1
|
Wu J, Verboom KL, Krische MJ. Catalytic Enantioselective C-C Coupling of Alcohols for Polyketide Total Synthesis beyond Chiral Auxiliaries and Premetalated Reagents. Chem Rev 2024; 124:13715-13735. [PMID: 39642170 DOI: 10.1021/acs.chemrev.4c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Catalytic enantioselective hydrogen autotransfer reactions for the direct conversion of lower alcohols to higher alcohols are catalogued and their application to the total synthesis of polyketide natural products is described. These methods exploit a redox process in which alcohol oxidation is balanced by reductive generation of organometallic nucleophiles from unsaturated hydrocarbon pronucleophiles. Unlike classical carbonyl additions, premetalated reagents, chiral auxiliaries and discrete alcohol-to-aldehyde redox reactions are not required. Additionally, chemoselective dehydrogenation of primary alcohols in the presence of secondary alcohols enables C-C coupling in the absence of protecting groups.
Collapse
Affiliation(s)
- Jessica Wu
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Katherine L Verboom
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St., Welch Hall (A5300), Austin, Texas 78712, United States
| |
Collapse
|
2
|
Hu G, Doerksen RS, Ambler BR, Krische MJ. Total Synthesis of the Phenylnaphthacenoid Type II Polyketide Antibiotic Formicamycin H via Regioselective Ruthenium-Catalyzed Hydrogen Auto-Transfer [4 + 2] Cycloaddition. J Am Chem Soc 2024; 146:26351-26359. [PMID: 39265189 PMCID: PMC11470536 DOI: 10.1021/jacs.4c09068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The first total synthesis of the pentacyclic phenylnaphthacenoid type II polyketide antibiotic formicamycin H is described. A key feature of the synthesis involves the convergent, regioselective assembly of the tetracyclic core via ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition. Double dehydration of the diol-containing cycloadduct provides an achiral enone, which upon asymmetric nucleophilic epoxidation and further manipulations delivers the penultimate tetracyclic trichloride in enantiomerically enriched form. Subsequent chemo- and atroposelective Suzuki cross-coupling of the tetracyclic trichloride introduces the E-ring to complete the total synthesis. Single-crystal X-ray diffraction analyses of two model compounds suggest that the initially assigned stereochemistry of the axially chiral C6-C7 linkage may require revision.
Collapse
Affiliation(s)
| | | | - Brett R. Ambler
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
3
|
Pieper K, Bleith R, Köhler C, Mika R, Gansäuer A. A Flexible Synthesis of Polypropionates via Diastereodivergent Reductive Ring-Opening of Trisubstituted Secondary Glycidols. Angew Chem Int Ed Engl 2024; 63:e202317525. [PMID: 38108105 DOI: 10.1002/anie.202317525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Polypropionates, characterized by their alternating sequence of stereocenters bearing methyl- and hydroxy-groups, are structurally diverse natural products of utmost importance.[1] Herein, we introduce a novel concept approach towards polypropionate synthesis featuring a diastereodivergent reductive epoxide-opening as a key step. Readily available and stereochemically uniform trisubstituted sec-glycidols serve as branching points for the highly selective synthesis of all isomers of polypropionate building blocks with three or more consecutive stereocenters. Stereodiversification is accomplished by an unprecedented mechanism-control over the stereochemically complementary modification of the epoxide's tertiary C-atom with excellent control of regio- and stereoselectivity. Since our method is not only suited for the preparation of specific targets but also for compound libraries, it will have a great impact on polypropionate synthesis.
