in a mouse model mimicking Cisplatin resistance. Results: Cisplatin-resistant CRC cells expressed higher levels of KCa3.1 and Kv11.1 channels, compared with Cisplatin-sensitive CRC cells. In resistant cells, KCa3.1 activators (SKA-31) and Kv11.1 inhibitors (E4031) had a synergistic action with Cisplatin in triggering apoptosis and inhibiting proliferation. The effect was maximal when KCa3.1 activation and Kv11.1 inhibition were combined. In fact, similar results were produced by Riluzole, which is able to both activate KCa3.1 and inhibit Kv11.1. Cisplatin uptake into resistant cells depended on KCa3.1 channel activity, as it was potentiated by KCa3.1 activators. Kv11.1 blockade led to increased KCa3.1 expression and thereby stimulated Cisplatin uptake. Finally, the combined administration of a KCa3.1 activator and a Kv11.1 inhibitor also overcame Cisplatin resistance in vivo. Conclusions: As Riluzole, an activator of KCa3.1 and inhibitor of Kv11.1 channels, is in clinical use, our results suggest that this compound may be useful in the clinic to improve Cisplatin efficacy and overcome Cisplatin resistance in CRC.
Collapse
|
26
|
Reczek CR, Birsoy K, Kong H, Martínez-Reyes I, Wang T, Gao P, Sabatini DM, Chandel NS. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol 2017; 13:1274-1279. [PMID: 29058724 PMCID: PMC5698099 DOI: 10.1038/nchembio.2499] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
Paraquat, a herbicide linked to Parkinson's disease, generates reactive oxygen species (ROS), which causes cell death. Because the source of paraquat-induced ROS production remains unknown, we conducted a CRISPR-based positive-selection screen to identify metabolic genes essential for paraquat-induced cell death. Our screen uncovered three genes, POR (cytochrome P450 oxidoreductase), ATP7A (copper transporter), and SLC45A4 (sucrose transporter), required for paraquat-induced cell death. Furthermore, our results revealed POR as the source of paraquat-induced ROS production. Thus, our study highlights the use of functional genomic screens for uncovering redox biology.
Collapse
Affiliation(s)
- Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, New York, USA
| | - Hyewon Kong
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Tim Wang
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Peng Gao
- Metabolomics Core Facility, Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
27
|
Sun S, Cai J, Yang Q, Zhao S, Wang Z. The association between copper transporters and the prognosis of cancer patients undergoing chemotherapy: a meta-analysis of literatures and datasets. Oncotarget 2017; 8:16036-16051. [PMID: 27980217 PMCID: PMC5362544 DOI: 10.18632/oncotarget.13917] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022] Open
Abstract
Copper transporter 1 (CTR1), copper transporter 2 (CTR2), copper-transporting p-type adenosine triphosphatase 1 and 2 (ATP7A and ATP7B) are key mediators of cellular cisplatin, carboplatin and oxaliplatin accumulation. In this meta-analysis, we aimed to evaluate the relation of CTR1, CTR2, ATP7A and ATP7B to overall survival (OS), progression-free survival (PFS), disease-free survival (DFS) and treatment response (TR) of cancer patients who received chemotherapy based on published literatures, the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) datasets. Hazard ratios (HRs) and odds ratios (ORs) were pooled using random-effect models. Subgroup analysis and sensitivity analysis were conducted; heterogeneity and publication bias were assessed. Twelve literatures and eight datasets with 2149 patients were included. Our results suggested that high CTR1 expression was associated with favorable OS, PFS, DFS and TR in cancer patients who underwent chemotherapy with acceptable heterogeneity. The relationship of CTR1 to cancer prognosis remained significant in the subgroup of patients who underwent platinum-based chemotherapy, the patients with ovarian cancer and those with lung cancer. The significance of these relationships was not influenced by geological region of publication, data origin or detection method. However, there was no evidence for relation of CTR2, ATP7A or ATP7B to OS, PFS, DFS or TR. Test of publication bias and sensitivity analysis suggested a robustness of all the summary effect estimates. In conclusion, high CTR1 level predicts prolonged survival and enhanced response to chemotherapy in cancer patients who underwent chemotherapy and CTR1 might be a potential target to circumvent chemotherapy resistance.
