1
|
Reinhardt JK, Schertler L, Bussmann H, Sellner M, Smiesko M, Boonen G, Potterat O, Hamburger M, Butterweck V. Vitex agnus castus Extract Ze 440: Diterpene and Triterpene's Interactions with Dopamine D2 Receptor. Int J Mol Sci 2024; 25:11456. [PMID: 39519010 PMCID: PMC11547015 DOI: 10.3390/ijms252111456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Pre-clinical studies suggest that extracts prepared from the fruits of Vitex agnus castus (VAC) interact with dopamine D2 receptors, leading to reduced prolactin secretion. In previous experiments, dopaminergic activity was mostly evaluated using radioligand binding assays or via the inhibition of prolactin release from rat pituitary cells. Diterpenes featuring a clerodadienol scaffold were identified as major active compounds, but no conclusive data regarding their potency and intrinsic activity are available. Utilising advances in chromatography, we re-examined this topic using HPLC-based tracking of bioactivity via microfractionation of the VAC extract Ze 440. Using a cAMP-based assay, we measured dopaminergic activity in CHO-K1 cells that overexpress the human D2 receptor. Six diterpenes were isolated from two active HPLC microfractions. Viteagnusin I emerged as the most potent diterpene (EC50: 6.6 µM), followed by rotundifuran (EC50: 12.8 µM), whereas vitexilactone was inactive (EC50: >50 µM). Interestingly, triterpenes were also identified as active, with 3-epi-maslinic acid being the most active compound (EC50: 5.1 µM). To better understand these interactions at the molecular level, selected diterpenes and triterpenes were analysed through molecular docking against D2 receptor structures. Our data show that the dopaminergic activity of VAC diterpenes seems to depend on the configuration and on ring substitution in the side chain. This study also highlights for the first time the dopaminergic contribution of triterpenes such as 3-epi-maslinic acid.
Collapse
Affiliation(s)
- Jakob K. Reinhardt
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Lukas Schertler
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Hendrik Bussmann
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Manuel Sellner
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Martin Smiesko
- Department of Pharmaceutical Sciences, Computational Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (M.S.)
| | - Georg Boonen
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| | - Olivier Potterat
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Matthias Hamburger
- Department of Pharmaceutical Sciences, Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland (O.P.)
| | - Veronika Butterweck
- Medical Department, Max Zeller Soehne AG, Seeblickstrasse 4, 8590 Romanshorn, Switzerland (H.B.); (G.B.)
| |
Collapse
|
2
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
3
|
Samimi-Dehkordi S, Tayarani-Najaran Z, Emami SA, Nesměrák K, Štícha M, Azizi N, Akaberi M. HPLC-based cytotoxicity profiling and LC-ESIQTOF-MS/MS analysis of Helichrysum leucocephalum. Heliyon 2024; 10:e27230. [PMID: 38449622 PMCID: PMC10915411 DOI: 10.1016/j.heliyon.2024.e27230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Helichrysum leucocephalum Boiss. (Asteraceae) is an endemic plant to Iran. No reports have studied the cytotoxicity of the plant. The current study aimed to evaluate the cytotoxicity of H. leucocephalum collected from Fars province (Iran) against MCF-7 and HDF cell lines using HPLC-based activity profiling and to annotate the active constituents by LC-ESIQTOF-MS/MS. Methods H. leucocephalum was collected from three locations in Fars province. The dried flowers and leaves were separately extracted by percolation using methanol. The crude extracts were fractionated by liquid-liquid partitioning with dichloromethane (DCM) and aqueous methanol. The cytotoxicity of the fractions was evaluated against MCF-7 and HDF cells by Alamarblue assay. HPLC-based activity profiling was used to track the active constituents. LC-MS dereplication strategy was used for the annotation of the compounds in the active time window. LC-MS data were preprocessed by MZmine 3.3.0 and submitted to multivariate analysis to compare the differences and similarities in the metabolites of the samples. Results The DCM fractions showed a dose-dependent cytotoxicity against the cancerous cells (IC50s, 9.8-105.1 μg/ml). In general, the metabolites of the flowers and their cytotoxicity were higher than the leaves. LCESIMS/MS analyses revealed that prenylated and geranylated α,β-unsaturated spiroketal phloroglucinols were among the active constituents. Conclusion It can be concluded that H. leucocephalum is a rich source of phloroglucinol derivatives with cytotoxic activities. Further phytochemical analysis is needed to characterize the bioactive components.
Collapse
Affiliation(s)
- Saber Samimi-Dehkordi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karel Nesměrák
- Department of Analytical Chemistry, Faculty of Science, Charles University, Czech Republic
| | - Martin Štícha
- Mass Spectrometry Laboratory, Section of Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Narjes Azizi
- Forest and Rangeland Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center. AREEO, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Pérez-Victoria I. Natural Products Dereplication: Databases and Analytical Methods. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:1-56. [PMID: 39101983 DOI: 10.1007/978-3-031-59567-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The development of efficient methods for dereplication has been critical in the re-emergence of the research in natural products as a source of drug leads. Current dereplication workflows rapidly identify already known bioactive secondary metabolites in the early stages of any drug discovery screening campaign based on natural extracts or enriched fractions. Two main factors have driven the evolution of natural products dereplication over the last decades. First, the availability of both commercial and public large databases of natural products containing the key annotations against which the biological and chemical data derived from the studied sample are searched for. Second, the considerable improvement achieved in analytical technologies (including instrumentation and software tools) employed to obtain robust and precise chemical information (particularly spectroscopic signatures) on the compounds present in the bioactive natural product samples. This chapter describes the main methods of dereplication, which rely on the combined use of large natural product databases and spectral libraries, alongside the information obtained from chromatographic, UV-Vis, MS, and NMR spectroscopic analyses of the samples of interest.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de La Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain.
| |
Collapse
|
5
|
Anacleto-Santos J, Calzada F, López-Camacho PY, López-Pérez TDJ, Carrasco-Ramírez E, Casarrubias-Tabarez B, Fortoul TI, Rojas-Lemus M, López-Valdés N, Rivera-Fernández N. Evaluation of the Anti- Toxoplasma gondii Efficacy, Cytotoxicity, and GC/MS Profile of Pleopeltis crassinervata Active Subfractions. Antibiotics (Basel) 2023; 12:antibiotics12050889. [PMID: 37237792 DOI: 10.3390/antibiotics12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleopeltis crassinervata (Pc) is a fern that, according to ethnobotanical records, is used in Mexican traditional medicine to treat gastrointestinal ailments. Recent reports indicate that the hexane fraction (Hf) obtained from Pc methanolic frond extract affects Toxoplasma gondii tachyzoite viability in vitro; therefore, in the present study, the activity of different Pc hexane subfractions (Hsf) obtained by chromatographic methods was evaluated in the same biological model. Gas chromatography/mass spectrometry (GC/MS) analysis was carried out for hexane subfraction number one (Hsf1), as it showed the highest anti-Toxoplasma activity with a half-maximal inhibitory concentration (IC50) of 23.6 µg/mL, a 50% cytotoxic concentration (CC50) of 398.7 µg/mL in Vero cells, and a selective index (SI) of 16.89. Eighteen compounds were identified by Hsf1 GC/MS analysis, with the majority being fatty acids and terpenes. Hexadecanoic acid, methyl ester was the most commonly found compound (18.05%) followed by olean-13(18)-ene, 2,2,4a,8a,9,12b,14a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-eicosahydropicene, and 8-octadecenoid acid, methyl ester, which were detected at 16.19%, 12.53%, and 12.99%, respectively. Based on the mechanisms of action reported for these molecules, Hsf1 could exert its anti-Toxoplasma activity mainly on T. gondii lipidomes and membranes.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc 06725, Mexico
| | - Perla Yolanda López-Camacho
- Unidad Cuajimalpa, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Cuajimalpa 05348, Mexico
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Nelly López-Valdés
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
6
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
7
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
8
|
Baltov B, Beyl S, Baburin I, Reinhardt J, Szkokan P, Garifulina A, Timin E, Kraushaar U, Potterat O, Hamburger M, Kügler P, Hering S. Assay for evaluation of proarrhythmic effects of herbal products: Case study with 12 Evodia preparations. Toxicol Rep 2023; 10:589-599. [PMID: 37213814 PMCID: PMC10196857 DOI: 10.1016/j.toxrep.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Guidelines for preclinical drug development reduce the occurrence of arrhythmia-related side effects. Besides ample evidence for the presence of arrhythmogenic substances in plants, there is no consensus on a research strategy for the evaluation of proarrhythmic effects of herbal products. Here, we propose a cardiac safety assay for the detection of proarrhythmic effects of plant extracts based on the experimental approaches described in the Comprehensive In vitro Proarrhythmia Assay (CiPA). Microelectrode array studies (MEAs) and voltage sensing optical technique on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were combined with ionic current measurements in mammalian cell lines, In-silico simulations of cardiac action potentials (APs) and statistic regression analysis. Proarrhythmic effects of 12 Evodia preparations, containing different amounts of the hERG inhibitors dehydroevodiamine (DHE) and hortiamine were analysed. Extracts produced different prolongation of the AP, occurrence of early after depolarisations and triangulation of the AP in hiPSC-CMs depending on the contents of the hERG inhibitors. DHE and hortiamine dose-dependently prolonged the field potential duration in hiPSC-CMs studied with MEAs. In-silico simulations of ventricular AP support a scenario where proarrhythmic effects of Evodia extracts are predominantly caused by the content of the selective hERG inhibitors. Statistic regression analysis revealed a high torsadogenic risk for both compounds that was comparable to drugs assigned to the high-risk category in a CiPA study.