Collapse
Affiliation(s)
- Katharina Pieper
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Robin Bleith
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Christian Köhler
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Regine Mika
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
4
|
Sutro JL, Fürstner A. Total Synthesis of the Allenic Macrolide (+)-Archangiumide. J Am Chem Soc 2024; 146:2345-2350. [PMID: 38241031 PMCID: PMC10835656 DOI: 10.1021/jacs.3c13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Archangiumide is the first known macrolide natural product comprising an endocyclic allene. For the ring strain that this linear substructure might entail, it was planned to unveil the allene at a very late stage of the projected total synthesis; in actual fact, this was achieved as the last step of the longest linear sequence by using an otherwise globally deprotected substrate. This unconventional timing was made possible by a gold catalyzed rearrangement of a macrocyclic propargyl benzyl ether derivative that uses a -PMB group as latent hydride source to unveil the signature cycloallene; the protecting group therefore gains a strategic role beyond its mere safeguarding function. Although the gold catalyzed reaction per se is stereoablative, the macrocyclic frame of the target was found to impose high selectivity and a stereoconvergent character on the transformation. The required substrate was formed by ring closing alkyne metathesis (RCAM) with the aid of a new air-stable molybdenum alkylidyne catalyst.
Collapse
Affiliation(s)
- Jack L. Sutro
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
5
|
Zhang QC, Zhong Q, Zhao J. Catalyst-Free Propargylboration of Ketones with Allenyl-Bpins: Highly Stereoselective Synthesis of tert-Homopropargyl Alcohols Bearing Vicinal Stereocenters. Chemistry 2023; 29:e202302883. [PMID: 37803409 DOI: 10.1002/chem.202302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
A practical and efficient propargylboration of ketones is presented using general allenylboronic acid pinacol esters (allenyl-Bpins) without a catalyst. This reaction is triggered by in-situ activation of stable allenyl-Bpins through the sequential addition of 1.25 equiv. of n BuLi and the prerequisite 2.0 equiv. of TFAA. Under the optimized reaction conditions, the versatile trisubstituted allenyl-Bpins react with various ketones smoothly to afford a wide range of tert-homopropargyl alcohols bearing vicinal stereocenters in high yields with good to excellent diastereoselectivities. Furthermore, propargylboration of ketones with chiral trisubstituted allenyl-Bpins allows for the asymmetric synthesis of chiral tert-homopropargyl alcohols with a full chirality transfer.
Collapse
Affiliation(s)
- Qian-Cheng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jian Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Tost M, Kazmaier U. Stereoselective Synthesis of Secondary and Tertiary Boronic Esters via Matteson Homologation. Org Lett 2023; 25:6835-6839. [PMID: 37695257 DOI: 10.1021/acs.orglett.3c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Matteson homologations of chiral boronic esters with lithium dichlorocarbenoids and various nucleophiles proved to be a useful method for the synthesis of functionalized polyketides in a highly stereoselective fashion. Via repeated homologation steps, only 1,2-anti- and 1,3-syn-configured products were obtained. Homologation with substituted carbenoids followed by reaction with carbon nucleophiles resulted in configurationally inverted products and tertiary boronic esters in a highly stereoselective fashion. This approach significantly expands the potential of the Matteson reaction.
Collapse
Affiliation(s)
- Markus Tost
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbruecken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus, Building C4.2, D-66123 Saarbruecken, Germany
| |
Collapse
|
7
|
Ma JT, Zhang T, Yao BY, Xiao LJ, Zhou QL. Diastereodivergent and Enantioselective Synthesis of Homoallylic Alcohols via Nickel-Catalyzed Borylative Coupling of 1,3-Dienes with Aldehydes. J Am Chem Soc 2023; 145:19195-19201. [PMID: 37616490 DOI: 10.1021/jacs.3c07697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We present the first enantioselective nickel-catalyzed borylative coupling of 1,3-dienes with aldehydes, providing an efficient route to highly valuable homoallylic alcohols in a single step. The reaction involves the 1,4-carboboration of dienes, leading to the formation of C-C and C-B bonds accompanied by the construction of two continuous stereogenic centers. Enabled by a chiral spiro phosphine-oxazoline nickel complex, this transformation yields products with exceptional diastereoselectivity, E-selectivity, and enantioselectivity. The diastereoselectivity of the reaction can be controlled by employing either (Z)-1,3-dienes or (E)-1,3-dienes.
