1
|
Troisi R, Galardo F, Ferraro G, Lucignano R, Picone D, Marano A, Trifuoggi M, Sica F, Merlino A. Cisplatin/Apo-Transferrin Adduct: X-ray Structure and Binding to the Transferrin Receptor 1. Inorg Chem 2025; 64:761-765. [PMID: 39711171 DOI: 10.1021/acs.inorgchem.4c04435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Here, we report the X-ray structure of the adduct formed upon reaction of cisplatin, one of the most prescribed anticancer agents for the clinic treatment of solid tumors, with the apo-form of human serum transferrin (hTF). Two Pt binding sites were identified in both molecules of the adduct present in the crystal asymmetric unit: Pt binds close to the side chains of Met256 and Met499 at the N- and C-lobe, respectively. In the crystal structure, the cisplatin moiety bound to Met256 also interacts with Ser616 from a symmetry related molecule. Structural analyses, together with in solution data, demonstrate that the presence of iron does not affect the ability of hTF to bind cisplatin and that the cisplatin binding does not significantly alter the overall conformation of the different forms of the protein that remain able to form a complex with the transferrin receptor 1 (TfR1). These data suggest that the different hTF forms can be used as nanocarriers for targeted (combined) metallodrug delivery.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia, I-80126, Naples, Italy
| |
Collapse
|
2
|
Deblonde GJP. Biogeochemistry of Actinides: Recent Progress and Perspective. ACS ENVIRONMENTAL AU 2024; 4:292-306. [PMID: 39582760 PMCID: PMC11583103 DOI: 10.1021/acsenvironau.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Actinides are elements that are often feared because of their radioactive nature and potentially devastating consequences to humans and the environment if not managed properly. As such, their chemical interactions with the biosphere and geochemical environment, i.e., their "biogeochemistry," must be studied and understood in detail. In this Review, a summary of the past discoveries and recent advances in the field of actinide biogeochemistry is provided with a particular emphasis on actinides other than thorium and uranium (i.e., actinium, neptunium, plutonium, americium, curium, berkelium, and californium) as they originate from anthropogenic activities and can be mobile in the environment. The nuclear properties of actinide isotopes found in the environment and used in research are reviewed with historical context. Then, the coordination chemistry properties of actinide ions are contrasted with those of common metal ions naturally present in the environment. The typical chelators that can impact the biogeochemistry of actinides are then reviewed. Then, the role of metalloproteins in the biogeochemistry of actinides is put into perspective since recent advances in the field may have ramifications in radiochemistry and for the long-term management of nuclear waste. Metalloproteins are ubiquitous ligands in nature but, as discussed in this Review, they have largely been overlooked for actinide chemistry, especially when compared to traditional environmental chelators. Without discounting the importance of abundant and natural actinide ions (i.e., Th4+ and UO2 2+), the main focus of this review is on trivalent actinides because of their prevalence in the fields of nuclear fuel cycles, radioactive waste management, heavy element research, and, more recently, nuclear medicine. Additionally, trivalent actinides share chemical similarities with the rare earth elements, and recent breakthroughs in the field of lanthanide-binding chelators may spill into the field of actinide biogeochemistry, as discussed hereafter.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences
Directorate, Lawrence Livermore National
Laboratory, Livermore, California 94550, United States
| |
Collapse
|
3
|
Das SK, Ali M, Shetake NG, Pandey BN, Kumar A. Thorium Alters Lung Surfactant Protein Expression in Alveolar Epithelial Cells: In Vitro and In Vivo Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12330-12342. [PMID: 38772857 DOI: 10.1021/acs.est.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Thorium-232 (Th), the most abundant naturally occurring nuclear fuel, has been identified as a sustainable source of energy. In view of its large-scale utilization and human evidence of lung disorders and carcinogenicity, it is imperative to understand the effect of Th exposure on lung cells. The present study investigated the effect of Th-dioxide (1-100 μg/mL, 24-48 h) on expression of surfactant proteins (SPs) (SP-A, SP-B, SP-C, and SP-D, which are essential to maintain lung's surface tension and host-defense) in human lung cells (WI26 and A549), representative of alveolar cell type-I and type-II, respectively. Results demonstrated the inhibitory effect of Th on transcriptional expression of SP-A, SP-B, and SP-C. However, Th promoted the mRNA expression of SP-D in A549 and reduced its expression in WI26. To a significant extent, the effect of Th on SPs was found to be in accordance with their protein levels. Moreover, Th exposure altered the extracellular release of SP-D/A from A549, which remained unaltered in WI26. Our results suggested the differential role of oxidative stress and ATM and HSP90 signaling in Th-induced alterations of SPs. These effects of Th were found to be consistent in lung tissues of mice exposed to Th aerosols, suggesting a potential role of SPs in Th-associated lung disorders.