Collapse
Affiliation(s)
- Bozhidar Baltov
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | | | - Igor Baburin
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | - Jakob Reinhardt
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | - Aleksandra Garifulina
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Eugen Timin
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Olivier Potterat
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Philipp Kügler
- University of Hohenheim, Institute of Applied Mathematics and Statistics and Computational Science Hub, 70599 Stuttgart, Germany
| | - Steffen Hering
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
- ChanPharm GmbH, Am Kanal 27, 1110 Vienna, Austria
- Correspondence to: Am Kanal 27,2/3/5–7, 1110 Vienna, Austria.
| |
Collapse
|
9
|
Vásquez-Ocmín PG, Gallard JF, Van Baelen AC, Leblanc K, Cojean S, Mouray E, Grellier P, Guerra CAA, Beniddir MA, Evanno L, Figadère B, Maciuk A. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth. Molecules 2022; 27:7638. [PMID: 36364460 PMCID: PMC9656727 DOI: 10.3390/molecules27217638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 09/08/2024] Open
Abstract
Improved methodological tools to hasten antimalarial drug discovery remain of interest, especially when considering natural products as a source of drug candidates. We propose a biodereplication method combining the classical dereplication approach with the early detection of potential antiplasmodial compounds in crude extracts. Heme binding is used as a surrogate of the antiplasmodial activity and is monitored by mass spectrometry in a biomimetic assay. Molecular networking and automated annotation of targeted mass through data mining were followed by mass-guided compound isolation by taking advantage of the versatility and finely tunable selectivity offered by centrifugal partition chromatography. This biodereplication workflow was applied to an ethanolic extract of the Amazonian medicinal plant Piper coruscans Kunth (Piperaceae) showing an IC50 of 1.36 µg/mL on the 3D7 Plasmodium falciparum strain. It resulted in the isolation of twelve compounds designated as potential antiplasmodial compounds by the biodereplication workflow. Two chalcones, aurentiacin (1) and cardamonin (3), with IC50 values of 2.25 and 5.5 µM, respectively, can be considered to bear the antiplasmodial activity of the extract, with the latter not relying on a heme-binding mechanism. This biodereplication method constitutes a rapid, efficient, and robust technique to identify potential antimalarial compounds in complex extracts such as plant extracts.
Collapse
Affiliation(s)
| | - Jean-François Gallard
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Anne-Cécile Van Baelen
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, SIMoS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Karine Leblanc
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | | - Elisabeth Mouray
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Philippe Grellier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Universités, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Carlos A. Amasifuén Guerra
- Dirección de Recursos Genéticos y Biotecnología (DRGB), Instituto Nacional de Innovación Agraria (INIA), Avenida La Molina N° 1981, La Molina, Lima 15024, Peru
| | | | - Laurent Evanno
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | - Bruno Figadère
- Université Paris-Saclay, CNRS, BioCIS, 91400 Orsay, France
| | | |
Collapse
|
10
|
Raidron C, Jordaan A, Seldon R, Warner DF, de Kock C, Taylor D, Louw S, Sunassee S, Hans RH. Antiplasmodial and antimycobacterial activities of crude and lead-like enhanced extracts from Namibian medicinal plants. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115389. [PMID: 35589021 DOI: 10.1016/j.jep.2022.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eight indigenous medicinal plants which are used traditionally for the treatment of tuberculosis (TB), malaria, and associated symptoms, were selected for this study. AIM OF STUDY The aim of this study was to evaluate the antiplasmodial and antimycobacterial activities of the organic and aqueous crude extracts of different plant parts, by comparing the activities of subfractions (lead-like enhanced [LLE] extracts and methanol fractions) prepared from the bioactive crude extracts. MATERIALS & METHODS Crude aqueous and organic extracts were prepared for 25 different plant parts obtained from eight plant species. In vitro antiplasmodial activity was evaluated using the parasite lactate dehydrogenase assay against chloroquine-sensitive Plasmodium falciparum NF54 and in vitro antimycobacterial activity determined against the Mycobacterium tuberculosis H37Rv-GFP strain in a standard broth microdilution assay. The bioactive crude extracts were subjected to solid phase extraction with Strata-X 33 μm reversed phase cartridges and eluted with 70:30 MeOH: H2O:1% trifluoroacetic acid to yield the LLE extract, followed by a methanol rinse, herein referred to as the MeOH fraction. Both fractions were evaluated for antiplasmodial and antimycobacterial activity. Proton nuclear magnetic resonance spectroscopy (1H-NMR) and ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) profiling of the crude and active fractions of the phytochemically unexplored Sarcocaulon marlothii Engl. were performed to aid the identification of a potential antiplasmodial lead compound. RESULTS Ten of the aqueous and organic crude extracts displayed antimycobacterial activity, with minimum inhibitory concentration (MIC90) values ranging from 9.9 to 86.8 μg/mL, and four crude extracts showed antiplasmodial activity with inhibitory concentration (IC50) values between 5.2 and 17.8 μg/mL. Although the stems of S. marlothii are traditionally used to treat TB and related symptoms, the two crude extracts displayed weak antimycobacterial activity (MIC90 > 100 μg/mL) while the crude organic extract displayed moderate antiplasmodial activity with an IC50 value of 8.8 μg/mL. None of the LLE extracts prepared from the ten antimycobacterial-active crudes displayed any significant activity (MIC90 > 125 μg/mL). In contrast, fractionation of three antiplasmodial-active, crude organic extracts yielded MeOH fractions which displayed a 2-fold to 19-fold increase in activity. The 1H-NMR profiles of the active MeOH fraction (IC50 4.3 μg/mL) of S. marlothii (organic, stem) revealed the likely presence of an unidentified trisubstituted cinnamic acid derivative as one of the major compounds and UPLC-MS/MS data provided additional evidence that the compound may be a hydroxycinnamic acid derivative. Unfortunately, owing to the paucity of the material obtained, we were unable to purify and unequivocally determine the structure of this active compound. CONCLUSIONS This is the first report on the phytochemical profiling of S. marlothii and, based on the antiplasmodial activity recorded, it merits an in-depth phytochemical analysis for the unequivocal characterization of a potential antiplasmodial lead compound. Results from this study lend support to the effectiveness of extract enrichment in combination with NMR fingerprinting for antiplasmodial lead identification.