Collapse
Affiliation(s)
- Si Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiang Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Simei Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
28
|
Ackerman CM, Lee S, Chang CJ. Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling. Anal Chem 2017; 89:22-41. [PMID: 27976855 PMCID: PMC5827935 DOI: 10.1021/acs.analchem.6b04631] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sumin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Copper transporters and chaperones: Their function on angiogenesis and cellular signalling. J Biosci 2016; 41:487-96. [DOI: 10.1007/s12038-016-9629-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Ramos-Torres KM, Kolemen S, Chang CJ. Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems. Isr J Chem 2016; 56:724-737. [PMID: 31263315 DOI: 10.1002/ijch.201600023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper is an essential element in biological systems. Its potent redox activity renders it necessary for life, but at the same time, misregulation of its cellular pools can lead to oxidative stress implicated in aging and various disease states. Copper is commonly thought of as a static cofactor buried in protein active sites; however, evidence of a more loosely bound, labile pool of copper has emerged. To help identify and understand new roles for dynamic copper pools in biology, we have developed selective molecular imaging agents for this metal, drawing inspiration from both biological binding motifs and synthetic model complexes that reveal thioether coordination as a general design strategy for selective and sensitive copper recognition. In this review, we summarize some contributions, primarily from our own laboratory, on fluorescence- and magnetic resonance-based molecular-imaging probes for studying copper in living systems using thioether coordination chemistry.
Collapse
Affiliation(s)
| | - Safacan Kolemen
- Department of Chemistry, University of California Berkeley, CA 94704 (USA)
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, CA 94704 (USA).,Department of Molecular and Cell Biology, University of California Berkeley, CA 94704 (USA).,Howard Hughes Medical Institute, Tel.: (+1) 510-642-4704
| |
Collapse
|
31
|
Affiliation(s)
- Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering; Chalmers University of Technology; 41296 Gothenburg Sweden
| |
Collapse
|
32
|
Bompiani KM, Tsai CY, Achatz FP, Liebig JK, Howell SB. Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. Metallomics 2016; 8:951-62. [PMID: 27157188 DOI: 10.1039/c6mt00076b] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of resistance to cisplatin (cDDP) is commonly accompanied by reduced drug uptake or increased efflux. Previous studies in yeast and murine embryonic fibroblasts have reported that the copper (Cu) transporters and chaperones participate in the uptake, efflux, and intracellular distribution of cDDP. However, there is conflicting data from studies in human cells. We used CRISPR-Cas9 genome editing to individually knock out the human copper transporters CTR1 and CTR2 and the copper chaperones ATOX1 and CCS. Isogenic knockout cell lines were generated in both human HEK-293T and ovarian carcinoma OVCAR8 cells. All knockout cell lines had slowed growth compared to parental cells, small changes in basal Cu levels, and varying sensitivities to Cu depending on the gene targeted. However, all of the knockouts demonstrated only modest 2 to 5-fold changes in cDDP sensitivity that did not differ from the range of sensitivities of 10 wild type clones grown from the same parental cell population. We conclude that, under basal conditions, loss of CTR1, CTR2, ATOX1, or CCS does not produce a change in cisplatin sensitivity that exceeds the variance found within the parental population, suggesting that they are not essential to the mechanism by which cDDP enters these cell lines and is transported to the nucleus.
Collapse
Affiliation(s)
- Kristin M Bompiani
- Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
33
|
Kilari D, Guancial E, Kim ES. Role of copper transporters in platinum resistance. World J Clin Oncol 2016; 7:106-113. [PMID: 26862494 PMCID: PMC4734932 DOI: 10.5306/wjco.v7.i1.106] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
Platinum (Pt)-based antitumor agents are effective in the treatment of many solid malignancies. However, their efficacy is limited by toxicity and drug resistance. Reduced intracellular Pt accumulation has been consistently shown to correlate with resistance in tumors. Proteins involved in copper homeostasis have been identified as Pt transporters. In particular, copper transporter receptor 1 (CTR1), the major copper influx transporter, has been shown to play a significant role in Pt resistance. Clinical studies demonstrated that expression of CTR1 correlated with intratumoral Pt concentration and outcomes following Pt-based therapy. Other CTRs such as CTR2, ATP7A and ATP7B, may also play a role in Pt resistance. Recent clinical studies attempting to modulate CTR1 to overcome Pt resistance may provide novel strategies. This review discusses the role of CTR1 as a potential predictive biomarker of Pt sensitivity and a therapeutic target for overcoming Pt resistance.