Collapse
Affiliation(s)
- Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Neena Girish Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
4
|
Liu Z, Wang Q, Chai Z, Wang D. Recognition of Actinides by Siderocalin. Inorg Chem 2024; 63:923-927. [PMID: 38156893 DOI: 10.1021/acs.inorgchem.3c03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Plain simulations and enhanced sampling unveil a novel siderocalin (Scn) recognition mode for An-Ent (where An = actinides and Ent = enterobactin) complexes and identify a "seesaw" relationship between actinide affinity to Ent and Scn recognition to an An-Ent complex. Electrostatic interactions predominantly govern competitive binding in both processes. Additionally, hydrolysis-induced negative charge, water expulsion-driven entropy, and Ent's conformational adaptability collectively enhance high-affinity recognition.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhifang Chai
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Radiation Medicine and Protection and School of Radiation Medicine and Interdisciplinary Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Multidisciplinary Initiative Center and CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Institute of High Energy Physics, Chinese Academy of Sciences and the University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yadav R, Das SK, Ali M, Shetake NG, Pandey BN, Kumar A. Mechanistic insights into Thorium-232 induced liver carcinogenesis: The driving role of Wnt/β-catenin signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168065. [PMID: 37884152 DOI: 10.1016/j.scitotenv.2023.168065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Thorium-232 (Th-232), a naturally-occurring radioactive element with high potential of nuclear fuel is now being utilized in advanced nuclear reactors for CO2-free energy generation. To achieve all-round capability in Th-fuel cycle for health and environment, understanding the biological effects of Th-232 at cellular and molecular level are extremely important. The present study investigated long-term effects (6 and 12 months) of Th-232 (4, 10 and 20 mg/kg) on gene expression in mice liver (major target organ). Analysis of differentially expressed genes (DEGs, ≥2.0 folds, p < 0.05) showed that with the increase of Th dose (4 to 20 mg/kg), the number of upregulated DEGs increased and the number of downregulated DEGs decreased significantly. A significant number of upregulated DEGs (10 genes in 6 months and 14 genes in 12 months) were found common between 4 and 20 mg/kg. Gene Ontology analysis revealed significant (Padj ~ 10-6-10-28) enrichment of upregulated DEGs for metabolic process, signal transduction, cell death, cell cycle and cell proliferation. KEGG pathway analysis showed DEGs significantly enriched in several cancer-related pathways including hepatocellular carcinoma (HCC). Protein-protein interaction analysis further revealed statistically significant functional interaction (p-value ~10-6-10-10) among the proteins of HCC, which identified β-catenin as one of the most significant signaling nodes in association with myc, an oncogene and p53, a tumor suppressor. Importantly, these results were corroborated by quantitative real time-polymerase chain reaction and western blotting in liver tissues of animals exposed to Th-232. This study insights Wnt/β-catenin signaling network attributable to drive Th-induced liver carcinogenesis, which may have significant implications for management of long-term effects of Th-232.
Collapse
Affiliation(s)
- Rakhee Yadav
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
6
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Ma M, Wang R, Xu M. Thorium(IV) triggers ferroptosis through disrupting iron homeostasis and heme metabolism in the liver following oral ingestion. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131217. [PMID: 36940529 DOI: 10.1016/j.jhazmat.2023.131217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Thorium is a byproduct of the rare earth mining industry and can be utilized as fuel for the next-generation nuclear power facilities, which may pose health risks to the population. Although published literature has shown that the toxicity of thorium possibly originates from its interactions with iron/heme-containing proteins, the underlying mechanisms are still largely unclear. Since the liver plays an irreplaceable role in iron and heme metabolism in the body, it is essential to investigate how thorium affects iron and heme homeostasis in hepatocytes. In this study, we first assessed the liver injury in mice exposed to tetravalent thorium (Th(IV)) in the form of thorium nitrite via the oral route. After a two-week oral exposure, thorium accumulation and iron overload were observed in the liver, which are both closely associated with lipid peroxidation and cell death. Transcriptomics analysis revealed that ferroptosis, which has not previously been documented in cells for actinides, is the main mechanism of programmed cell death induced by Th(IV). Further mechanistic studies suggested that Th(IV) could activate the ferroptotic pathway through disrupting iron homeostasis and generating lipid peroxides. More significantly, the disorder of heme metabolism, which is crucial for maintaining intracellular iron and redox homeostasis, was found to contribute to ferroptosis in hepatocytes exposed to Th(IV). Our findings may shed light on a key mechanism of hepatoxicity in response to Th(IV) stress and provide in-depth understanding of the health risk of thorium.
