1
|
Khabirova S, Aleshin G, Anokhin E, Shchukina A, Zubenko A, Fedorova O, Averin A, Trusov L, Kalmykov S. Novel candidate theranostic radiopharmaceutical based on strontium hexaferrite nanoparticles conjugated with azacrown ligand. Dalton Trans 2023; 52:1731-1741. [PMID: 36655497 DOI: 10.1039/d2dt03548k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this article, we report to the best of our knowledge the first modification of NPs with ligands for combined radiopharmaceuticals. Nanoparticles with suitable magnetic properties can be used both for diagnostics as a contrast for MRI and for therapy, including the insufficiently studied magneto-mechanical therapy. Strontium hexaferrite is one of the few hard-magnetic materials for which stable biocompatible colloidal solutions can be obtained. Strontium hexaferrite nanoparticles coated with silicon dioxide (SHF@SiO2) were modified with an amino silane coupling agent (3-aminopropyl)triethoxysilane and azacrown ether derivatives with six heteroatoms in rings were covalently linked to the amine group through the carboxyl group. The hard magnetic nanoparticles were then radiolabeled with 207Bi with a labelling yield of up to 99.8%. In vitro experiments showed that the complex SHF@SiO2-APTES-L2-207Bi is stable enough to be a potential theranostic radiopharmaceutical.
Collapse
Affiliation(s)
- Sofia Khabirova
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Gleb Aleshin
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Evgeny Anokhin
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Anna Shchukina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Anastasia Zubenko
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Olga Fedorova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Vavilova, 28, GSP-1, Moscow, Russian Federation
| | - Aleksey Averin
- Frumkin Institute of Physical chemistry and Electrochemistry Russian Academy of Sciences, Leninskiy ave. 31b4, Moscow, Russia
| | - Lev Trusov
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| | - Stepan Kalmykov
- Lomonosov Moscow State University, 119991 Leninskie Gory, 1/3, Moscow, Russian Federation.
| |
Collapse
|
2
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
3
|
Joshi R, Shelar SB, Srivastava M, Singh BP, Goel L, Ningthoujam RS. Development of Core@Shell γ-Fe 2O 3@Mn xO y@SiO 2 Nanoparticles for Hyperthermia, Targeting, and Imaging Applications. ACS APPLIED BIO MATERIALS 2022; 5:5386-5393. [PMID: 36350576 DOI: 10.1021/acsabm.2c00758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monodispersed core@shell γ-Fe2O3@MnxOy nanoparticles have been prepared through thermolysis of iron and manganese oleate. Further, these prepared nanoparticles are coated with biocompatible substances such as silica and polyethylene glycol. These particles are highly biocompatible for different cell lines such as normal and cancer cell lines. The nanoparticles are used as hyperthermia agents, and successful hyperthermia treatment in cancer cells is carried out. As compared to γ-Fe2O3@SiO2, γ-Fe2O3@MnxOy@SiO2 shows the enhanced killing of cancer cells through hyperthermia. In order to make them potential candidates for targeting to cancer cells, folic acid (FA) is tagged to the nanoparticles. Fluorescein isothiocyanate (FITC) is also tagged onto these nanoparticles for imaging. The developed γ-Fe2O3@MnxOy@SiO2 nanoparticle can act as a single entity for therapy through AC magnetic field, imaging through FITC and targeting through folic acid simultaneously. This is the first report on this material, which is highly biocompatible for hyperthermia, imaging, and targeting.