Collapse
|
34
|
Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24:23-33. [DOI: 10.1016/j.drup.2015.11.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
|
35
|
Dong Z, Guan L, Wang C, Xu H, Li Z, Li F. Reconstruction of a helical trimer by the second transmembrane domain of human copper transporter 2 in micelles and the binding of the trimer to silver. RSC Adv 2016. [DOI: 10.1039/c5ra24889b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The second transmembrane domain of human copper transporter 2 (hCtr2-TMD2) forms a trimer with a weaker intermolecular interaction and a lower affinity for Ag(I) than hCtr1-TMD2 trimer.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Liping Guan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Haoran Xu
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
36
|
Hare DJ, New EJ. On the outside looking in: redefining the role of analytical chemistry in the biosciences. Chem Commun (Camb) 2016; 52:8918-34. [DOI: 10.1039/c6cc00128a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical chemistry has much to offer to an improved understanding of biological systems.
Collapse
Affiliation(s)
- Dominic J. Hare
- Elemental Bio-imaging Facility
- University of Technology Sydney
- Broadway
- Australia
- The Florey Institute of Neuroscience and Mental Health
| | | |
Collapse
|
37
|
Morgan MT, McCallum A, Fahrni CJ. Rational Design of a Water-Soluble, Lipid-Compatible Fluorescent Probe for Cu(I) with Sub-Part-Per-Trillion Sensitivity. Chem Sci 2015; 7:1468-1473. [PMID: 28042469 PMCID: PMC5201193 DOI: 10.1039/c5sc03643g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Knowledge-driven optimization of the ligand and fluorophore architectures yielded an ultrasensitive Cu(i)-selective fluorescent probe featuring a 180-fold fluorescence contrast and 41% quantum yield.
Fluorescence probes represent an attractive solution for the detection of the biologically important Cu(i) cation; however, achieving a bright, high-contrast response has been a challenging goal. Concluding from previous studies on pyrazoline-based fluorescent Cu(i) probes, the maximum attainable fluorescence contrast and quantum yield were limited due to several non-radiative deactivation mechanisms, including ternary complex formation, excited state protonation, and colloidal aggregation in aqueous solution. Through knowledge-driven optimization of the ligand and fluorophore architectures, we overcame these limitations in the design of CTAP-3, a Cu(i)-selective fluorescent probe offering a 180-fold fluorescence enhancement, 41% quantum yield, and a limit of detection in the sub-part-per-trillion concentration range. In contrast to lipophilic Cu(i)-probes, CTAP-3 does not aggregate and interacts only weakly with lipid bilayers, thus maintaining a high contrast ratio even in the presence of liposomes.
Collapse
Affiliation(s)
- M T Morgan
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| | - A McCallum
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| | - C J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332-0400, USA. ; Tel: +1 404 385-1164
| |
Collapse
|
38
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
39
|
Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 2015. [PMID: 26215055 PMCID: PMC4542203 DOI: 10.1021/acs.accounts.5b00221] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Metals are essential for life, playing critical
roles in all aspects
of the central dogma of biology (e.g., the transcription and translation
of nucleic acids and synthesis of proteins). Redox-inactive alkali,
alkaline earth, and transition metals such as sodium, potassium, calcium,
and zinc are widely recognized as dynamic signals, whereas redox-active
transition metals such as copper and iron are traditionally thought
of as sequestered by protein ligands, including as static enzyme cofactors,
in part because of their potential to trigger oxidative stress and
damage via Fenton chemistry. Metals in biology can be broadly categorized
into two pools: static and labile. In the former, proteins and other
macromolecules tightly bind metals; in the latter, metals are bound relatively
weakly to cellular ligands, including proteins and low molecular weight
ligands. Fluorescent probes can be useful tools for
studying the roles of transition metals in their labile forms. Probes
for imaging transition metal dynamics in living systems must meet
several stringent criteria. In addition to exhibiting desirable photophysical
properties and biocompatibility, they must be selective and show a
fluorescence turn-on response to the metal of interest. To meet this
challenge, we have pursued two general strategies for metal detection,
termed “recognition” and “reactivity”.
Our design of transition metal probes makes use of a recognition-based
approach for copper and nickel and a reactivity-based approach for
cobalt and iron. This Account summarizes progress in our laboratory
on both the development and application of fluorescent probes to identify
and study the signaling roles of transition metals in biology. In
conjunction with complementary methods for direct metal detection
and genetic and/or pharmacological manipulations, fluorescent probes
for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three
recent examples from our laboratory and collaborations in which applications
of chemical probes reveal that labile copper contributes to various
physiologies. The first example shows that copper is an endogenous
regulator of neuronal activity, the second illustrates cellular prioritization
of mitochondrial copper homeostasis, and the third identifies the “cuprosome” as a new copper storage compartment in Chlamydomonas reinhardtii green algae. Indeed, recognition-
and reactivity-based fluorescent probes have helped to uncover new
biological roles for labile transition metals, and the further development
of fluorescent probes, including ones with varied Kd values and new reaction triggers and recognition receptors,
will continue to reveal exciting and new biological roles for labile
transition metals.