Collapse
Affiliation(s)
- Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
9
|
Troisi R, Galardo F, Ferraro G, Sica F, Merlino A. Cisplatin Binding to Human Serum Transferrin: A Crystallographic Study. Inorg Chem 2023; 62:675-678. [PMID: 36602395 PMCID: PMC9846693 DOI: 10.1021/acs.inorgchem.2c04206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side chain of Met256 (at the N-lobe), without altering the protein overall conformation.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Francesco Galardo
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Filomena Sica
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
Federico II, Complesso Universitario di Monte Sant’Angelo, via Cintia, Naples I-80126, Italy,
| |
Collapse
|
10
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
11
|
Fang L, Huang H, Quirk JD, Zheng J, Shen D, Manion B, Mixdorf M, Karmakar P, Sudlow GP, Tang R, Achilefu S. Analysis of Stable Chelate-free Gadolinium Loaded Titanium Dioxide Nanoparticles for MRI-Guided Radionuclide Stimulated Cancer Treatment. CURR ANAL CHEM 2022; 18:826-835. [PMID: 36561765 PMCID: PMC9770661 DOI: 10.2174/1573411018666220321102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Recent studies demonstrate that titanium dioxide nanoparticles (TiO2 NPs) are an effective source of reactive oxygen species (ROS) for photodynamic therapy and radionuclide stimulated dynamic therapy (RaST). Unfortunately tracking the in vivo distribution of TiO2 NPs noninvasively remains elusive. Objective Given the use of gadolinium (Gd) chelates as effective contrast agents for magnetic resonance imaging (MRI), this study aims to (1) develop hybrid TiO2-Gd NPs that exhibit high relaxivity for tracking the NPs without loss of ROS generating capacity; and (2) establish a simple colorimetric assay for quantifying Gd loading and stability. Methods A chelate-free, heat-induced method was used to load Gd onto TiO2 NPs, which was coated with transferrin (Tf). A sensitive colorimetric assay and inductively coupled plasma mass spectrometry (ICP-MS) were used to determine Gd loading and stability of the TiO2-Gd-Tf NPs. Measurement of the relaxivity was performed on a 1.4 T relaxometer and a 4.7 T small animal magnetic resonance scanner to estimate the effects of magnetic field strength. ROS was quantified by activated dichlorodihydrofluorescein diacetate fluorescence. Cell uptake of the NPs and RaST were monitored by fluorescence microscopy. Both 3 T and 4.7 T scanners were used to image the in vivo distribution of intravenously injected NPs in tumor-bearing mice. Results A simple colorimetric assay accurately determined both the loading and stability of the NPs compared with the expensive and complex ICP-MS method. Coating of the TiO2-Gd NPs with Tf stabilized the nanoconstruct and minimized aggregation. The TiO2-Gd-Tf maintained ROS-generating capability without inducing cell death at a wide range of concentrations but induced significant cell death under RaST conditions in the presence of F-18 radiolabeled 2-fluorodeoxyglucose. The longitudinal (r1 = 10.43 mM-1s-1) and transverse (r2 = 13.43 mM-1s-1) relaxivity of TiO2-Gd-Tf NPs were about twice and thrice, respectively, those of clinically used Gd contrast agent (Gd-DTPA; r1 = 3.77 mM-1s-1 and r2 = 5.51 mM-1s-1) at 1.4 T. While the r1 (8.13 mM-1s-1) reduced to about twice that of Gd-DTPA (4.89 mM-1s-1) at 4.7 T, the corresponding r2 (87.15 mM-1s-1) increased by a factor 22.6 compared to Gd-DTPA (r2 = 3.85). MRI of tumor-bearing mice injected with TiO2-Gd-Tf NPs tracked the NPs distribution and accumulation in tumors. Conclusion This work demonstrates that Arsenazo III colorimetric assay can substitute ICP-MS for determining the loading and stability of Gd-doped TiO2 NPs. The new nanoconstruct enabled RaST effect in cells, exhibited high relaxivity, and enhanced MRI contrast in tumors in vivo, paving the way for in vivo MRI-guided RaST.
Collapse
Affiliation(s)
- Lei Fang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States
| | - Hengbo Huang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States
| | - James D. Quirk
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Jie Zheng
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Duanwen Shen
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Brad Manion
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Matthew Mixdorf
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Partha Karmakar
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Gail P. Sudlow
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Rui Tang
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States
| | - Samuel Achilefu
- School of Medicine, Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States,Department of Biochemistry and Molecular Biophysics, School of Medicine, Washington University in St. Louis, Saint Louis, United States,Department of Biomedical Engineering, University of Texas Southwestern, Dallas, United States,Address correspondence to this author at the Department of Biomedical Engineering, School of Engineering, Washington University in St. Louis, Saint Louis, United States;
| |
Collapse
|
12
|
Uehara A, Matsumura D, Tsuji T, Yakumaru H, Tanaka I, Shiro A, Saitoh H, Ishihara H, Homma-Takeda S. Uranium chelating ability of decorporation agents in serum evaluated by X-ray absorption spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2439-2445. [PMID: 35694955 DOI: 10.1039/d2ay00565d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Internal exposure to actinides such as uranium and plutonium has been reduced using chelating agents for decorporation because of their potential to induce both radiological and chemical toxicities. This study measures uranium chemical forms in serum in the presence and absence of chelating agents based on X-ray absorption spectroscopy (XAS). The chelating agents used were 1-hydroxyethane 1,1-bisphosphonate (EHBP), inositol hexaphosphate (IP6), deferoxamine B (DFO), and diethylenetriaminepentaacetate (DTPA). Percentages of uranium-chelating agents and uranium-bioligands (bioligands: inorganic and organic ligands coordinating with uranium) dissolving in the serum were successfully evaluated based on principal component analysis of XAS spectra. The main ligands forming complexes with uranium in the serum were estimated as follows: IP6 > EHBP > bioligands > DFO ≫ DTPA when the concentration ratio of the chelating agent to uranium was 10. Measurements of uranium chemical forms and their concentrations in the serum would be useful for the appropriate treatment using chelating agents for the decorporation of uranium.