Collapse
Affiliation(s)
- Rashmi Joshi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Manas Srivastava
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bheeshma Pratap Singh
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Department of Physics, School of Science, GITAM, Gandhi Institute of Technology and Management, Visakhapatnam 530045, India
| | - Lokesh Goel
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Perala RS, Srivastava M, Singh BP, Kumar Putta VN, Acharya R, Ningthoujam RS. Altering of the Electric and Magnetic Dipole Transition Probability of Eu 3+ in YPO 4 Lattice by Codoping of K + Ion: Potential Materials for Imaging and Heating. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramaswamy Sandeep Perala
- Department of Chemistry, GITAM University, Hyderabad, 502329, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manas Srivastava
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Bheeshma Pratap Singh
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Department of Physics, GITAM University, Visakhapatnam, 530045, India
| | | | - Raghunath Acharya
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Raghumani Singh Ningthoujam
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| |
Collapse
|
5
|
Enjavi Y, Sedghamiz MA, Rahimpour MR. Application of nanofluids in drug delivery and disease treatment. NANOFLUIDS AND MASS TRANSFER 2022:449-465. [DOI: 10.1016/b978-0-12-823996-4.00012-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Perala R, Singh BP, Putta VN, Acharya R, Ningthoujam RS. Enrichment of Crystal Field Modification via Incorporation of Alkali K + Ions in YVO 4:Ho 3+/Yb 3+ Nanophosphor and Its Hybrid with Superparamagnetic Iron Oxide Nanoparticles for Optical, Advanced Anticounterfeiting, Uranyl Detection, and Hyperthermia Applications. ACS OMEGA 2021; 6:19517-19528. [PMID: 34368538 PMCID: PMC8340087 DOI: 10.1021/acsomega.1c01813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/25/2021] [Indexed: 05/13/2023]
Abstract
In this work, we report a polyol route for easy synthesis of upconversion (UC) phosphor nanoparticles, YVO4:Ho3+-Yb3+-K+, which enables large-scale production and enhancement of luminescence. Upon 980 nm laser excitation, the UC emission spectrum shows a sharp bright peak at ∼650 nm of Ho3+ ion; and the luminescence intensity increases twofold upon K+ codoping. Upon 300 nm excitation, the downconversion emission spectrum shows a broad peak in the 400-500 nm range (related to the charge transfer band of V-O) along with Ho3+ peaks. In addition, the polyethylene glycol-coated UC nanoparticles are highly water-dispersible and their hybrid with Fe3O4 nanoparticles shows magnetic-luminescence properties. A hyperthermia temperature is achieved from this hybrid. Both UC and hybrid nanoparticles show interesting security ink properties upon excitation by a 980 nm laser. The particles are invisible in normal light but visible upon 980 nm excitation and are useful in display devices, advanced anticounterfeiting purposes, and therapy of cancer via hyperthermia and bioimaging (since it shows red emission at ∼650 nm). Using UC nanoparticles, detection of uranyl down to 20 ppm has been achieved.
Collapse
Affiliation(s)
- Ramaswamy
Sandeep Perala
- Department
of Chemistry, GITAM University, Hyderabad 502329, India
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bheeshma Pratap Singh
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- . Tel.: +91-22-25592321
| | | | - Raghunath Acharya
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Mumbai 400094, India
- . Tel.: +91-22-25594590
| | - Raghumani Singh Ningthoujam
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Mumbai 400094, India
- . Tel.: +91-22-25592321
| |
Collapse
|
7
|
Perala R, Joshi R, Singh BP, Putta VNK, Acharya R, Ningthoujam RS. Brilliant Nonlinear Optical Response of Ho 3+ and Yb 3+ Activated YVO 4 Nanophosphor and Its Conjugation with Fe 3O 4 for Smart Anticounterfeit and Hyperthermia Applications. ACS OMEGA 2021; 6:19471-19483. [PMID: 34368534 PMCID: PMC8340094 DOI: 10.1021/acsomega.1c01572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
YVO4:Ho3+/Yb3+ nanophosphors prepared by an effective polyol-mediated route show dual-mode behavior in photoluminescence. Upon 980 nm excitation, the upconversion red emission spectrum exhibits a bright red peak at ∼650 nm, characteristic of the electronic transition of the Ho3+ ion via involvement of two-photon absorption, which has been confirmed by the power-dependent luminescence study. Moreover, at 300 nm excitation, downconversion emission peaks are observed at 550, 650, and ∼755 nm. The nonradiative resonant energy transfer occurs from the V-O charge transfer band to Ho3+ ions, resulting in an improved emission of Ho3+ ions. Moreover, polyethylene glycol-coated nanoparticles make it suitable for water dispersibility; and these particles are conjugated with Fe3O4 nanoparticles to form magnetic-luminescent hybrid nanoparticles. Highly water-dispersible magnetic-luminescent hybrid material attained the hyperthermia temperature (∼42 °C) under an applied AC magnetic field. The specific absorption rate value is found to be high (138 W/g), which is more than that of pure superparamagnetic Fe3O4 nanoparticles. At 300 nm excitation, the high quantum yield value of ∼27% is obtained from YVO4:Ho3+/Yb3+, which suggests that it is a good phosphor material. By employing the neutron activation analysis technique, it is shown that nanophosphor particles can absorb Au3+ up to the ppm level. Interestingly, such nanophosphor also shows the potentiality for anticounterfeiting applications.