Collapse
Affiliation(s)
- Celestine Raidron
- Department of Physics, Chemistry and Material Science, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia, Private Bag, 13301, Windhoek, Namibia
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Ronnett Seldon
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Dale Taylor
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Stefan Louw
- Department of Physics, Chemistry and Material Science, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia, Private Bag, 13301, Windhoek, Namibia
| | - Suthananda Sunassee
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Renate Hazel Hans
- Department of Physics, Chemistry and Material Science, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia, Private Bag, 13301, Windhoek, Namibia.
| |
Collapse
|
11
|
Xu P, Wang X, Lin T, Shao Q, Peng J, Chu C, Tong S. A Strategy for Pinpointing Natural Bioactive Components Using Two-Dimensional Bioassay Profilings Combined with Comprehensive Two-Dimensional Countercurrent Chromatography × High-Performance Liquid Chromatography. Anal Chem 2022; 94:12715-12722. [PMID: 36076186 DOI: 10.1021/acs.analchem.2c02196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the interpretation of two-dimensional (2D) nuclear magnetic resonance spectra, an efficient strategy was proposed for pinpointing bioactive components from complex natural products. An off-line comprehensive countercurrent chromatography (CCC) × high-performance liquid chromatography (HPLC) was employed to achieve a 2D chemical chromatogram, and 2D bioassay profilings were obtained from bioassays of the eluent of the first dimension (1D) CCC and the eluent of the second dimension (2D) HPLC. Then 2D chemical chromatograms and 2D bioassay profilings were matched for pinpointing bioactive natural components from complex matrices. Thus, bioactive components in a complex matrix could be efficiently analyzed, separated, and bioactivity-determined. This experimental scheme was successfully demonstrated with a traditional medicinal herb Polygonum cuspidatum Sieb. et Zucc. The feasibility of this 2D strategy was verified with tyrosinase inhibition assay, α-glucosidase inhibition assay, DPPH radical scavenging assay, and ABTS•+ decolorization assay. Eight natural inhibitors were successfully pinpointed and identified from P. cuspidatum. Both pieceid-2″-O-gallate (10) and vanicoside B (20) were screened and identified as natural tyrosinase inhibitors for the first time. Meanwhile, vanicoside B (20) was also found as the strongest α-glucosidase inhibitor among all the isolated components. Most of the compounds exhibited much higher radical scavenging activities. Compared with traditional methodology based on one-dimensional chromatographic separation, the present 2D strategy would be more precise, efficient, and convenient to screen and separate bioactive compounds from complex matrices.
Collapse
Affiliation(s)
- Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Xiang Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 210009 Nanjing, China
| | - Tingting Lin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jianyun Peng
- Department of Nephrology, The Sixth Affiliated Hospital of Wenzhou Medical University Lishui People's Hospital, 323000 Lishui, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, 310032 Hangzhou, China
| |
Collapse
|
12
|
Qi XW, Liu YM, Hu YK, Yuan H, Ayeni EA, Liao X. Ligand fishing based on tubular microchannel modified with monoamine oxidase B for screening of the enzyme's inhibitors from Crocus sativus and Edgeworthia gardneri. J Sep Sci 2022; 45:2394-2405. [PMID: 35461190 DOI: 10.1002/jssc.202200057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 04/17/2022] [Indexed: 11/07/2022]
Abstract
A novel strategy of performing ligand fishing with enzyme-modified open tubular microchannel was proposed for screening bioactive components present in medicinal plants. Monoamine oxidase B was immobilized onto the surface of the microchannel for the first time to specifically extract its ligands when the plant's extracts solution flows through the channel. The thermal and the storage stability of immobilized monoamine oxidase B were significantly enhanced after immobilization. Crocin I and Ⅱ were extracted from Crocus sativus, and tiliroside was extracted from Edgeworthia gardneri. All the three compounds were inhibitors of the enzyme with the half-maximal inhibitory concentration values of 26.70 ± 0.91, 19.88 ± 2.78, and 15.65 ± 0.85 μM, respectively. The enzyme inhibition kinetics and molecular docking were investigated. This is the first report on the inhibitory effects of tiliroside and crocin Ⅱ. The novel ligand fishing method proposed in this work possesses advantages of rapidness, high efficiency, and tiny sample consumption compared to routine ligand fishing, with promising potential for screening active natural products in complex mixtures.
Collapse
Affiliation(s)
- Xu-Wei Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi, USA
| | - Yi-Kao Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Yuan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Emmanuel Ayodeji Ayeni
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, P. R. China
| |
Collapse
|
13
|
Syafni N, Faleschini MT, Garifulina A, Danton O, Gupta MP, Hering S, Hamburger M. Clerodane Diterpenes from Casearia corymbosa as Allosteric GABA A Receptor Modulators. JOURNAL OF NATURAL PRODUCTS 2022; 85:1201-1210. [PMID: 35475609 PMCID: PMC9150179 DOI: 10.1021/acs.jnatprod.1c00840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 06/14/2023]
Abstract
An EtOAc extract of Casearia corymbosa leaves led to an allosteric potentiation of the GABA signal in a fluorometric imaging plate reader (FLIPR) assay on Chinese hamster ovary (CHO) cells stably expressing GABAA receptors with an α1β2γ2 subunit composition. The activity was tracked by HPLC-based activity profiling, and four known (2, 3, 4, and 8) and five new clerodane-type diterpenoids (1, 5-7, and 9) were isolated. Compounds 1-8 were obtained from the active time window. The absolute configuration of all compounds was established by ECD. Compounds 3, 7, and 8 exhibited EC50 values of 0.5, 4.6, and 1.4 μM, respectively. To explore possible binding sites at the receptor, the most abundant diterpenoid 8 was tested in combination with diazepam, etazolate, and allopregnanolone. An additive potentiation of the GABA signal was observed with these compounds, while the effect of 8 was not inhibited by flumazenil, a negative allosteric modulator at the benzodiazepine binding site. Finally, the activity was validated in voltage clamp studies on Xenopus laevis oocytes transiently expressing GABAA receptors of the α1β2γ2S and α1β2 subtypes. Compound 8 potentiated GABA-induced currents with both receptor subunit compositions [EC50 (α1β2γ2S) = 43.6 μM; Emax = 809% and EC50 (α1β2) = 57.6 μM; Emax = 534%]. The positive modulation of GABA-induced currents was not inhibited by flumazenil, thereby confirming an allosteric modulation independent of the benzodiazepine binding site.
Collapse
Affiliation(s)
- Nova Syafni
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Faculty
of Pharmacy and Sumatran Biota Laboratory, Andalas University, Kampus Limau Manis, Padang, West Sumatra 25175, Indonesia
| | - Maria Teresa Faleschini
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Aleksandra Garifulina
- Division
of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Pharmaziezentrum, Althanstrasse 14, 1090 Vienna, Austria
| | - Ombeline Danton
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Mahabir P. Gupta
- Center
for Pharmacognostic Research on Panamanian Flora, Faculty of Pharmacy, University of Panama, Panama City 0801, Panama
| | - Steffen Hering
- Division
of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Pharmaziezentrum, Althanstrasse 14, 1090 Vienna, Austria
| | - Matthias Hamburger
- Pharmaceutical
Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Lee S, van Santen JA, Farzaneh N, Liu DY, Pye CR, Baumeister TUH, Wong WR, Linington RG. NP Analyst: An Open Online Platform for Compound Activity Mapping. ACS CENTRAL SCIENCE 2022; 8:223-234. [PMID: 35233454 PMCID: PMC8874762 DOI: 10.1021/acscentsci.1c01108] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 05/20/2023]
Abstract
Few tools exist in natural products discovery to integrate biological screening and untargeted mass spectrometry data at the library scale. Previously, we reported Compound Activity Mapping as a strategy for predicting compound bioactivity profiles directly from primary screening results on extract libraries. We now present NP Analyst, an open online platform for Compound Activity Mapping that accepts bioassay data of almost any type, and is compatible with mass spectrometry data from major instrument manufacturers via the mzML format. In addition, NP Analyst will accept processed mass spectrometry data from the MZmine 2 and GNPS open-source platforms, making it a versatile tool for integration with existing discovery workflows. We demonstrate the utility of this new tool for both the dereplication of known compounds and the discovery of novel bioactive natural products using a challenging low-resolution antimicrobial bioassay data set. This new platform is available at www.npanalyst.org.