Collapse
Affiliation(s)
- Akihiro Uehara
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Daiju Matsumura
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Takuya Tsuji
- Materials Sciences Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Haruko Yakumaru
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Izumi Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Ayumi Shiro
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroyuki Saitoh
- Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Hiroshi Ishihara
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| | - Shino Homma-Takeda
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan.
| |
Collapse
|
13
|
Binding of ruthenium and osmium at non‑iron sites of transferrin accounts for their iron-independent cellular uptake. J Inorg Biochem 2022; 234:111885. [DOI: 10.1016/j.jinorgbio.2022.111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 05/21/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
|
14
|
Mattocks JA, Cotruvo JA, Deblonde GJP. Engineering lanmodulin's selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci 2022; 13:6054-6066. [PMID: 35685815 PMCID: PMC9132084 DOI: 10.1039/d2sc01261h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Developing chelators that combine high affinity and selectivity for lanthanides and/or actinides is paramount for numerous industries, including rare earths mining, nuclear waste management, and cancer medicine. In particular, achieving selectivity between actinides and lanthanides is notoriously difficult. The protein lanmodulin (LanM) is one of Nature's most selective chelators for trivalent actinides and lanthanides. However, mechanistic understanding of LanM's affinity and selectivity for f-elements remains limited. In order to decipher, and possibly improve, the features of LanM's metal-binding sites that contribute to this actinide/lanthanide selectivity, we characterized five LanM variants, substituting the aspartate residue at the 9th position of each metal-binding site with asparagine, histidine, alanine, methionine, and selenomethionine. Spectroscopic measurements with lanthanides (Nd3+ and Eu3+) and actinides (243Am3+ and 248Cm3+) reveal that, contrary to the behavior of small chelator complexes, metal-coordinated water molecules enhance LanM's affinity for f-elements and pH-stability of its complexes. Furthermore, the results show that the native aspartate does not coordinate the metal directly but rather hydrogen bonds to coordinated solvent. By tuning this first-sphere/second-sphere interaction, the asparagine variant nearly doubles LanM's selectivity for actinides versus lanthanides. This study not only clarifies the essential role of coordinated solvent for LanM's physiological function and separation applications, but it also demonstrates that LanM's preference for actinides over lanthanides can be further improved. More broadly, it demonstrates how biomolecular scaffolds possess an expanded repertoire of tunable interactions compared to most small-molecule ligands - providing an avenue for high-performance LanM-based actinide/lanthanide separation methods and bio-engineered chelators optimized for specific medical isotopes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore California 94550 USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory Livermore California 94550 USA
| |
Collapse
|
15
|
Yu L, Lin Z, Cheng X, Chu J, Li X, Chen C, Zhu T, Li W, Lin W, Tang W. Thorium inhibits human respiratory chain complex IV (cytochrome c oxidase). JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127546. [PMID: 34879532 DOI: 10.1016/j.jhazmat.2021.127546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Thorium is a radioactive heavy metal and an emerging environmental pollutant. Ecological and human health risks from thorium exposure are growing with the excavation of rare earth metals and implementation of thorium-based nuclear reactors. Thorium poisoning is associated with carcinogenesis, liver impairments, and congenital anomalies. To date, the biomolecular targets that underlie thorium-induced toxicity remain unknown. Here, we used in vitro enzymatic activity assays to comprehensively evaluate the effects of thorium on the mitochondrial respiration process. Thorium was found to inhibit respiratory chain complex IV (cytochrome c oxidase) at sub-micromolar concentrations (IC50 ~ 0.4 μM, 90 μg/L). This is lower than the thorium level limit (246 μg/L) in drinking water specified by the World Health Organization. The inhibitory effects were further verified in mitochondria from human bone and liver cells (thorium mainly deposits in these organs). The inhibition of cytochrome c oxidase can readily rationalize well-documented cellular toxicities of thorium, such as alteration of mitochondrial membrane potential and production of reactive oxygen species. Therefore, cytochrome c oxidase is potentially a key molecular target underlying thorium-induced toxicological effect.
Collapse
Affiliation(s)
- Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| | - Zhaozhu Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuedan Cheng
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Tinghua Zhu
- Guizhou Shengyada Biotech Co., Ltd., Guiyang 550000, China
| | - Wenjing Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China.
| |
Collapse
|
16
|
In vitro evidence of the influence of complexation of Pu and Am on uptake by human lung epithelial cells Calu-3. Toxicol In Vitro 2021; 79:105279. [PMID: 34843884 DOI: 10.1016/j.tiv.2021.105279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
Understanding the mechanisms involved in retention and clearance of actinides from the lungs after accidental intake is essential for the evaluation of the associated radiological risks. Although the absorption of radioelements has been shown in vivo to depend on their nature and physico-chemical properties, their mechanisms of translocation remain unknown. In this study, we have evaluated in vitro the binding and uptake by bronchial epithelial cells Calu-3 of 2 transuranic actinides, plutonium (Pu) and americium (Am), as the first steps of translocation across the pulmonary barrier. For this purpose, Calu-3 cells grown to confluence in 24-well plates were exposed to the radioelements for 24 h under various culture conditions. Two compartments were identified for the association of actinides to cells, corresponding to the membrane bound and internalized fractions. Binding of Pu was slightly higher than of Am, and depended on its initial chemical form (nitrate, citrate, colloids). Uptake of Pu and Am nitrate was higher in serum-free conditions than in supplemented medium, with an active mechanism involved in Pu internalization. Overall, our results suggest that complexation of actinides to bioligands may have an influence on their uptake by pulmonary epithelial cells, and therefore possibly on their subsequent absorption into blood.