Collapse
Affiliation(s)
- Ramaswamy
Sandeep Perala
- Department
of Chemistry, GITAM University, Hyderabad 502329, India
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Joshi
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Mumbai 400094, India
| | | | | | - Raghunath Acharya
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Mumbai 400094, India
| | - Raghumani Singh Ningthoujam
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi
Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
8
|
Gupta R, Sharma D. Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia. NANOSCALE ADVANCES 2021; 3:3663-3680. [PMID: 36133021 PMCID: PMC9418625 DOI: 10.1039/d1na00224d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
Magnetic hyperthermia-based cancer therapy (MHCT) has surfaced as one of the promising techniques for inaccessible solid tumors. It involves generation of localized heat in the tumor tissues on application of an alternating magnetic field in the presence of magnetic nanoparticles (MNPs). Unfortunately, lack of precise temperature and adequate MNP distribution at the tumor site under in vivo conditions has limited its application in the biomedical field. Evaluation of in vitro tumor models is an alternative for in vivo models. However, generally used in vitro two-dimensional (2D) models cannot mimic all the characteristics of a patient's tumor and hence, fail to establish or address the experimental variables and concerns. Considering that three-dimensional (3D) models have emerged as the best possible state to replicate the in vivo conditions successfully in the laboratory for most cell types, it is possible to conduct MHCT studies with higher clinical relevance for the analysis of the selection of magnetic parameters, MNP distribution, heat dissipation, action and acquired thermotolerance in cancer cells. In this review, various forms of 3D cultures have been considered and the successful implication of MHCT on them has been summarized, which includes tumor spheroids, and cultures grown in scaffolds, cell culture inserts and microfluidic devices. This review aims to summarize the contrast between 2D and 3D in vitro tumor models for pre-clinical MHCT studies. Furthermore, we have collated and discussed the usefulness, suitability, pros and cons of these tumor models. Even though numerous cell culture models have been established, further investigations on the new pre-clinical models and selection of best fit model for successful MHCT applications are still necessary to confer a better understanding for researchers.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector 81 Mohali Punjab-140306 India
| |
Collapse
|
9
|
Kumar R, Chauhan A, Kuanr BK. A robust in vitro anticancer activity via magnetic hyperthermia mediated by colloidally stabilized mesoporous silica encapsulated La0.7Sr0.3MnO3 core- shell structure. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
11
|
Pashchenko AV, Liedienov NA, Fesych IV, Li Q, Pitsyuga VG, Turchenko VA, Pogrebnyak VG, Liu B, Levchenko GG. Smart magnetic nanopowder based on the manganite perovskite for local hyperthermia. RSC Adv 2020; 10:30907-30916. [PMID: 35516065 PMCID: PMC9056338 DOI: 10.1039/d0ra06779b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/27/2022] Open
Abstract
For many medical applications related to diagnosis and treatment of cancer disease, hyperthermia plays an increasingly important role as a local heating method, where precise control of temperature and parameters of the working material is strongly required. Obtaining a smart material with "self-controlled" heating in a desirable temperature range is a relevant task. For this purpose, the nanopowder of manganite perovskite with super-stoichiometric manganese has been synthesized, which consists of soft spherical-like ferromagnetic nanoparticles with an average size of 65 nm and with a narrow temperature range of the magnetic phase transition at 42 °C. Based on the analysis of experimental magnetic data, a specific loss power has been calculated for both quasi-stable and relaxation hysteresis regions. It has been shown that the local heating of the cell structures to 42 °C may occur for a short time (∼1.5 min.) Upon reaching 42 °C, the heating is stopped due to transition of the nanopowder to the paramagnetic state. The obtained results demonstrate the possibility of using synthesized nanopowder as a smart magnetic nanomaterial for local hyperthermia with automatic heating stabilization in the safe range of hyperthermia without the risk of mechanical damage to cell structures.