Collapse
Affiliation(s)
- Jin-Tao Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Tianze Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Bo-Ying Yao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li-Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Huynh NO, Hodík T, Krische MJ. Enantioselective Transfer Hydrogenative Cycloaddition Unlocks the Total Synthesis of SF2446 B3: An Aglycone of Arenimycin and SF2446 Type II Polyketide Antibiotics. J Am Chem Soc 2023; 145:17461-17467. [PMID: 37494281 PMCID: PMC10443208 DOI: 10.1021/jacs.3c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The first total synthesis and structure validation of an arenimycin/SF2446 type II polyketide is described, as represented by de novo construction of SF2446 B3, the aglycone shared by this family of type II polyketides. Ruthenium-catalyzed α-ketol-benzocyclobutenone [4 + 2] cycloaddition, which occurs via successive stereoablation-stereoregeneration, affects a double dynamic kinetic asymmetric transformation wherein two racemic starting materials combine to form the congested angucycline bay region with control of regio-, diastereo-, and enantioselectivity. This work represents the first application of transfer hydrogenative cycloaddition and enantioselective intermolecular metal-catalyzed C-C bond activation in target-oriented synthesis.
Collapse
Affiliation(s)
- Nancy O Huynh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Gettler J, Čarný T, Markovič M, Koóš P, Samoľová E, Moncoľ J, Gracza T. Synthetic Study of Natural Metabolites Containing a Benzo[ c]oxepine Skeleton: Heterocornol C and D. Int J Mol Sci 2023; 24:10331. [PMID: 37373480 DOI: 10.3390/ijms241210331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
A versatile strategy for the enantioselective synthesis of a benzo[c]oxepine structural core containing natural secondary metabolites was developed. The key steps of the synthetic approach include ring-closing alkene metathesis for seven-member ring construction, the Suzuki-Miyaura cross-coupling reaction for the installation of the double bond and Katsuki-Sharpless asymmetric epoxidation for the introduction of chiral centers. The first total synthesis and absolute configuration assignment of heterocornol D (3a) were achieved. Four stereoisomers, 3a, ent-3a, 3b and ent-3b, of this natural polyketide were prepared, starting with 2,6-dihydroxy benzoic acid and divinyl carbinol. The absolute and relative configuration of heterocornol D was assigned via single-crystal X-ray analysis. The extension of the described synthetic approach is further presented with the synthesis of heterocornol C by applying the ether group reduction method to the lactone.
Collapse
Affiliation(s)
- Ján Gettler
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tomáš Čarný
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
- Georganics Ltd., Koreničova 1, SK-811 03 Bratislava, Slovakia
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
- Georganics Ltd., Koreničova 1, SK-811 03 Bratislava, Slovakia
| | - Erika Samoľová
- Institute of Physics of the Czech Academy of Science, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Institute of Inorganic Chemistry, Technology and Materials, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| | - Tibor Gracza
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
| |
Collapse
|
10
|
Meyer CC, Verboom KL, Evarts MM, Jung WO, Krische MJ. Allyl Alcohol as an Acrolein Equivalent in Enantioselective C-C Coupling: Total Synthesis of Amphidinolides R, J, and S. J Am Chem Soc 2023; 145:8242-8247. [PMID: 36996284 PMCID: PMC10101927 DOI: 10.1021/jacs.3c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The first systematic study of catalytic enantioselective 1,2-additions to acrolein is described. Specifically, using allyl alcohol as a tractable, inexpensive acrolein proelectrophile, iridium-catalyzed acrolein allylation is achieved with high levels of regio-, anti-diastereo-, and enantioselectivity. This process delivers 3-hydroxy-1,5-hexadienes, a useful compound class that is otherwise challenging to access via enantioselective catalysis. Two-fold use of this method unlocks concise total syntheses of amphidinolide R (9 vs 23 steps, LLS) and amphidinolide J (9 vs 23 or 26 steps, LLS), which are prepared in fewer than half the steps previously possible, and the first total synthesis of amphidinolide S (10 steps, LLS).