Collapse
|
17
|
Deblonde GJP, Mattocks JA, Dong Z, Wooddy PT, Cotruvo JA, Zavarin M. Capturing an elusive but critical element: Natural protein enables actinium chemistry. SCIENCE ADVANCES 2021; 7:eabk0273. [PMID: 34669462 PMCID: PMC8528432 DOI: 10.1126/sciadv.abk0273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying and limited knowledge of Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here, we demonstrate a straightforward strategy to purify medically relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry, using the recently discovered protein, lanmodulin. The stoichiometry, solution behavior, and formation constant of the 228Ac3+-lanmodulin complex and its 90Y3+/natY3+/natLa3+ analogs were experimentally determined, representing the first actinium-protein and strongest actinide(III)-protein complex (sub-picomolar Kd) to be characterized. Lanmodulin’s unparalleled properties enable the facile purification recovery of radiometals, even in the presence of >10+10 equivalents of competing ions and at ultratrace levels: down to 2 femtograms 90Y3+ and 40 attograms 228Ac3+. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potential in vivo applications.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Joseph A. Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Paul T. Wooddy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Mavrik Zavarin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
18
|
Das SK, Ali M, Shetake NG, Dumpala RMR, Pandey BN, Kumar A. Mechanism of thorium-nitrate and thorium-dioxide induced cytotoxicity in normal human lung epithelial cells (WI26): Role of oxidative stress, HSPs and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:116969. [PMID: 33845224 DOI: 10.1016/j.envpol.2021.116969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Inhalation represents the most prevalent route of exposure with Thorium-232 compounds (Th-nitrate/Th-dioxide)/Th-containing dust in real occupational scenario. The present study investigated the mechanism of Th response in normal human alveolar epithelial cells (WI26), exposed to Th-nitrate or colloidal Th-dioxide (1-100 μg/ml, 24-72 h). Assessment in terms of changes in cell morphology, cell proliferation (cell count), plasma membrane integrity (lactate dehydrogenase leakage) and mitochondrial metabolic activity (MTT reduction) showed that Th-dioxide was quantitatively more deleterious than Th-nitrate to WI26 cells. TEM and immunofluorescence analysis suggested that Th-dioxide followed a clathrin/caveolin-mediated endocytosis, however, membrane perforation/non-endocytosis seemed to be the mode of Th internalization in cells exposed to Th-nitrate. Th-estimation by ICP-MS showed significantly higher uptake of Th in cells treated with Th-dioxide than with Th-nitrate at a given concentration. Both Th-dioxide and nitrate were found to increase the level of reactive oxygen species, which seemed to be responsible for lipid peroxidation, alteration in mitochondrial membrane potential and DNA-damage. Amongst HSPs, the protein levels of HSP70 and HSP90 were affected differentially by Th-nitrate/dioxide. Specific inhibitors of ATM (KU55933) or HSP90 (17AAG) were found to increase the Th- cytotoxicity suggesting prosurvival role of these signaling molecules in rescuing the cells from Th-toxicity.
Collapse
Affiliation(s)
- Sourav Kumar Das
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Manjoor Ali
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Neena G Shetake
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Rama Mohan R Dumpala
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Badri N Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
19
|
Pallares RM, An DD, Deblonde GJP, Kullgren B, Gauny SS, Jarvis EE, Abergel RJ. Efficient discrimination of transplutonium actinides by in vivo models. Chem Sci 2021; 12:5295-5301. [PMID: 34168780 PMCID: PMC8179619 DOI: 10.1039/d0sc06610a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
Transplutonium actinides are among the heaviest elements whose macroscale chemical properties can be experimentally tested. Being scarce and hazardous, their chemistry is rather unexplored, and they have traditionally been considered a rather homogeneous group, with most of their characteristics extrapolated from lanthanide surrogates. Newly emerged applications for these elements, combined with their persistent presence in nuclear waste, however, call for a better understanding of their behavior in complex living systems. In this work, we explored the biodistribution and excretion profiles of four transplutonium actinides (248Cm, 249Bk, 249Cf and 253Es) in a small animal model, and evaluated their in vivo sequestration and decorporation by two therapeutic chelators, diethylenetriamine pentaacetic acid and 3,4,3-LI(1,2-HOPO). Notably, the organ deposition patterns of those transplutonium actinides were element-dependent, particularly in the liver and skeleton, where lower atomic number radionuclides showed up to 7-fold larger liver/skeleton accumulation ratios. Nevertheless, the metal content in multiple organs was significantly decreased for all tested actinides, particularly in the liver, after administering the therapeutic agent 3,4,3-LI(1,2-HOPO) post-contamination. Lastly, the systematic comparison of the radionuclide biodistributions showed discernibly element-dependent organ depositions, which may provide insights into design rules for new bio-inspired chelating systems with high sequestration and separation performance.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Birgitta Kullgren
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Erin E Jarvis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| |
Collapse
|
20
|