Collapse
Affiliation(s)
- A V Pashchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - N A Liedienov
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| | - I V Fesych
- Taras Shevchenko National University of Kyiv 01030 Kyiv Ukraine
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - V G Pitsyuga
- Vasyl' Stus Donetsk National University 21021 Vinnytsia Ukraine
| | - V A Turchenko
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 141980 Dubna Russia
| | - V G Pogrebnyak
- Ivano-Frankivsk National Technical University of Oil and Gas, MESU 76019 Ivano-Frankivsk Ukraine
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
| | - G G Levchenko
- State Key Laboratory of Superhard Materials, International Center of Future Science, Jilin University 130012 Changchun China
- Donetsk Institute for Physics and Engineering named after O.O. Galkin, NAS of Ukraine 03028 Kyiv Ukraine
| |
Collapse
|
12
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
13
|
Chauhan A, Kumar R, Singh P, Jha SK, Kuanr BK. RF hyperthermia by encapsulated Fe3O4 nanoparticles induces cancer cell death via time-dependent caspase-3 activation. Nanomedicine (Lond) 2020; 15:355-379. [DOI: 10.2217/nnm-2019-0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To explore the optimum temperature for cancer cell death using magnetic hyperthermia (MH), which in turn will affect the mode of cell death. Method: The focus of this study is to improve upon the existing methodology for the synthesis of chitosan encapsulated Fe3O4. MH was done at different temperatures. The cell death pathway was explored using flow cytometry and western blot. Results: Coated Fe3O4 exhibited low cytotoxicity, high stability and heating efficiency. MH at 43°C was the optimum temperature for robust cell death. Cell death pathway suggested that during the initial stages of recovery, apoptosis was the main mode of cell death. While at later stages, major apoptosis and minor necrosis were observed. Conclusion: It is important to find out the long-term effect of hyperthermia treatment on cancer cells and their consequences on surrounding healthy cells.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
14
|
Fernandes A, Dias-Ferreira J, Teixeira M, Shimojo A, Severino P, Silva A, Shegokar R, Souto EB. Bioactive hybrid nanowires. DRUG DELIVERY TRENDS 2020:1-13. [DOI: 10.1016/b978-0-12-817870-6.00001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Kandasamy G. Recent advancements in manganite perovskites and spinel ferrite-based magnetic nanoparticles for biomedical theranostic applications. NANOTECHNOLOGY 2019; 30:502001. [PMID: 31469103 DOI: 10.1088/1361-6528/ab3f17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, magnetic nanoparticles (MNPs) based on manganite perovskites (La1-xSrxMnO3 or LSMO) and/or spinel ferrites (i.e. SPFs with the formula MFe2O4; M=Co, Mg, Mn, Ni and Zn and mixed SPFs (e.g. Co-Zn, Mg-Mn, Mn-Zn and/or Ni-Zn)) have garnered great interest in magnetic hyperthermia therapy (MHT) as heat-inducing agents due to their tuneable magnetic properties including Curie temperature (T c) to generate controllable therapeutic temperatures (i.e. 42 °C-45 °C)-under the application of an alternating magnetic field (AMF)-for the treatment of cancer. In addition, these nanoparticles are also utilized in magnetic resonance imaging (MRI) as contrast-enhancing agents. However, the employment of the LSMO/SPF-based MNPs in these MHT/MRI applications is majorly influenced by their inherent properties, which are mainly tuned by the synthesis factors. Therefore, in this review article, we have systematically discussed the significant chemical methods used to synthesize the LSMO/SPF-based MNPs and their corresponding intrinsic physicochemical properties (size/shape/crystallinity/dispersibility) and/or magnetic properties (including saturation magnetization (M s)/T c). Then, we have analyzed the usage of these MNPs for the effective imaging of cancerous tumors via MRI. Finally, we have reviewed in detail the heating capability (in terms of specific absorption rate) of the LSMO/SPF-based MNPs under calorimetric/biological conditions for efficient cancer treatment via MHT. Herein, we have mainly considered the significant parameters-such as size, surface coating (nature and amount), stoichiometry, concentration and the applied AMFs (including amplitude (H) and frequency (f))-that influence the heat induction ability of these MNPs.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Gangwar A, Singh G, Shaw SK, Mandal RK, Sharma A, Meena SS, Prajapat CL, Prasad NK. Synthesis and structural characterization of CoxFe3−xC (0 ≤ x ≤ 0.3) magnetic nanoparticles for biomedical applications. NEW J CHEM 2019. [DOI: 10.1039/c8nj05240a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferrofluids of pure and Co-substituted iron carbides exhibited heating abilities suitable for bioapplications.