Collapse
Affiliation(s)
- Allegra T. Aron
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, ‡Department of Molecular and Cell
Biology, and the §Howard Hughes
Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Tsai CY, Liebig JK, Tsigelny IF, Howell SB. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2). Metallomics 2015. [PMID: 26205368 DOI: 10.1039/c5mt00131e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian cells have two influx Cu transporters that form trimers in membranes. CTR1 is the high affinity transporter that resides largely in the plasma membrane, and CTR2 is the low affinity transporter that is primarily associated with vesicular structures inside the cell. The major differences between CTR1 and CTR2 are that CTR1 contains a HIS/MET-rich domain N-terminal of the METS that participate in the first two stacked rings that form the pore, and a longer C-terminal tail that includes a Cu binding HIS-CYS-HIS (HCH) motif right at the end. It has been reported that CTR1 and CTR2 are physically associated with each other in the cell. We used the CRISPR-Cas9 technology to knock out either CTR1 or CTR2 in fully malignant HEK293T and OVCAR8 human ovarian cancer cells to investigate the interaction of CTR1 and CTR2. We report here that the level of CTR2 protein is markedly decreased in CTR1 knockout clones while the CTR2 transcript level remains unchanged. CTR2 was found to be highly ubiquitinated in the CTR1 knock out cells, and inhibition of the proteasome prevented the degradation of CTR2 when CTR1 was not present while inhibition of autophagy had no effect. Re-expression of CTR1 rescued CTR2 from degradation in the CTR1 knockout cells. We conclude that CTR1 is essential to maintain the stability of CTR2 and that in the absence of CTR1 CTR2 is degraded by the proteasome. This reinforces the concept that the functions of CTR1 and CTR2 are inter-dependent within the Cu homeostasis system.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Moores Cancer Center, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, CA 92093-0819, USA.
| | | | | | | |
Collapse
|
41
|
Chen HHW, Chen WC, Liang ZD, Tsai WB, Long Y, Aiba I, Fu S, Broaddus R, Liu J, Feun LG, Savaraj N, Kuo MT. Targeting drug transport mechanisms for improving platinum-based cancer chemotherapy. Expert Opin Ther Targets 2015; 19:1307-17. [PMID: 26004625 DOI: 10.1517/14728222.2015.1043269] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Platinum (Pt)-based antitumor agents remain important chemotherapeutic agents for treating many human malignancies. Elevated expression of the human high-affinity copper transporter 1 (hCtr1), resulting in enhanced Pt drug transport into cells, has been shown to be associated with improved treatment efficacy. Thus, targeting hCtr1 upregulation is an attractive strategy for improving the treatment efficacy of Pt-based cancer chemotherapy. AREA COVERED Regulation of hCtr1 expression by cellular copper homeostasis is discussed. Association of elevated hCtr1 expression with intrinsic sensitivity of ovarian cancer to Pt drugs is presented. Mechanism of copper-lowering agents in enhancing hCtr1-mediated cis-diamminedichloroplatinum (II) (cisplatin, cDDP) transport is reviewed. Applications of copper chelation strategy in overcoming cDDP resistance through enhanced hCtr1 expression are evaluated. EXPERT OPINION While both transcriptional and post-translational mechanisms of hCtr1 regulation by cellular copper bioavailability have been proposed, detailed molecular insights into hCtr1 regulation by copper homeostasis remain needed. Recent clinical study using a copper-lowering agent in enhancing hCtr1-mediated drug transport has achieved incremental improvement in overcoming Pt drug resistance. Further improvements in identifying predictive measures in the subpopulation of patients that can benefit from the treatment are needed.