Collapse
Affiliation(s)
- Sanghoon Lee
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey A. van Santen
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Nima Farzaneh
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Dennis Y. Liu
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Cameron R. Pye
- Unnatural
Products Inc., 2161 Delaware
Avenue Suite A, Santa Cruz, California 95060, United States
| | - Tim U. H. Baumeister
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Weng Ruh Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, Santa
Cruz, California 95064, United States
| | - Roger G. Linington
- Department
of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
15
|
Maitra U, Stephen C, Ciesla LM. Drug discovery from natural products - Old problems and novel solutions for the treatment of neurodegenerative diseases. J Pharm Biomed Anal 2022; 210:114553. [PMID: 34968995 PMCID: PMC8792363 DOI: 10.1016/j.jpba.2021.114553] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022]
Abstract
The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. In fact, many currently approved drugs originated from compounds that were first identified in nature. Chemical diversity of natural compounds cannot be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate regulatory protein targets and can be considered evolutionarily-optimized drug-like molecules. Despite this, many pharmaceutical companies have reduced or eliminated their natural product discovery programs in the last two decades. Screening natural products for pharmacologically active compounds is a challenging task that requires high resource commitment. Novel approaches at the early stage of the drug discovery pipeline are needed to allow for rapid screening and identification of the most promising molecules. Here, we review the possible evolutionary roots for drug-like characteristics of numerous natural compounds. Since many of these compounds target evolutionarily conserved cellular signaling pathways, we propose novel, early-stage drug discovery approaches to identify drug candidates that can be used for the potential prevention and treatment of neurodegenerative diseases. Invertebrate in vivo animal models of neurodegenerative diseases and innovative tools used within these models are proposed here as a screening funnel to identify new drug candidates and to shuttle these hits into further stages of the drug discovery pipeline.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Cayman Stephen
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
16
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Zhang XW, Bian GL, Kang PY, Cheng XJ, Yan K, Liu YL, Gao YX, Li DQ. Recent advance in the discovery of tyrosinase inhibitors from natural sources via separation methods. J Enzyme Inhib Med Chem 2021; 36:2104-2117. [PMID: 34579614 PMCID: PMC8480707 DOI: 10.1080/14756366.2021.1983559] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.
Collapse
Affiliation(s)
- Xiao-Wei Zhang
- Department of Neurological Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang-Li Bian
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pei-Ying Kang
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin-Jie Cheng
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai Yan
- Institute for Drug Control of Hebei Province, Shijiazhuang, China
| | - Yong-Li Liu
- Institute for Drug Control of Hebei Province, Shijiazhuang, China
| | - Yan-Xia Gao
- Institute for Drug Control of Hebei Province, Shijiazhuang, China
| | - De-Qiang Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Chen Y. Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1778-1787. [PMID: 33885636 DOI: 10.1039/d1ay00245g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug discovery is a complex process in which many challenges need to be overcome, from the discovery of a drug candidate to ensuring the efficacy and safety of the candidate in humans. Modern analytical methods allow tens of thousands of drug candidates to be screened for their inhibition of specific enzymes or receptors. In recent years, fluorescent probes have been used for the detection and diagnosis of human pathogens as well as high-throughput screening. This review focuses on recent progress in organic small-molecule based enzyme-activated fluorescent probes for screening of inhibitors from natural products. The contents include the construction of fluorescent probes, working mechanism and the process of inhibitor screening. The progress suggests that fluorescent probes are a vital and rapidly growing technology for inhibitor screening of enzymes, in particular, inhibitor screening in situ.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges. Microorganisms 2021; 9:197. [PMID: 33477910 PMCID: PMC7833388 DOI: 10.3390/microorganisms9010197] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/23/2022] Open
Abstract
Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharmacologically active compounds and the bottlenecks in the commercialization of this novel approach in the area of drug discovery. After recent updates in the field of 'omics' and 'one strain many compounds' (OSMAC) approach, fungal endophytes have emerged as strong unconventional source of such prized products.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dheeraj K. Singh
- Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India
| | - Ravindra N. Kharwar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Surendra K. Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
20
|
Tao Y, Yan J, Cai B. LABEL-FREE BIO-AFFINITY MASS SPECTROMETRY FOR SCREENING AND LOCATING BIOACTIVE MOLECULES. MASS SPECTROMETRY REVIEWS 2021; 40:53-71. [PMID: 31755145 DOI: 10.1002/mas.21613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Despite the recent increase in the development of bioactive molecules in the drug industry, the enormous chemical space and lack of productivity are still important issues. Additional alternative approaches to screen and locate bioactive molecules are urgently needed. Label-free bio-affinity mass spectrometry (BA-MS) provides opportunities for the discovery and development of innovative drugs. This review provides a comprehensive portrayal of BA-MS techniques and of their applications in screening and locating bioactive molecules. After introducing the basic principles, alongside some application notes, the current state-of-the-art of BA-MS-assisted drug discovery is discussed, including native MS, size-exclusion chromatography-MS, ultrafiltration-MS, solid-phase micro-extraction-MS, and cell membrane chromatography-MS. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for BA-MS-assisted drug discovery. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Baochang Cai
- Jiangsu Key Laboratory of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| |
Collapse
|
21
|
Liu R, Kool J, Jian J, Wang J, Zhao X, Jiang Z, Zhang T. Rapid Screening α-Glucosidase Inhibitors from Natural Products by At-Line Nanofractionation with Parallel Mass Spectrometry and Bioactivity Assessment. J Chromatogr A 2020; 1635:461740. [PMID: 33271429 DOI: 10.1016/j.chroma.2020.461740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
In this study, a novel at-line nanofractionation screening platform was successfully developed for the rapid screening and identification of α-glucosidase inhibitors from natural products. A time-course bioassay based on high density well-plates was performed in parallel with high resolution mass spectrometry (MS), providing a straightforward and rapid procedure to simultaneously obtain chemical and biological information of active compounds. Through multiple nanofractionations into the same well-plate and comparisons of the orthogonal separation results of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC), the α-glucosidase inhibitors can be accurately identified from co-eluates. The screening platform was comprehensively evaluated and validated, and was applied to the screenings of green tea polyphenols and Ginkgo folium flavonoids. After accurate peak shape and retention time matching between the bioactivity chromatograms and MS chromatograms, ten α-glucosidase inhibitors were successfully screened out and identified. The proposed screening method is rapid, effective and can avoid ignoring low abundant/active inhibitors.
Collapse
Affiliation(s)
- Ruijie Liu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jincai Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | | | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Tingting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Reinhardt JK, Zimmermann-Klemd AM, Danton O, Smieško M, Gründemann C, Hamburger M. Compounds from Toddalia asiatica: Immunosuppressant Activity and Absolute Configurations. JOURNAL OF NATURAL PRODUCTS 2020; 83:3012-3020. [PMID: 33001647 DOI: 10.1021/acs.jnatprod.0c00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In a screening of an extract library from plants used in Traditional Chinese Medicine the MeOH extract of Toddalia asiatica inhibited proliferation of human primary T cells with an IC50 of 25.8 μg/mL. Activity in the extract was tracked by HPLC activity profiling, and a total of 15 compounds were characterized. Three compounds, toddalic acid (6) and both enantiomers (7a and 7b) of toddanolic acid (7), were new natural products, and two recently published compounds, (2'R)-toddalolactone 3'-O-β-d-glucopyranoside (10) and (2'S)-toddalolactone 2'-O-β-d-glucopyranoside (11), were described in detail for the first time. The absolute configurations of compounds 8, 9, 10, 12, 13, and 15 were determined by comparison of experimental and calculated ECD spectra. For glucosides 9 and 10, ECD data and chiral-phase HPLC of the aglycones after enzymatic hydrolysis confirmed the results. Nitidine chloride (4) inhibited proliferation of primary human T cells with an IC50 of 0.4 μM.