Collapse
Affiliation(s)
- A. Gangwar
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| | - G. Singh
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| | - S. K. Shaw
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| | - R. K. Mandal
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| | - A. Sharma
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology, Bombay
- Mumbai 400076
- India
| | - Sher Singh Meena
- Solid State Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - C. L. Prajapat
- Technical Physics Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - N. K. Prasad
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi 221005
- India
| |
Collapse
|
17
|
Edobor-Osoh A, de la Presa P, Ita B, Ajanaku K, Owolabi F, Olorunshola S. Functionalization of La0.33Ca0.67MnO3 with biologically active small ligand at room temperature. MethodsX 2019; 6:682-689. [PMID: 31008062 PMCID: PMC6454126 DOI: 10.1016/j.mex.2019.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/05/2019] [Indexed: 11/16/2022] Open
Abstract
We report the structural, morphological and optical activities of a paramagnetic manganite (La0.33Ca0.67MnO3) synthesized at 900 °C. A simple method of formation of complex was employed. A complex was formed between a pre-prepared manganite dissolved in HCl and reacted with an organic ligand (ethyl 4-nitrobenzoate). The optical and antimicrobial properties of a complex were determined. The Ultraviolet-visible and Fourier-transform infra-red spectroscopy were used in monitoring optical activities of the resulting product. It was observed to absorb in the visible region (205 nm and 256 nm). The peaks observed from the infra-red spectra indicated that the reaction occurred at the nitroso end of the ethyl 4-nitrobenzoate. The bacterial inhibitory property of the LCMO-ethyl 4-nitrobenzoate was determined against Pseudomonas aeruginosa, Candida albican, Aspergillus niger and Staphylococcus auerus. It was observed to inhibit the growth of all the microbes with zone of inhibitions of 60 mm, 56 mm, 45 mm and 32 mm, for Pseudomonas aeruginosa, Candida albican, Aspergillus niger and Staphylococcus auerus, respectively. The method used was simple and a complex was formed within 6 h without the use of complicated equipment. The method requires no heat treatment and can be prepared at room temperature. LCMO-ethyl 4-nitrobenzoate was biologically active against Pseudomonas aeruginosa, Candida albican, Aspergillus niger and Staphylococcus aureus.
Collapse
|
18
|
Kumar R, Chauhan A, Jha SK, Kuanr BK. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. J Mater Chem B 2018; 6:5385-5399. [PMID: 32254502 DOI: 10.1039/c8tb01365a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have produced an innovative, theranostic hybrid nanocomposite of graphene oxide and iron oxide (GO-Fe3O4) for radio-frequency hyperthermia therapy. A new electrochemical synthesis route for the GO-Fe3O4 nanocomposite is employed. Superparamagnetic nanoparticles used for magnetic hyperthermia for biomedical application face longstanding obstacles, including the large number of nanoparticles required to achieve the desired therapeutic temperature, poor colloidal stability in aqueous suspension or physiological media, poor biocompatibility and, most importantly, low specific absorption rate (SAR). To limit the dosage of nanoparticles for therapeutic use, efforts are being made to increase the heating efficiency of nanoparticles. We have introduced an alternative way to increase the SAR value by improving the colloidal stability of magnetic nanoparticles. It is necessary to immobilize these nanoparticles on a support to prevent their agglomeration and precipitation in aqueous suspension. To address these issues, we report a reproducible electrochemical synthesis route for the GO-Fe3O4 nanocomposite. Our nanocomposite demonstrated good colloidal stability and low cytotoxicity in vitro. Due to its good colloidal stability, the nanocomposite had a high SAR of 543 W g-1 and corresponding intrinsic loss power of 5.98 nH m2 kg-1, which is 46% better than the best commercial equivalents. In vitro cytotoxicity studies demonstrated almost 70% cell viability at 200 μg mL-1 GO-Fe3O4 nanocomposite, a comparable concentration for clinical use according to FDA standards. We also showed the therapeutic potential of the nanocomposite using magnetic hyperthermia. We observed cancer cell (A549 human lung epithelial adenocarcinoma) ablation at 41, 42 and 43 °C for 30, 45, and 60 min. A maximum cancer cell death rate of 80.5% was observed at 43 °C for 60 min under alternating magnetic field exposure. Thus, the nanocomposites could be used in the efficient treatment of cancer.