Collapse
Affiliation(s)
- Helen H W Chen
- a 1 National Cheng Kung University, National Cheng Kung University Hospital, College of Medicine, Department of Radiation Oncology , Tainan, Taiwan
| | - Wen-Chung Chen
- b 2 National Cheng Kung University, National Cheng Kung University Hospital, College of Medicine, Department of Pathology , Tainan, Taiwan
| | - Zhang-Dong Liang
- c 3 The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology , Houston, TX 77030, USA
| | - Wen-Bin Tsai
- c 3 The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology , Houston, TX 77030, USA
| | - Yan Long
- d 4 The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology , Houston, TX 77030, USA
| | - Isamu Aiba
- e 5 The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology , Houston, TX 77030, USA
| | - Siqing Fu
- f 6 The University of Texas MD Anderson Cancer Center, Departments of Investigative Cancer Therapeutics , Houston, TX, USA
| | - Russell Broaddus
- g 7 The University of Texas MD Anderson Cancer Center, Departments of Pathology , Houston, TX, USA
| | - Jinsong Liu
- g 7 The University of Texas MD Anderson Cancer Center, Departments of Pathology , Houston, TX, USA
| | - Lynn G Feun
- h 8 University of Miami, Sylvester Comprehensive Cancer Center , 1475 NW 12th Avenue, Miami, FL 33136, USA
| | - Niramol Savaraj
- h 8 University of Miami, Sylvester Comprehensive Cancer Center , 1475 NW 12th Avenue, Miami, FL 33136, USA
| | - Macus Tien Kuo
- i 9 The University of Texas MD Anderson Cancer Center, Department of Translational Molecular Pathology , Unit 2951, LSP 9.4206, 2130 W. Holcombe Blvd, Houston, TX 77030, USA +1 713 834 6038 ; +1 713 834 6085 ;
| |
Collapse
|
42
|
Massari F, Santoni M, Ciccarese C, Brunelli M, Conti A, Santini D, Montironi R, Cascinu S, Tortora G. Emerging concepts on drug resistance in bladder cancer: Implications for future strategies. Crit Rev Oncol Hematol 2015; 96:81-90. [PMID: 26022449 DOI: 10.1016/j.critrevonc.2015.05.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 02/16/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023] Open
Abstract
The combination chemotherapies with methotrexate plus vinblastine, doxorubicin and cisplatin (MVAC or CMV regimens) or gemcitabine plus cisplatin represent the standard as first-line therapy for patients with metastatic urothelial cancer. In Europe, vinflunine is an option for second-line therapy for patients progressed during first-line or perioperative platinum-containing regimen. Alternative regimens containing taxanes and/or gemcitabine may be valuated case by case. Furthermore, carboplatin should be considered in patients unfit for cisplatin both in the first and second-line setting. Based on these findings, a better comprehension of the mechanisms underlying the development of drug resistance in patients with bladder cancer will represent a major step forward in optimizing patients' outcome. This article reviews the current knowledge of the mechanisms and emerging strategies to overcome resistance in patients with advanced urothelial cancer.
Collapse
Affiliation(s)
- Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Matteo Santoni
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy.
| | - Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostic, A.O.U.I., University of Verona, Verona, Italy
| | - Alessandro Conti
- Department of Clinic and Specialistic Sciences-Urology, Polytechnic University of the Marche Region, Ancona, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Rome, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Stefano Cascinu
- Medical Oncology, AOU Ospedali Riuniti, Polytechnic University of the Marche Region, Ancona, Italy
| | - Giampaolo Tortora
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Cotruvo JA, Aron AT, Ramos-Torres KM, Chang CJ. Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 2015; 44:4400-14. [PMID: 25692243 DOI: 10.1039/c4cs00346b] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.
Collapse
|
45
|
Rose MC, Kostyanovskaya E, Huang RS. Pharmacogenomics of cisplatin sensitivity in non-small cell lung cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:198-209. [PMID: 25449594 PMCID: PMC4411417 DOI: 10.1016/j.gpb.2014.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023]
Abstract
Cisplatin, a platinum-based chemotherapeutic drug, has been used for over 30 years in a wide variety of cancers with varying degrees of success. In particular, cisplatin has been used to treat late stage non-small cell lung cancer (NSCLC) as the standard of care. However, therapeutic outcomes vary from patient to patient. Considerable efforts have been invested to identify biomarkers that can be used to predict cisplatin sensitivity in NSCLC. Here we reviewed current evidence for cisplatin sensitivity biomarkers in NSCLC. We focused on several key pathways, including nucleotide excision repair, drug transport and metabolism. Both expression and germline DNA variation were evaluated in these key pathways. Current evidence suggests that cisplatin-based treatment could be improved by the use of these biomarkers.
Collapse
Affiliation(s)
- Maimon C Rose
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | | | - R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Abstract
The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼ 25% acquiring preassembled metal cofactors. The remaining ∼ 70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells.
Collapse
Affiliation(s)
- Andrew W Foster
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Deenah Osman
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Nigel J Robinson
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|