Collapse
Affiliation(s)
- Jakob K Reinhardt
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Amy M Zimmermann-Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115 B, 79106 Freiburg, Germany
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Carsten Gründemann
- Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Mahmoud AB, Danton O, Kaiser M, Khalid S, Hamburger M, Mäser P. HPLC-Based Activity Profiling for Antiprotozoal Compounds in Croton gratissimus and Cuscuta hyalina. Front Pharmacol 2020; 11:1246. [PMID: 32922290 PMCID: PMC7456963 DOI: 10.3389/fphar.2020.01246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
In a screening of Sudanese medicinal plants for antiprotozoal activity, the chloroform fractions obtained by liquid-liquid partitioning from ethanolic extracts of fruits of Croton gratissimus var. gratissimus and stems of Cuscuta hyalina Roth ex Schult. exhibited in vitro activity against axenically grown Leishmania donovani amastigotes. This antileishmanial activity was localized by HPLC-based activity profiling. Targeted preparative isolation afforded flavonoids 1–6, 3-methoxy-4-hydroxybenzoic acid (7), and benzyltetrahydroisoquinoline alkaloids laudanine (8) and laudanosine (9) from C. gratissimus, and pinoresinol (10), isorhamnetin (11), (-)-pseudosemiglabrin (12), and kaempferol (13) from C. hyalina. The antiprotozoal activity of 1–13 against L. donovani (axenic and intracellular amastigotes), Trypanosoma brucei rhodesiense (bloodstream forms), and Plasmodium falciparum (erythrocytic stages), and the cytotoxicity in L6 murine myoblast cells were determined in vitro. Quercetin-3,7-dimethylether (6) showed the highest activity against axenic L. donovani (IC50, 4.5 µM; selectivity index [SI], 12.3), P. falciparum (IC50, 7.3 µM; SI, 7.6), and T. b. rhodesiense (IC50, 2.4 µM; SI, 23.2). The congener ayanin (2) exhibited moderate antileishmanial (IC50, 8.2 µM; SI, 12.2), antiplasmodial (IC50, 7.8 µM; SI, 12.9), and antitrypanosomal activity (IC50, 11.2 µM; SI, 8.9). None of the compounds showed notable activity against the intramacrophage form of L. donovani.
Collapse
Affiliation(s)
- Abdelhalim Babiker Mahmoud
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | | | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Sami Khalid
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.,Faculty of Pharmacy, University of Science and Technology, Omdurman, Sudan
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Recent advance on PTP1B inhibitors and their biomedical applications. Eur J Med Chem 2020; 199:112376. [DOI: 10.1016/j.ejmech.2020.112376] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
|
25
|
Mahmoud AB, Danton O, Kaiser M, Han S, Moreno A, Abd Algaffar S, Khalid S, Oh WK, Hamburger M, Mäser P. Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules 2020; 25:E2825. [PMID: 32575379 PMCID: PMC7355546 DOI: 10.3390/molecules25122825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
A screening of Sudanese medicinal plants for antiprotozoal activities revealed that the chloroform and water fractions of the ethanolic root extract of Haplophyllum tuberculatum exhibited appreciable bioactivity against Leishmania donovani. The antileishmanial activity was tracked by HPLC-based activity profiling, and eight compounds were isolated from the chloroform fraction. These included lignans tetrahydrofuroguaiacin B (1), nectandrin B (2), furoguaiaoxidin (7), and 3,3'-dimethoxy-4,4'-dihydroxylignan-9-ol (10), and four cinnamoylphenethyl amides, namely dihydro-feruloyltyramine (5), (E)-N-feruloyltyramine (6), N,N'-diferuloylputrescine (8), and 7'-ethoxy-feruloyltyramine (9). The water fraction yielded steroid saponins 11-13. Compounds 1, 2, and 5-13 are reported for the first time from Haplophyllum species and the family Rutaceae. The antiprotozoal activity of the compounds plus two stereoisomeric tetrahydrofuran lignans-fragransin B2 (3) and fragransin B1 (4)-was determined against Leishmania donovani amastigotes, Plasmodium falciparum, and Trypanosoma brucei rhodesiense bloodstream forms, along with their cytotoxicity to rat myoblast L6 cells. Nectandrin B (2) exhibited the highest activity against L. donovani (IC50 4.5 µM) and the highest selectivity index (25.5).
Collapse
Affiliation(s)
- Abdelhalim Babiker Mahmoud
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
- Faculty of Pharmacy, University of Khartoum, 11111 Khartoum, Sudan;
| | - Ombeline Danton
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
| | - Sohee Han
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (W.K.O.)
| | | | - Shereen Abd Algaffar
- Faculty of Pharmacy, University of Science and Technology, 14411 Omdurman, Sudan;
| | - Sami Khalid
- Faculty of Pharmacy, University of Khartoum, 11111 Khartoum, Sudan;
- Faculty of Pharmacy, University of Science and Technology, 14411 Omdurman, Sudan;
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.); (W.K.O.)
| | - Matthias Hamburger
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland;
- Faculty of Science, University of Basel, 4001 Basel, Switzerland; (O.D.); (M.H.)
| |
Collapse
|
26
|
Hosu A, Cimpoiu C. Evaluation of various biological activities of natural compounds by TLC/HPTLC. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anamaria Hosu
- Department of Chemistry, Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Cimpoiu
- Department of Chemistry, Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics (ANALYTICA), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Mahmoud AB, Mäser P, Kaiser M, Hamburger M, Khalid S. Mining Sudanese Medicinal Plants for Antiprotozoal Agents. Front Pharmacol 2020; 11:865. [PMID: 32581814 PMCID: PMC7295952 DOI: 10.3389/fphar.2020.00865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Neglected tropical diseases are major health hazards in developing countries. Annually, up to 30 million people are affected by either Chagas disease, African trypansomiasis or leishmaniasis, and more than 200 million by malaria. Most of the currently available drugs have drawbacks in terms of toxicity, limited oral availability, development of resistance, or non-affordability. Tropical plants of the arid zones are a treasure chest for the discovery of bioactive secondary metabolites. This study aims to compile Sudanese medicinal plants, validate their antiprotozoal activities, and identify active molecules. We have performed a survey of medicinal plants of Sudan and selected 62 that are being used in Sudanese traditional medicine. From these, we collected materials such as leaves, stem, bark, or fruit. The plant materials were extracted in 70% ethanol and further fractionated by liquid-liquid partitioning using solvents of increasing polarity. This resulted in a library of 235 fractions. The library was tested in vitro against Plasmodium falciparum (erythrocytic stages), Trypanosoma brucei rhodesiense (bloodstream forms), Trypanosoma cruzi (intracellular amastigotes), and Leishmania donovani (axenic amastigotes). Active fractions were also tested for cytotoxicity. Of the 235 fractions, 125 showed growth inhibitory activity >80% at 10 μg/ml, and >50% at 2 μg/ml against at least one of the protozoan parasites. Plasmodium falciparum was the most sensitive of the parasites, followed by T. b. rhodesiense and L. donovani. Only few hits were identified for T. cruzi, and these were not selective. Contrary to expectation based on phylogeny, but in agreement with previous results, a large number of extracts displayed mutual activity against T. brucei and P. falciparum. HPLC-based activity profiling for selected active extracts was performed to identify the bioactive principles. Active compounds identified by dereplication were guieranone A from Guiera senegalensis J.F.Gmel.; pseudosemiglabrin from Tephrosia apollinea (Delile) DC; ellagic acid and quercetin from Terminalia leiocarpa (DC.) Baill.; and catechin, ethyl gallate, and epicatechin gallate from Vachellia nilotica (L.) P.J.H.Hurter & Mabb. Also the extracts of Croton gratissimus var. gratissimus and Cuscuta hyalina Roth ex Schult. exhibited promising antitrypanosomatid activity. This assessment provides a comprehensive overview of Sudanese medicinal plants and supports the notion that they are a potential source of bioactive molecules against protozoan parasites.
Collapse
Affiliation(s)
- Abdelhalim Babiker Mahmoud
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland.,Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Faculty of Science, University of Basel, Basel, Switzerland
| | | | - Sami Khalid
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan.,Faculty of Pharmacy, University of Science and Technology, Omdurman, Sudan
| |
Collapse
|
28
|
Identification of α-Glucosidase Inhibitors from Ipomoea alba by Affinity-Directed Fractionation-Mass Spectrometry. REVISTA BRASILEIRA DE FARMACOGNOSIA 2020. [DOI: 10.1007/s43450-020-00068-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Hamburger M. HPLC-based activity profiling for pharmacologically and toxicologically relevant natural products - principles and recent examples. PHARMACEUTICAL BIOLOGY 2019; 57:328-334. [PMID: 31057026 PMCID: PMC6507960 DOI: 10.1080/13880209.2019.1606261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/02/2019] [Indexed: 05/30/2023]
Abstract
CONTEXT Discovery of pharmacologically active natural products as starting points for drug development remains important and, for reasons of consumer safety, the identification of toxicologically relevant compounds in herbal drugs. OBJECTIVE To explain, with the aid of relevant examples from our own research, how these goals can be achieved. METHODS An in-house technology platform comprising pre-formatted extract libraries in 96-well format, miniaturized tracking of activity in extracts via HPLC-activity profiling, structure elucidation with microprobe NMR, and in vitro and in vivo pharmacological methods were used. RESULTS Piperine was identified as a new scaffold for allosteric GABAA receptor modulators with in vivo activity that interacts at a benzodiazepine-independent binding site. Selectivity and potency were improved by iterative optimization towards synthetic piperine analogues. Dehydroevodiamine and hortiamine from the traditional Chinese herbal drug Evodiae fructus were identified as potent hERG channel blockers in vitro. The compounds induced torsades de pointes arrhythmia in animal models. CONCLUSIONS The allosteric binding site for piperine analogues remains to be characterized and cardiac risks of herbal drugs need to be further evaluated to ensure consumer safety.