Collapse
Affiliation(s)
- Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katherine L Verboom
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madeline M Evarts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Saludares C, Ortiz E, Santana CG, Spinello BJ, Krische MJ. Asymmetric Ruthenium-Catalyzed Carbonyl Allylations by Gaseous Allene via Hydrogen Auto-Transfer: 1° vs 2° Alcohol Dehydrogenation for Streamlined Polyketide Construction. ACS Catal 2023; 13:1662-1668. [PMID: 37869365 PMCID: PMC10586519 DOI: 10.1021/acscatal.2c05425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols 2a-2r with the gaseous allene (propadiene) 1a to form enantiomerically enriched homoallylic alcohols 3a-3r with complete atom-efficiency. Using formic acid as reductant, aldehydes dehydro-2a and dehydro-2c participate in reductive C-C coupling with allene to deliver adducts 3a and 3c with comparable levels of asymmetric induction. Deuterium labeling studies corroborate a mechanism in which alcohol dehydrogenation triggers allene hydroruthenation to form transient allylruthenium-aldehyde pairs that participate in carbonyl addition. Notably, due to a kinetic preference for primary alcohol dehydrogenation, chemoselective C-C coupling of 1°,2°-1,3-diols occurs in the absence of protecting groups. As illustrated by the synthesis of C7-C15 of spirastrellolide B and F (7 vs 17 steps), C3-C10 of cryptocarya diacetate (3 vs 7 or 9 steps), and a fragment common to C8'-C14' of mycolactone F (1 vs 4 steps) and C22-C28 marinomycin A (1 vs 9 steps), this capability streamlines type I polyketide construction.
Collapse
Affiliation(s)
- Connor Saludares
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Cate G Santana
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Brian J Spinello
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. Austin, TX 78712, USA
| |
Collapse
|
12
|
Ng TW, Tao R, See WWL, Poh SB, Zhao Y. Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202212528. [PMID: 36374610 DOI: 10.1002/anie.202212528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/16/2022]
Abstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Collapse
Affiliation(s)
- Teng Wei Ng
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ran Tao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Willy Wei Li See
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Si Bei Poh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
13
|
Benzyl Alcohol/Salicylaldehyde-Type Polyketide Metabolites of Fungi: Sources, Biosynthesis, Biological Activities, and Synthesis. Mar Drugs 2022; 21:md21010019. [PMID: 36662192 PMCID: PMC9860963 DOI: 10.3390/md21010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Marine microorganisms are an important source of natural polyketides, which have become a significant reservoir of lead structures for drug design due to their diverse biological activities. In this review, we provide a summary of the resources, structures, biological activities, and proposed biosynthetic pathways of the benzyl alcohol/salicylaldehyde-type polyketides. In addition, the total syntheses of these secondary metabolites from their discoveries to the present day are presented. This review could be helpful for researchers in the total synthesis of complex natural products and the use of polyketide bioactive molecules for pharmacological purposes and applications in medicinal chemistry.
Collapse
|
14
|
Liang X, Yoo M, Schempp T, Maejima S, Krische MJ. Ruthenium-Catalyzed Butadiene-Mediated Crotylation and Oxazaborolidine-Catalyzed Vinylogous Mukaiyama Aldol Reaction for The Synthesis of C1-C19 and C23-C35 of Neaumycin B. Angew Chem Int Ed Engl 2022; 61:e202214786. [PMID: 36322115 PMCID: PMC9772151 DOI: 10.1002/anie.202214786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Neaumycin B is a femtomolar inhibitor of U87 human glioblastoma. Using a newly developed anti-diastereoselective ruthenium-catalyzed butadiene-mediated crotylation of primary alcohol proelectrophiles via hydrogen auto-transfer, as well as a novel variant of the catalytic asymmetric vinylogous Mukaiyama aldol (VMA) reaction applicable to linear aliphatic aldehydes and terminally methylated dienyl ketene acetals, preparation of the key C1-C19 and C23-C35 substructures of neaumycin B is achieved in 12 and 7 steps (LLS), respectively.