Munteanu A, Musat MG, Mihaila M, Badea M, Olar R, Nitulescu GM, Rădulescu FȘ, Brasoveanu LI, Uivarosi V. New heteroleptic lanthanide complexes as multimodal drugs: Cytotoxicity studies, apoptosis, cell cycle analysis, DNA interactions, and protein binding. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandra‐Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mihaela Georgiana Musat
- Department of Biochemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Mirela Mihaila
- Center of Immunology Stefan S. Nicolau Institute of Virology Bucharest Romania
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry University of Bucharest Bucharest Romania
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | - Flavian Ștefan Rădulescu
- Center for Drug Sciences, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy Carol Davila University of Medicine and Pharmacy Bucharest Romania
| |
Collapse
|
21
|
Pallares RM, Panyala NR, Sturzbecher-Hoehne M, Illy MC, Abergel RJ. Characterizing the general chelating affinity of serum protein fetuin for lanthanides. J Biol Inorg Chem 2020; 25:941-948. [DOI: 10.1007/s00775-020-01815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
|
22
|
Benjamín-Rivera JA, Cardona-Rivera AE, Vázquez-Maldonado ÁL, Dones-Lassalle CY, Pabón-Colon HL, Rodríguez-Rivera HM, Rodríguez I, González-Espiet JC, Pazol J, Pérez-Ríos JD, Catala-Torres JF, Carrasquillo Rivera M, De Jesus-Soto MG, Cordero-Virella NA, Cruz-Maldonado PM, González-Pagan P, Hernández-Ríos R, Gaur K, Loza-Rosas SA, Tinoco AD. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity. INORGANICS 2020; 8:48. [PMID: 36844373 PMCID: PMC9957567 DOI: 10.3390/inorganics8090048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Serum transferrin (sTf) plays a pivotal role in regulating iron biodistribution and homeostasis within the body. The molecular details of sTf Fe(III) binding blood transport, and cellular delivery through transferrin receptor-mediated endocytosis are generally well-understood. Emerging interest exists in exploring sTf complexation of nonferric metals as it facilitates the therapeutic potential and toxicity of several of them. This review explores recent X-ray structural and physiologically relevant metal speciation studies to understand how sTf partakes in the bioactivity of key non-redox active hard Lewis acidic metals. It challenges preconceived notions of sTf structure function correlations that were based exclusively on the Fe(III) model by revealing distinct coordination modalities that nonferric metal ions can adopt and different modes of binding to metal-free and Fe(III)-bound sTf that can directly influence how they enter into cells and, ultimately, how they may impact human health. This knowledge informs on biomedical strategies to engineer sTf as a delivery vehicle for metal-based diagnostic and therapeutic agents in the cancer field. It is the intention of this work to open new avenues for characterizing the functionality and medical utility of nonferric-bound sTf and to expand the significance of this protein in the context of bioinorganic chemistry.
Collapse
Affiliation(s)
- Josué A. Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Andrés E. Cardona-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | | | - Héctor L. Pabón-Colon
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Israel Rodríguez
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jean C. González-Espiet
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jessika Pazol
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Jobaniel D. Pérez-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - José F. Catala-Torres
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Michael G. De Jesus-Soto
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | | | - Paola M. Cruz-Maldonado
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Patricia González-Pagan
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Raul Hernández-Ríos
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
| | - Sergio A. Loza-Rosas
- Departamento de Química y Bioquímica, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja 150003, Colombia
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA)
- Correspondence: ; Tel.: +1-939-319-9701
| |
Collapse
|
23
|
Sharma A, Sarkar A, Goswami D, Bhattacharyya A, Enderlein J, Kumbhakar M. Determining Metal Ion Complexation Kinetics with Fluorescent Ligands by Using Fluorescence Correlation Spectroscopy. Chemphyschem 2019; 20:2093-2102. [PMID: 31240810 DOI: 10.1002/cphc.201900517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Indexed: 11/08/2022]
Abstract
Fluorescence correlation spectroscopy (FCS) has been extensively used to measure equilibrium binding constants (K) or association and dissociation rates in many reversible chemical reactions across chemistry and biology. For the majority of investigated reactions, the binding constant was on the order of ∼100 M-1 , with dissociation constants faster or equal to 103 s-1 , which ensured that enough association/dissociation events occur during the typical diffusion-determined transition time of molecules through the FCS detection volume. However, complexation reactions involving metal ions and chelating ligands exhibit equilibrium constants exceeding 104 M-1 . In the present paper, we explore the applicability of FCS for measuring reaction rates of such complexation reactions, and apply it to binding of iron, europium and uranyl ions to a fluorescent chelating ligand, calcein. For this purpose, we exploit the fact that the ligand fluorescence becomes strongly quenched after binding a metal ion, which results in strong intensity fluctuations that lead to a partial correlation decay in FCS. We also present measurements for the strongly radioactive ions of 241 Am3+ , where the extreme sensitivity of FCS allows us to work with sample concentrations and volumes that exhibit close to negligible radioactivity levels. A general discussion of the applicability of FCS to the investigation of metal-ligand binding reactions concludes our paper.