Collapse
Affiliation(s)
- Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Reinhardt JK, Klemd AM, Danton O, De Mieri M, Smieško M, Huber R, Bürgi T, Gründemann C, Hamburger M. Sesquiterpene Lactones from Artemisia argyi: Absolute Configuration and Immunosuppressant Activity. JOURNAL OF NATURAL PRODUCTS 2019; 82:1424-1433. [PMID: 31181920 DOI: 10.1021/acs.jnatprod.8b00791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A library of extracts from plants used in Chinese Traditional Medicine was screened for inhibition of T lymphocyte proliferation. An ethyl acetate extract from aerial parts of Artemisia argyi showed promising activity and was submitted to HPLC-based activity profiling to track the active compounds. From the most active time window, three guaianolides (1, 2, and 5) and two seco-tanapartholides (3 and 4) were identified and, in a less active time window, five new sesquiterpene lactones (8-11, 17), along with six known sesquiterpene lactones and two known flavonoids. The absolute configurations of compounds 1, 2, 5-10, 13-15, 17, and 18 were established by comparison of experimental with calculated electronic circular dichroism (ECD) spectra. For seco-tanapartholides B (3) and A (4), ECD yielded ambiguous results, and their absolute configurations were determined by comparing experimental and calculated vibrational circular dichroism (VCD) spectra. Compounds 1-5 showed significant, noncytotoxic inhibition of T lymphocyte proliferation, with IC50 values between 1.0 and 3.7 μM.
Collapse
Affiliation(s)
- Jakob K Reinhardt
- Pharmaceutical Biology, Pharmacenter , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Amy M Klemd
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine , University of Freiburg , Breisacher Straße 115 B , 79106 Freiburg , Germany
| | - Ombeline Danton
- Pharmaceutical Biology, Pharmacenter , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Maria De Mieri
- Pharmaceutical Biology, Pharmacenter , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Department of Molecular Modeling , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Roman Huber
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine , University of Freiburg , Breisacher Straße 115 B , 79106 Freiburg , Germany
| | - Thomas Bürgi
- Department of Physical Chemistry , University of Geneva , 30 Quai Ernest Ansermet , 1211 Geneva , Switzerland
| | - Carsten Gründemann
- Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine , University of Freiburg , Breisacher Straße 115 B , 79106 Freiburg , Germany
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
31
|
Akaberi M, Danton O, Tayarani-Najaran Z, Asili J, Iranshahi M, Emami SA, Hamburger M. HPLC-Based Activity Profiling for Antiprotozoal Compounds in the Endemic Iranian Medicinal Plant Helichrysum oocephalum. JOURNAL OF NATURAL PRODUCTS 2019; 82:958-969. [PMID: 30916554 DOI: 10.1021/acs.jnatprod.8b01031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a screening of Iranian plants for antiprotozoal activity a dichlomethane extract from the aerial parts of Helichrysum oocephalum showed in vitro antiprotozoal activity against Plasmodium falciparum and Leishmania donovani, with IC50 values of 4.01 ± 0.50 and 5.08 ± 0.07 μg/mL, respectively. The activity in the extract was tracked by HPLC-based activity profiling, and subsequent targeted preparative isolation afforded 24 compounds, including pyrones 22-24, phloroglucinol derivatives 12-19, and compounds containing both structural motifs (1-11, 20, and 21). Of these, 15 compounds were new natural products. The in vitro antiprotozoal activity of isolates was determined. Compound 3 showed good potency and selectivity in vitro against L. donovani (IC50 1.79 ± 0.17 μM; SI 53).
Collapse
Affiliation(s)
- Maryam Akaberi
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
- Department of Pharmacognosy, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Ombeline Danton
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Zahra Tayarani-Najaran
- Biotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - S Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|
32
|
Huang J, Guo X, Xu T, Fan L, Zhou X, Wu S. Ionic deep eutectic solvents for the extraction and separation of natural products. J Chromatogr A 2019; 1598:1-19. [PMID: 31005289 DOI: 10.1016/j.chroma.2019.03.046] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/27/2022]
Abstract
Room ionic liquids (ILs) used as green solvents have received considerable attention and wide application in different research and industrial fields, such as chemistry, biology, catalysis, energy, and even environmental sciences. Recently, a new class of sustainable solvents named deep eutectic solvents (DESs) have been developed, which share the promising solvent characteristics of ILs, such as thermal and chemical stability, low vapor pressure and design ability. In addition, the major advantages of DESs over ILs are their lower prices and easier preparation. Therefore, DESs have been considered to be a potential alternative to replace conventional organic solvents and ILs. Currently, the developed DESs may be classified into ionic and nonionic liquids. Typically, choline chloride (ChCl)/urea (1:2) is an ionic DES, while glucose/sucrose (1:1) is a nonionic DES. Although several reviews have covered advancements in DESs, in this review, we aim to provide a general insight into DESs, particularly ionic DESs, like choline-based DES, in terms of their preparation and application in the extraction of natural products (NPs) mainly from traditional Chinese medicines and the recovery of extracted compounds from their extracts. Additionally, various factors affecting the extraction efficiency of DESs are discussed.
Collapse
Affiliation(s)
- Jie Huang
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiuyun Guo
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Tianyi Xu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lanyan Fan
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xinpeng Zhou
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shihua Wu
- Research Center of Siyuan Natural Pharmacy and Biotoxicology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
33
|
Wubshet SG, Liu B, Kongstad KT, Böcker U, Petersen MJ, Li T, Wang J, Staerk D. Combined magnetic ligand fishing and high-resolution inhibition profiling for identification of α-glucosidase inhibitory ligands: A new screening approach based on complementary inhibition and affinity profiles. Talanta 2019; 200:279-287. [PMID: 31036185 DOI: 10.1016/j.talanta.2019.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Plants are well-recognized sources of inhibitors for α-glucosidase - a key target enzyme for management of type 2 diabetes. Recently, two advanced bioactivity-profiling techniques, i.e., ligand fishing and high-resolution inhibition profiling, have shown great promises for accelerating identification of α-glucosidase inhibitors from complex plant extracts. Non-specific affinities and non-specific inhibitions are major sources of false positive hits from ligand fishing and high-resolution inhibition profiling, respectively. In an attempt to minimize such false positive hits, we describe a new screening approach based on ligand fishing and high-resolution inhibition profiling for detection of high-affinity ligands and assessment of inhibitory activity, respectively. The complementary nature of ligand fishing and high-resolution inhibition profiling was explored to identify α-glucosidase inhibitory ligands from a complex mixture, and proof-of-concept was demonstrated with crude ethyl acetate extract of Ginkgo biloba. In addition to magnetic beads with a 3-carbon aliphatic linker, α-glucosidase was immobilized on magnetic beads with a 21-carbon aliphatic linker; and the two different types of magnetic beads were compared for their hydrolytic activity and fishing efficiency.
Collapse
Affiliation(s)
- Sileshi G Wubshet
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway.
| | - Bingrui Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; College of Chemistry and Technology, Hebei Agricultural University, Huanghua 061100, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China
| | - Kenneth T Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Ulrike Böcker
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway.
| | - Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Tuo Li
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Junru Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, China.