Collapse
Affiliation(s)
- Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | |
Collapse
|
19
|
Basu T, Singh S, Pal B. Fe3
O4
@ PLGA-PEG Nanocomposite for Improved Delivery of Methotrexate in Cancer Treatment. ChemistrySelect 2018. [DOI: 10.1002/slct.201801769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tanushree Basu
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala-147004 India
| | - Satnam Singh
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala-147004 India
| | - Bonamali Pal
- School of Chemistry and Biochemistry; Thapar Institute of Engineering & Technology; Patiala-147004 India
| |
Collapse
|
20
|
Spirou SV, Basini M, Lascialfari A, Sangregorio C, Innocenti C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. NANOMATERIALS 2018; 8:nano8060401. [PMID: 29865277 PMCID: PMC6027353 DOI: 10.3390/nano8060401] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Greece.
| | - Martina Basini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Alessandro Lascialfari
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Claudio Sangregorio
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Claudia Innocenti
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
21
|
Chen Y, Wang Y, Wang P, Ma T, Wang T. Hyperthermia properties of hyaluronic acid-coated La0.7Sr0.3−xBaxMnO3 nanoparticles. J Mater Chem B 2018; 6:2126-2133. [DOI: 10.1039/c7tb03291a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heating efficiency of LSMO nanoparticles for hyperthermia was improved drastically by doping Ba ions.
Collapse
Affiliation(s)
- Yuanwei Chen
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Ying Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Peng Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Tianyong Ma
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Tao Wang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
22
|
Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. MATERIALS & DESIGN 2017; 123:174-196. [DOI: 10.1016/j.matdes.2017.03.036] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Jadhav SV, Lee SH, Nikam DS, Bohara RA, Pawar SH, Yu YS. Studies on enhanced colloidal stability and heating ability of glycine functionalized LSMO nanoparticles for cancer hyperthermia therapy. NEW J CHEM 2017. [DOI: 10.1039/c6nj03384a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The heating ability of glycine functionalized LSMO nanoparticles for cancer hyperthermia is measured in different physiological media.
Collapse
Affiliation(s)
- Swati V. Jadhav
- Convergence of IT Devices Institute
- Dong-Eui University
- Busan 47340
- South Korea
| | - Seung-Hwan Lee
- Convergence of IT Devices Institute
- Dong-Eui University
- Busan 47340
- South Korea
| | - Dipali S. Nikam
- Center for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur 416006
- India
| | - Raghvendra A. Bohara
- Center for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur 416006
- India
- Research and Innovations for Comprehensive Health (RICH) Cell
| | - Shivaji H. Pawar
- Center for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur 416006
- India
| | - Yun-Sik Yu
- Convergence of IT Devices Institute
- Dong-Eui University
- Busan 47340
- South Korea
- Department of Radiological Science
| |
Collapse
|
24
|
Thorat ND, Bohara RA, Malgras V, Tofail SAM, Ahamad T, Alshehri SM, Wu KCW, Yamauchi Y. Multimodal Superparamagnetic Nanoparticles with Unusually Enhanced Specific Absorption Rate for Synergetic Cancer Therapeutics and Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14656-64. [PMID: 27197993 DOI: 10.1021/acsami.6b02616] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Superparamagnetic nanoparticles (SPMNPs) used for magnetic resonance imaging (MRI) and magnetic fluid hyperthermia (MFH) cancer therapy frequently face trade off between a high magnetization saturation and their good colloidal stability, high specific absorption rate (SAR), and most importantly biological compatibility. This necessitates the development of new nanomaterials, as MFH and MRI are considered to be one of the most promising combined noninvasive treatments. In the present study, we investigated polyethylene glycol (PEG) functionalized La1-xSrxMnO3 (LSMO) SPMNPs for efficient cancer hyperthermia therapy and MRI application. The superparamagnetic nanomaterial revealed excellent colloidal stability and biocompatibility. A high SAR of 390 W/g was observed due to higher colloidal stability leading to an increased Brownian and Neel's spin relaxation. Cell viability of PEG capped nanoparticles is up to 80% on different cell lines tested rigorously using different methods. PEG coating provided excellent hemocompatibility to human red blood cells as PEG functionalized SPMNPs reduced hemolysis efficiently compared to its uncoated counterpart. Magnetic fluid hyperthermia of SPMNPs resulted in cancer cell death up to 80%. Additionally, improved MRI characteristics were also observed for the PEG capped La1-xSrxMnO3 formulation in aqueous medium compared to the bare LSMO. Taken together, PEG capped SPMNPs can be useful for diagnosis, efficient magnetic fluid hyperthermia, and multimodal cancer treatment as the amphiphilicity of PEG can easily be utilized to encapsulate hydrophobic drugs.