Collapse
Affiliation(s)
- Arjun Sharma
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Aranyak Sarkar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Dibakar Goswami
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Bio-organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Arunasis Bhattacharyya
- Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India.,Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Manoj Kumbhakar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Chemical Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
24
|
Levina A, Lay PA. Transferrin Cycle and Clinical Roles of Citrate and Ascorbate in Improved Iron Metabolism. ACS Chem Biol 2019; 14:893-900. [PMID: 30973710 DOI: 10.1021/acschembio.8b01100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fe(III) delivery from blood plasma to cells via the transferrin (Tf) cycle was studied intensively due to its crucial role in Fe homeostasis. Tf-cycle disruptions are linked to anemia, infections, immunodeficiency, and neurodegeneration. Biolayer interferometry (BLI) enabled direct kinetic and thermodynamic measurements for all Tf-cycle steps in a single in vitro experiment using Tf within blood serum or released into the medium by cultured liver cells. In these media, known Tf cycle features were reproduced, and unprecedented insights were gained into conditions of rapid endosomal (pH 5.6) Fe(III) release from the Tf-Tf receptor 1 (TfR1) adduct. This release occurred via synergistic citrate and ascorbate effects, which pointed to respective roles as the likely elusive Fe chelator and reductant within the Tf cycle. These results explain enhanced cellular Fe uptake by ascorbate, the clinical efficacy of anemia treatment with Fe citrate and ascorbate, and dietary effects associated with loss of Fe homeostasis, including the large health burden of infections and neurodegeneration.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Götzke L, Schaper G, März J, Kaden P, Huittinen N, Stumpf T, Kammerlander KK, Brunner E, Hahn P, Mehnert A, Kersting B, Henle T, Lindoy LF, Zanoni G, Weigand JJ. Coordination chemistry of f-block metal ions with ligands bearing bio-relevant functional groups. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Sockwell AK, Wetzler M. Beyond Biological Chelation: Coordination of f‐Block Elements by Polyhydroxamate Ligands. Chemistry 2018; 25:2380-2388. [DOI: 10.1002/chem.201803176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 11/10/2022]
Affiliation(s)
- A. Kirstin Sockwell
- Clemson UniversityChemistry Department Address 211 S Palmetto Blvd Clemson SC 29634 USA
| | - Modi Wetzler
- Clemson UniversityChemistry Department Address 211 S Palmetto Blvd Clemson SC 29634 USA
- Clemson UniversityNuclear Environmental Engineering, Sciences and Radioactive Waste Management Address 342 Computer Ct Anderson SC 29625 USA
| |
Collapse
|
27
|
Barkleit A, Hennig C, Ikeda-Ohno A. Interaction of Uranium(VI) with α-Amylase and Its Implication for Enzyme Activity. Chem Res Toxicol 2018; 31:1032-1041. [DOI: 10.1021/acs.chemrestox.8b00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Astrid Barkleit
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Christoph Hennig
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
28
|
Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents. Sci Rep 2018. [PMID: 29535330 PMCID: PMC5849765 DOI: 10.1038/s41598-018-22511-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several MRI contrast agent clinical formulations are now known to leave deposits of the heavy metal gadolinium in the brain, bones, and other organs of patients. This persistent biological accumulation of gadolinium has been recently recognized as a deleterious outcome in patients administered Gd-based contrast agents (GBCAs) for MRI, prompting the European Medicines Agency to recommend discontinuing the use of over half of the GBCAs currently approved for clinical applications. To address this problem, we find that the orally-available metal decorporation agent 3,4,3-LI(1,2-HOPO) demonstrates superior efficacy at chelating and removing Gd from the body compared to diethylenetriaminepentaacetic acid, a ligand commonly used in the United States in the GBCA Gadopentetate (Magnevist). Using the radiotracer 153Gd to obtain precise biodistribution data, the results herein, supported by speciation simulations, suggest that the prophylactic or post-hoc therapeutic use of 3,4,3-LI(1,2-HOPO) may provide a means to mitigate Gd retention in patients requiring contrast-enhanced MRI.
Collapse
|
29
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
30
|
Wilke C, Barkleit A, Stumpf T, Ikeda-Ohno A. Speciation of the trivalent f-elements Eu(III) and Cm(III) in digestive media. J Inorg Biochem 2017; 175:248-258. [DOI: 10.1016/j.jinorgbio.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
|
31
|
Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis. J Biol Inorg Chem 2017; 22:799-806. [PMID: 28516215 DOI: 10.1007/s00775-017-1464-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.