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
34
|
Syafni N, Moradi-Afrapoli F, Danton O, Wilhelm A, Stadler M, Hering S, Potterat O, Hamburger M. HPLC-Based Activity Profiling for GABA A Receptor Modulators in Murraya exotica. Nat Prod Commun 2019. [DOI: 10.1177/1934578x1901400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A dichloromethane extract from twigs and leaves of Murraya exotica produced allosteric potentiation of gamma aminobutyric acid (GABA) induced chloride currents in a microelectrode assay in Xenopus laevis oocytes expressing GABA receptors of α1, β2, γ2s subunit composition. The activity was tracked by HPLC-based activity profiling utilizing a zebrafish locomotor activity assay. Osthol (9) was identified as the main active compound. In addition, five other coumarins and four flavonols were identified. Osthol (9) and structurally related coumurrayin (10) were tested in the Xenopus oocyte assay. Compound 9 potentiated GABAA-induced chloride currents by 487 ± 42%, with an EC50 of 46 ± 10 μM, while 10 showed negligible effects on chloride currents. In silico evaluation of physicochemical properties showed that 9 and 10 had properties that are favorable for oral bioavailability and BBB permeability.
Collapse
Affiliation(s)
- Nova Syafni
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Faculty of Pharmacy/Sumatran Biota Laboratory, Andalas University, 25163 Padang, West Sumatra, Indonesia
| | | | - Ombeline Danton
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anke Wilhelm
- Faculty of Natural and Agricultural Sciences, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Marco Stadler
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Olivier Potterat
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Pitchai A, Nagarajan N, Vincent SGP, Rajaretinam RK. Zebrafish bio-assay guided isolation of human acetylcholinesterase inhibitory trans-tephrostachin from Tephrosia purpurea (L.) Pers. Neurosci Lett 2018; 687:268-275. [DOI: 10.1016/j.neulet.2018.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/15/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022]
|
36
|
Liu T, Hou Y, Liu J, Li Q, Wang J, Liang Y, Bian L, Zhao X. Screening bioactive compounds with multi-targets from Rhodiola crenulata by a single column containing co-immobilized beta2-adrenergic receptor and voltage dependent anion channel isoform 1. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:76-82. [DOI: 10.1016/j.jchromb.2018.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 01/07/2023]
|
37
|
Han C, Wang S, Li Z, Chen C, Hou J, Xu D, Wang R, Lin Y, Luo J, Kong L. Bioactivity-guided cut countercurrent chromatography for isolation of lysine-specific demethylase 1 inhibitors from Scutellaria baicalensis Georgi. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Chen G, Huang BX, Guo M. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:375-386. [PMID: 29785715 DOI: 10.1002/pca.2769] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. OBJECTIVE To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. METHODOLOGY The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. RESULTS In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. CONCLUSION Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, 430074, Wuhan, China
| | - Bill X Huang
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, 430074, Wuhan, China
| |
Collapse
|
39
|
Mosquera C, Panay AJ, Montoya G. Pentacyclic Triterpenes from Cecropia telenitida Can Function as Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1. Molecules 2018; 23:molecules23061444. [PMID: 29899225 PMCID: PMC6099733 DOI: 10.3390/molecules23061444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 11/16/2022] Open
Abstract
Plant extracts from the genus Cecropia have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous results have shown that roots of Cecropia telenitida contain pentacyclic triterpenes and these molecules display a hypoglycemic effect in an insulin-resistant murine model. The pharmacological target of these molecules, however, remains unknown. Several lines of evidence indicate that pentacyclic triterpenes inhibit the 11β-hydroxysteroid dehydrogenase type 1 enzyme, which highlights the potential use of this type of natural product as phytotherapeutic or botanical dietary supplements. The main goal of the study was the evaluation of the inhibitory effect of Cecropia telenitida molecules on 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. A pre-fractionated chemical library was obtained from the roots of Cecropia telenitida using several automated chromatography separation steps and a homogeneous time resolved fluorescence assay was used for the bio-guided isolation of inhibiting molecules. The screening of a chemical library consisting of 125 chemical purified fractions obtained from Cecropia telenitida roots identified one fraction displaying 82% inhibition of the formation of cortisol by the 11β-hydroxysteroid dehydrogenase type 1 enzyme. Furthermore, a molecule displaying IC50 of 0.95 ± 0.09 µM was isolated from this purified fraction and structurally characterized, which confirms that a pentacyclic triterpene scaffold was responsible for the observed inhibition. Our results support the hypothesis that pentacyclic triterpene molecules from Cecropia telenitida can inhibit 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. These findings highlight the potential ethnopharmacological use of plants from the genus Cecropia for the treatment of metabolic disorders and diabetes.
Collapse
Affiliation(s)
- Catalina Mosquera
- Department of Chemical Sciences, Faculty of Natural Sciences, Universidad Icesi, Cali, Valle del Cauca 760031, Colombia.
| | - Aram J Panay
- Department of Chemical Sciences, Faculty of Natural Sciences, Universidad Icesi, Cali, Valle del Cauca 760031, Colombia.
| | - Guillermo Montoya
- Department of Pharmaceutical Sciences, Faculty of Natural Sciences, Universidad Icesi, Calle 18 # 122⁻135, Cali, Valle del Cauca 760031, Colombia.
| |
Collapse
|
40
|
Wu SQ, Song HP, Li B, Liu RZ, Yang H, He L, Li P. A fast and accurate method for the identification of peroxidase inhibitors from Radix Salvia Miltiorrhizae by on-flow biochemical assay coupled with LC/Q-TOF-MS: comparison with ultrafiltration-based affinity selection. Anal Bioanal Chem 2018; 410:4311-4322. [DOI: 10.1007/s00216-018-1081-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/21/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
|
41
|
Nothias LF, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. JOURNAL OF NATURAL PRODUCTS 2018; 81:758-767. [PMID: 29498278 DOI: 10.1021/acs.jnatprod.7b00737] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is a common problem in natural product therapeutic lead discovery programs that despite good bioassay results in the initial extract, the active compound(s) may not be isolated during subsequent bioassay-guided purification. Herein, we present the concept of bioactive molecular networking to find candidate active molecules directly from fractionated bioactive extracts. By employing tandem mass spectrometry, it is possible to accelerate the dereplication of molecules using molecular networking prior to subsequent isolation of the compounds, and it is also possible to expose potentially bioactive molecules using bioactivity score prediction. Indeed, bioactivity score prediction can be calculated with the relative abundance of a molecule in fractions and the bioactivity level of each fraction. For that reason, we have developed a bioinformatic workflow able to map bioactivity score in molecular networks and applied it for discovery of antiviral compounds from a previously investigated extract of Euphorbia dendroides where the bioactive candidate molecules were not discovered following a classical bioassay-guided fractionation procedure. It can be expected that this approach will be implemented as a systematic strategy, not only in current and future bioactive lead discovery from natural extract collections but also for the reinvestigation of the untapped reservoir of bioactive analogues in previous bioassay-guided fractionation efforts.
Collapse
Affiliation(s)
- Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Mélissa Nothias-Esposito
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Ricardo da Silva
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Ivan Protsyuk
- European Molecular Biology Laboratory, EMBL , Heidelberg , Germany
| | - Zheng Zhang
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Abi Sarvepalli
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Pieter Leyssen
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research , KU Leuven , 3000 Leuven , Belgium
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Jean Costa
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Julien Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Theodore Alexandrov
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
- European Molecular Biology Laboratory, EMBL , Heidelberg , Germany
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
42
|
How to Study Antimicrobial Activities of Plant Extracts: A Critical Point of View. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2018. [DOI: 10.1007/978-3-319-67045-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Gomes NG, Pereira DM, Valentão P, Andrade PB. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J Pharm Biomed Anal 2018; 147:234-249. [DOI: 10.1016/j.jpba.2017.07.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022]
|
44
|
Parker CG, Kuttruff CA, Galmozzi A, Jørgensen L, Yeh CH, Hermanson DJ, Wang Y, Artola M, McKerrall SJ, Josyln CM, Nørremark B, Dünstl G, Felding J, Saez E, Baran PS, Cravatt BF. Chemical Proteomics Identifies SLC25A20 as a Functional Target of the Ingenol Class of Actinic Keratosis Drugs. ACS CENTRAL SCIENCE 2017; 3:1276-1285. [PMID: 29296668 PMCID: PMC5746860 DOI: 10.1021/acscentsci.7b00420] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Indexed: 05/29/2023]
Abstract
The diterpenoid ester ingenol mebutate (IngMeb) is the active ingredient in the topical drug Picato, a first-in-class treatment for the precancerous skin condition actinic keratosis. IngMeb is proposed to exert its therapeutic effects through a dual mode of action involving (i) induction of cell death that is associated with mitochondrial dysfunction followed by (ii) stimulation of a local inflammatory response, at least partially driven by protein kinase C (PKC) activation. Although this therapeutic model has been well characterized, the complete set of molecular targets responsible for mediating IngMeb activity remains ill-defined. Here, we have synthesized a photoreactive, clickable analogue of IngMeb and used this probe in quantitative proteomic experiments to map several protein targets of IngMeb in human cancer cell lines and primary human keratinocytes. Prominent among these targets was the mitochondrial carnitine-acylcarnitine translocase SLC25A20, which we show is inhibited in cells by IngMeb and the more stable analogue ingenol disoxate (IngDsx), but not by the canonical PKC agonist 12-O-tetradecanoylphorbol-13-acetate (TPA). SLC25A20 blockade by IngMeb and IngDsx leads to a buildup of cellular acylcarnitines and blockade of fatty acid oxidation (FAO), pointing to a possible mechanism for IngMeb-mediated perturbations in mitochondrial function.