Collapse
Affiliation(s)
- Nanasaheb D Thorat
- Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India
- Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland
- Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Raghvendra A Bohara
- Centre for Interdisciplinary Research, D.Y. Patil University , Kolhapur-416006, India
| | - Victor Malgras
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Syed A M Tofail
- Department of Physics & Energy, University of Limerick , Limerick V94 T9PX, Ireland
- Materials & Surface Science Institute, University of Limerick , Limerick V94 T9PX, Ireland
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University , Riyadh 11451, Saudi Arabia
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Division of Medical Engineering Research, National Health Research Institutes , 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan
| | - Yusuke Yamauchi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
25
|
Oh Y, Lee N, Kang HW, Oh J. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe₂O₄. NANOTECHNOLOGY 2016; 27:115101. [PMID: 26871973 DOI: 10.1088/0957-4484/27/11/115101] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.
Collapse
Affiliation(s)
- Yunok Oh
- Center for Marine-integrated Biotechnology program (BK21 Plus), Pukyong National University, Busan, 48547, Korea
| | | | | | | |
Collapse
|
26
|
Tatay S, Galbiati M, Delprat S, Barraud C, Bouzehouane K, Collin S, Deranlot C, Jacquet E, Seneor P, Mattana R, Petroff F. Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:094010. [PMID: 26871682 DOI: 10.1088/0953-8984/28/9/094010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chemically functionalized surfaces are studied for a wide range of applications going from medicine to electronics. Whereas non-magnetic surfaces have been widely studied, functionalization of magnetic surfaces is much less common and has almost never been used for spintronics applications. In this article we present the functionalization of La2/3Sr1/3MnO3, a ferromagnetic oxide, with self-assembled monolayers for spintronics. La2/3Sr1/3MnO3 is the prototypical half-metallic manganite used in spintronics studies. First, we show that La2/3Sr1/3MnO3 can be functionalized by alkylphosphonic acid molecules. We then emphasize the use of these functionalized surfaces in spintronics devices such as magnetic tunnel junctions fabricated using a nano-indentation based lithography technique. The observed exponential increase of tunnel resistance as a function of alkyl chain length is a direct proof of the successful connection of molecules to ferromagnetic electrodes. For all alkyl chains studied we obtain stable and robust tunnel magnetoresistance, with effects ranging from a few tens to 10 000%. These results show that functionalized electrodes can be integrated in spintronics devices and open the door to a molecular engineering of spintronics.
Collapse
Affiliation(s)
- Sergio Tatay
- Unité Mixte de Physique CNRS-Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Université Paris-Sud, 91405 Orsay, France. Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, C. Caterdratico Jose Beltran 2, 46980 Paterna, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bohara RA, Thorat ND, Pawar SH. Role of functionalization: strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra02129h] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Strategies to bridge the gap between magnetic nanoparticles for their nano bio applications.
Collapse
Affiliation(s)
| | | | - Shivaji H. Pawar
- Centre for Interdisciplinary Research
- D. Y. Patil University
- Kolhapur
- India
| |
Collapse
|
28
|
Thorat ND, Otari SV, Patil RM, Bohara RA, Yadav HM, Koli VB, Chaurasia AK, Ningthoujam RS. Synthesis, characterization and biocompatibility of chitosan functionalized superparamagnetic nanoparticles for heat activated curing of cancer cells. Dalton Trans 2015; 43:17343-51. [PMID: 25321385 DOI: 10.1039/c4dt02293a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface functionalization, colloidal stability and biocompatibility of magnetic nanoparticles are crucial for their biological applications. Here, we report a synthetic approach for the direct preparation of superparamagnetic nanoparticles consisting of a perovskite LSMO core modified with a covalently linked chitosan shell that provides colloidal stability in aqueous solutions for cancer hyperthermia therapy. The characterization of the core-shell nanostructure using Fourier transform infrared spectroscopy; thermo-gravimetric analysis to assess the chemical bonding of chitosan to nanoparticles; field-emission scanning electron microscopy and transmission electron microscopy for its size and coating efficiency estimation; and magnetic measurement for their magnetization properties was performed. Zeta potential and light scattering studies of the core shell revealed it to possess good colloidal stability. Confocal microscopy and MTT assay are performed for qualitative and quantitative measurement of cell viability and biocompatibility. In depth cell morphology and biocompatibility is evaluated by using multiple-staining of different dyes. The magnetic@chitosan nanostructure system is found to be biocompatible up to 48 h with 80% cell viability. Finally, an in vitro cancer hyperthermia study is done on the MCF7 cell line. During in vitro hyperthermia treatment of cancer cells, cell viability is reduced upto 40% within 120 min with chitosan coated nanoparticles. Our results demonstrate that this simplified and facile synthesis strategy shows potential for designing a colloidal stable state and biocompatible core shell nanostructures for cancer hyperthermia therapy.