Collapse
|
32
|
Agbo P, Abergel RJ. Ligand-Sensitized Lanthanide Nanocrystals: Merging Solid-State Photophysics and Molecular Solution Chemistry. Inorg Chem 2016; 55:9973-9980. [DOI: 10.1021/acs.inorgchem.6b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
34
|
Levina A, Pham THN, Lay PA. Binding of Chromium(III) to Transferrin Could Be Involved in Detoxification of Dietary Chromium(III) Rather than Transport of an Essential Trace Element. Angew Chem Int Ed Engl 2016; 55:8104-7. [DOI: 10.1002/anie.201602996] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Aviva Levina
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - T. H. Nguyen Pham
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Peter A. Lay
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
35
|
Barkleit A, Heller A, Ikeda-Ohno A, Bernhard G. Interaction of europium and curium with alpha-amylase. Dalton Trans 2016; 45:8724-33. [DOI: 10.1039/c5dt04790k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Batch sorption experiments, potentiometric and spectroscopic titration investigations revealed a fast and strong interaction of Eu(iii) and Cm(iii) with the digestive enzyme α-amylase.
Collapse
Affiliation(s)
- Astrid Barkleit
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Anne Heller
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| | - Gert Bernhard
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Resource Ecology
- 01314 Dresden
- Germany
| |
Collapse
|
36
|
Sachs S, Heller A, Weiss S, Bok F, Bernhard G. Interaction of Eu(III) with mammalian cells: Cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition. Toxicol In Vitro 2015; 29:1555-68. [DOI: 10.1016/j.tiv.2015.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
|
37
|
Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc Natl Acad Sci U S A 2015; 112:10342-7. [PMID: 26240330 DOI: 10.1073/pnas.1508902112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.
Collapse
|
38
|
Schüler E, Österlund A, Forssell-Aronsson E. The amount of injected 177Lu-octreotate strongly influences biodistribution and dosimetry in C57BL/6N mice. Acta Oncol 2015; 55:68-76. [PMID: 25813472 DOI: 10.3109/0284186x.2015.1027001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND (177)Lu-octreotate therapy has proven to give favorable results after treatment of patients with neuroendocrine tumors. Much focus has been on the binding and uptake of (177)Lu-octreotate in tumor tissue, but biodistribution properties in normal tissues is still not fully understood, and the effect of receptor saturation may be important. The aim of this study was to investigate the influence of the amount of (177)Lu-octreotate on the biodistribution of (177)Lu-octreotate in normal tissues in mice. MATERIAL AND METHODS C57BL/6N female mice were intravenously injected with 0.1-150 MBq (177)Lu-octreotate (0.039 μg peptide/MBq). The mice were killed 0.25 h to 14 days after injection by cardiac puncture under anesthesia. Activity concentration was determined in blood, bone marrow, kidneys, liver, lungs, pancreas, and spleen, and mean absorbed doses were calculated. RESULTS The activity concentration varied with time and amount of injected activity. At 4-8 h after injection, a local maximum in activity concentration was found for liver, lungs, pancreas, and spleen. With the exception for the lower injected activities (0.1-1 MBq), the overall highest uptake was found in the kidneys (%IA/g). Large variations were found and the activity concentration in kidneys was 11-23%IA/g at 4 h, and 0.22-1.9%IA/g at 7 days after injection. Furthermore, a clear reduction in activity concentration with increased injected activity was observed for lungs, pancreas and spleen. CONCLUSION The activity concentration in all tissues investigated was strongly influenced by the amount of (177)Lu-octreotate injected. Large differences in mean absorbed dose per unit injected activity were found between low (0.1-1 MBq, 0.0039-0.039 μg) and moderate amounts (5-45 MBq, 0.2-1.8 μg). Furthermore, the results clearly showed the need for better ways to estimate absorbed dose to bone marrow other than methods based on a single blood sample analysis. Since the absorbed dose to critical organs will limit the amount of (177)Lu-octreotate administered, these findings must be taken into consideration when optimizing this type of therapy.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Andreas Österlund
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
39
|
Wang M, Lai TP, Wang L, Zhang H, Yang N, Sadler PJ, Sun H. “Anion clamp” allows flexible protein to impose coordination geometry on metal ions. Chem Commun (Camb) 2015; 51:7867-70. [DOI: 10.1039/c4cc09642h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray crystal structures of human serum transferrin (77 kDa) with YbIII or FeIII bound to the C-lobe and malonate as the synergistic anion show that the large YbIII ion causes the expansion of the metal binding pocket while octahedral metal coordination geometry is preserved, an unusual geometry for a lanthanide ion.
Collapse
Affiliation(s)
- Minji Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| | - Tsz Pui Lai
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| | - Li Wang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Chemistry
| | - Hongmin Zhang
- Department of Biology and Shenzhen Key Laboratory of Cell Microenvironment
- South University of Science and Technology of China
- Shenzhen 518055
- P. R. China
- Department of Chemistry
| | - Nan Yang
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Physiology
| | - Peter J. Sadler
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
- Department of Chemistry
| | - Hongzhe Sun
- Department of Chemistry
- The University of Hong Kong
- Hong Kong SAR
- P. R. China
| |
Collapse
|
40
|
Bauer N, Fröhlich DR, Panak PJ. Interaction of Cm(iii) and Am(iii) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy. Dalton Trans 2014; 43:6689-700. [DOI: 10.1039/c3dt53371a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|