Collapse
Affiliation(s)
- Christopher G. Parker
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christian A. Kuttruff
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Andrea Galmozzi
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lars Jørgensen
- Research
& Development, LEO Pharma, DK-2750 Ballerup, Denmark
| | - Chien-Hung Yeh
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Daniel J. Hermanson
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yujia Wang
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Marta Artola
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Steven J. McKerrall
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Christopher M. Josyln
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | - Georg Dünstl
- Research
& Development, LEO Pharma, DK-2750 Ballerup, Denmark
| | - Jakob Felding
- Research
& Development, LEO Pharma, DK-2750 Ballerup, Denmark
| | - Enrique Saez
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department
of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
45
|
Mass spectrometry for fragment screening. Essays Biochem 2017; 61:465-473. [PMID: 28986384 DOI: 10.1042/ebc20170071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening.
Collapse
|
46
|
HPLC-MS profiling of the multidrug-resistance modifying resin glycoside content of Ipomoea alba seeds. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Muller CJF, Malherbe CJ, Chellan N, Yagasaki K, Miura Y, Joubert E. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit Rev Food Sci Nutr 2017; 58:227-246. [PMID: 27305453 DOI: 10.1080/10408398.2016.1157568] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Risk factors of type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD) cluster together and are termed the metabolic syndrome. Key factors driving the metabolic syndrome are inflammation, oxidative stress, insulin resistance (IR), and obesity. IR is defined as the impairment of insulin to achieve its physiological effects, resulting in glucose and lipid metabolic dysfunction in tissues such as muscle, fat, kidney, liver, and pancreatic β-cells. The potential of rooibos extract and its major C-glucosyl flavonoids, in particular aspalathin, a C-glucoside dihydrochalcone, as well as the phenolic precursor, Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, to prevent the metabolic syndrome, will be highlighted. The mechanisms whereby these phenolic compounds elicit positive effects on inflammation, cellular oxidative stress and transcription factors that regulate the expression of genes involved in glucose and lipid metabolism will be discussed in terms of their potential in ameliorating features of the metabolic syndrome and the development of serious metabolic disease. An overview of the phenolic composition of rooibos and the changes during processing will provide relevant background on this herbal tea, while a discussion of the bioavailability of the major rooibos C-glucosyl flavonoids will give insight into a key aspect of the bioefficacy of rooibos.
Collapse
Affiliation(s)
- Christo J F Muller
- a Biomedical Research and Innovation Platform , South African Medical Research Council , Tygerberg , South Africa
| | - Christiaan J Malherbe
- b Post-Harvest and Wine Technology Division , Agricultural Research Council (ARC), Infruitec-Nietvoorbij , Stellenbosch , South Africa
| | - Nireshni Chellan
- a Biomedical Research and Innovation Platform , South African Medical Research Council , Tygerberg , South Africa
| | - Kazumi Yagasaki
- c Division of Applied Biological Chemistry , Institute of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan.,d Center for Bioscience Research and Education , Utsunomiya University , Utsunomiya , Tochigi , Japan
| | - Yutaka Miura
- c Division of Applied Biological Chemistry , Institute of Agriculture, Tokyo University of Agriculture and Technology , Fuchu , Tokyo , Japan
| | - Elizabeth Joubert
- b Post-Harvest and Wine Technology Division , Agricultural Research Council (ARC), Infruitec-Nietvoorbij , Stellenbosch , South Africa.,e Department of Food Science , Stellenbosch University, Private Bag X1, Matieland Stellenbosch , South Africa
| |
Collapse
|
48
|
Moradi-Afrapoli F, Ebrahimi SN, Smiesko M, Hamburger M. HPLC-Based Activity Profiling for GABA A Receptor Modulators in Extracts: Validation of an Approach Utilizing a Larval Zebrafish Locomotor Assay. JOURNAL OF NATURAL PRODUCTS 2017; 80:1548-1557. [PMID: 28485933 DOI: 10.1021/acs.jnatprod.7b00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gamma-aminobutyric acid type A (GABAA) receptors are major inhibitory neurotransmitter receptors in the central nervous system and a target for numerous clinically important drugs used to treat anxiety, insomnia, and epilepsy. A series of allosteric GABAA receptor agonists was identified previously with the aid of HPLC-based activity profiling, whereby activity was tracked with an electrophysiological assay in Xenopus laevis oocytes. To accelerate the discovery process, an approach has been established for HPLC-based profiling using a larval zebrafish (Danio rerio) seizure model induced by pentylenetetrazol (PTZ), a pro-convulsant GABAA receptor antagonist. The assay was validated with the aid of representative GABAergic plant compounds and extracts. Various parameters that are relevant for the quality of results obtained, including PTZ concentration, the number of larvae, the incubation time, and the data analysis protocol, were optimized. The assay was then translated into an HPLC profiling protocol, and active compounds were tracked in extracts of Valeriana officinalis and Magnolia officinalis. For selected compounds the effects in the zebrafish larvae model were compared with data from in silico blood-brain barrier (BBB) permeability predictions, to validate the use for discovery of BBB-permeable natural products.
Collapse
Affiliation(s)
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University , G. C., Evin, Tehran, Iran
| | | | | |
Collapse
|
49
|
Ochoa A, Álvarez-Bohórquez E, Castillero E, Olguin LF. Detection of Enzyme Inhibitors in Crude Natural Extracts Using Droplet-Based Microfluidics Coupled to HPLC. Anal Chem 2017; 89:4889-4896. [DOI: 10.1021/acs.analchem.6b04988] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Abraham Ochoa
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Enrique Álvarez-Bohórquez
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Eduardo Castillero
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Luis F. Olguin
- Laboratorio de Biofisicoquímica,
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
50
|
Bräm S, Wolfram E. Recent Advances in Effect-directed Enzyme Assays based on Thin-layer Chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:74-86. [PMID: 28146298 DOI: 10.1002/pca.2669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Thin-layer chromatography (TLC) together with its more modern form high-performance thin-layer chromatography (HPTLC) is a rapid and cost effective analytical tool with a long tradition in quality control of medicinal plants, extracts and natural products. Separated compounds are fixed on the solid silica phase to form a compound library. Through direct coupling of visualisable enzyme reactions on the TLC plate, this compound library can also be used for activity screening. Such TLC-based bioautographic enzyme and enzyme inhibition assays complement first stage development activity screening assays. They provide not only phytochemical results by chromatographic separation, but also additional information about the activity of constituents or fractions in multi-compound mixtures, and thus can reveal and distinguish artefacts generated by certain compound classes. This review summarises recently introduced TLC bioautographic enzyme assays as well as advances in already existing procedures. Bioautographic enzyme and enzyme inhibitory assays offer a rapid, high-throughput method for screening of secondary metabolite profiles for potential enzyme and enzyme inhibitory activities. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah Bräm
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Phytopharmacy and Natural Products Research Group, CH, -8820, Wädenswil, Switzerland
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Phytopharmacy and Natural Products Research Group, CH, -8820, Wädenswil, Switzerland
| |
Collapse
|