Collapse
Affiliation(s)
- N D Thorat
- Samsung Biomedical Research Institute, School of Medicine, Department of Molecular Cell Biology, Sungkyunkwan University, Suwon 440-746, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bohara RA, Pawar SH. Innovative Developments in Bacterial Detection with Magnetic Nanoparticles. Appl Biochem Biotechnol 2015; 176:1044-58. [PMID: 25894952 DOI: 10.1007/s12010-015-1628-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/08/2015] [Indexed: 01/03/2023]
Abstract
It has been seen from the last decade that many bacterial strains are becoming insensitive to conventional detection techniques and it has its own limitations. Current developments in nanoscience and nanotechnology have expanded the ability to design and construct nanomaterials with targeting, therapeutic, and diagnostic functions. These multifunctional nanomaterials have attracted researchers, to be used as the promising tool for selective bacterial sensing applications. An important advantage of using magnetic nanoparticles to capture bacteria is the simple separation of bacteria from biological samples using magnets. This review includes significance of magnetic nanoparticles in bacterial detection. Relevant to topic, properties, designing strategies for magnetic nanoparticle, and innovative techniques used for detection are discussed. This review provides the readers how magnetic properties of nanoparticles can be utilized systematically for bacterial identification.
Collapse
Affiliation(s)
- Raghvendra A Bohara
- Center for Interdisciplinary Research, D.Y. Patil University, Kolhapur, 416006, M.S., India,
| | | |
Collapse
|
30
|
Kulkarni VM, Bodas D, Paknikar KM. Lanthanum strontium manganese oxide (LSMO) nanoparticles: a versatile platform for anticancer therapy. RSC Adv 2015. [DOI: 10.1039/c5ra02731d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple uses of LSMO nanoparticles in anticancer therapy.
Collapse
Affiliation(s)
| | - Dhananjay Bodas
- Center for Nanobioscience
- Agharkar Research Institute
- Pune 411004
- India
| | | |
Collapse
|
31
|
Bohara RA, Thorat ND, Chaurasia AK, Pawar SH. Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra04553c] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TEG mediated synthesis of CZF MNPs for cancer cell extinction by using magnetic fluid hyperthermia therapy.
Collapse
Affiliation(s)
| | - Nanasaheb D. Thorat
- Centre for Interdisciplinary Research
- D.Y. Patil University
- Kolhapur-416006
- India
- Samsung Biomedical Research Institute
| | - Akhilesh K. Chaurasia
- Samsung Biomedical Research Institute
- Department of Molecular Cell Biology
- Sungkyunkwan University School of Medicine
- Suwon 440-746
- South Korea
| | - Shivaji H. Pawar
- Centre for Interdisciplinary Research
- D.Y. Patil University
- Kolhapur-416006
- India
| |
Collapse
|
32
|
Liu X, Liu HL, Fang N, Li XM, Guo WH, Wu JH, Zhao MX. Facile synthesis of multifunctional La1−xSrxMnO3@Au core–shell nanoparticles for biomedical applications. RSC Adv 2015. [DOI: 10.1039/c5ra14410h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multifunctional high-performance La1−xSrxMnO3@Au core–shell nanoparticles were synthesized by nanoemulsion with polymers, showing sharp Curie transition, excellent amphiphilic dispersibility and optical properties as well as biocompatibility.
Collapse
Affiliation(s)
- Xiao Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475001
- China
| | - Hong-Ling Liu
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475001
- China
| | - Ning Fang
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475001
- China
| | - Xue-Mei Li
- Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering
- School of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475001
- China
| | - Wei-Hua Guo
- College of Life Science
- Shandong University
- Jinan 250100
- China
| | - Jun-Hua Wu
- E-Techco Group
- Shenzhen
- China
- Pioneer Research Center for Biomedical Nanocrystals
- Korea University
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering
- Henan University
- Kaifeng 475001
- China
| |
Collapse
|
33
|
Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:637-46. [DOI: 10.1016/j.msec.2014.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022]
|
34
|
Patil RM, Shete PB, Thorat ND, Otari SV, Barick KC, Prasad A, Ningthoujam RS, Tiwale BM, Pawar SH. Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Adv 2014. [DOI: 10.1039/c3ra44644a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|