Collapse
Affiliation(s)
- Xinting Liang
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Tabitha Schempp
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Saki Maejima
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
15
|
Ortiz E, Spinello BJ, Cho Y, Wu J, Krische MJ. Stereo- and Site-Selective Crotylation of Alcohol Proelectrophiles via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by Methylallene and Butadiene. Angew Chem Int Ed Engl 2022; 61:e202212814. [PMID: 36201364 PMCID: PMC9712268 DOI: 10.1002/anie.202212814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Iodide-bound ruthenium-JOSIPHOS complexes catalyze the redox-neutral C-C coupling of primary alcohols with methylallene (1,2-butadiene) or 1,3-butadiene to form products of anti-crotylation with good to excellent levels of diastereo- and enantioselectivity. Distinct from other methods, direct crotylation of primary alcohols in the presence of unprotected secondary alcohols is possible, enabling generation of spirastrellolide B (C9-C15) and leucascandrolide A (C9-C15) substructures in significantly fewer steps than previously possible.
Collapse
Affiliation(s)
| | | | - Yoon Cho
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Jessica Wu
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712-1167 (USA)
| |
Collapse
|
16
|
Ruthenium‐Catalyzed Butadiene‐Mediated Crotylation and Oxazaborolidine‐Catalyzed Vinylogous Mukaiyama Aldol Reaction for The Synthesis of C1–C19 and C23–C35 of Neaumycin B. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Shao N, Rodriguez J, Quintard A. Catalysis Driven Six-Step Synthesis of Apratoxin A Key Polyketide Fragment. Org Lett 2022; 24:6537-6542. [PMID: 36073851 DOI: 10.1021/acs.orglett.2c02482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apratoxin A is a potent anticancer natural product whose key polyketide fragment constitutes a considerable challenge for organic synthesis, with five prior syntheses requiring 12 to 20 steps for its preparation. By combining different redox-economical catalytic stereoselective transformations, the key polyketide fragment could be rapidly prepared. Followed by a site-selective protection of the diol, this strategy enables the preparation of the apratoxin A fragment in only six steps, representing the shortest route to this polyketide.
Collapse
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13007 Marseille, France.,Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
18
|
Pérez-Palau M, Balaguer-Garcia E, Romea P, Urpí F. Optimized Asymmetric Synthesis of Umuravumbolide. ACS OMEGA 2022; 7:30835-30840. [PMID: 36092614 PMCID: PMC9453790 DOI: 10.1021/acsomega.2c02304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Herein, the asymmetric synthesis of umuravumbolide (1) is described. The new approach features highly stereoselective transformations (dr ≥ 95:5) to install both stereocenters and the Z olefin, which involve a new radical alkylation, an Ando olefination, and a Krische allylation on a Z allylic alcohol, not reported before. The application of such successful reactions, together with the limited use of protecting groups and concession steps, makes it possible to complete the synthesis in 10 steps, resulting in a 39% overall yield from chiral N-acyl oxazolidinone 2.
Collapse
|
19
|
Stivala CE, Zbieg JR, Liu P, Krische MJ. Chiral Amines via Enantioselective π-Allyliridium- C, O-Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial-Academic Collaboration. Acc Chem Res 2022; 55:2138-2147. [PMID: 35830564 PMCID: PMC9608351 DOI: 10.1021/acs.accounts.2c00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusCyclometalated π-allyliridium-C,O-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-C,O-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope. Specifically, using racemic branched alkyl-substituted allylic acetate proelectrophiles, primary and secondary aliphatic or aromatic amines, including indoles, engage in highly regio- and enantioselective allylic amination. Additionally, unactivated nitronates were found to be competent nucleophilic partners for regio- and enantioselective allylic alkylation, enabling entry to β-stereogenic α-quaternary primary amines. Notably, these π-allyliridium-C,O-benzoate-catalyzed allylic substitutions, which display complete branched regioselectivity in reactions of alkyl-substituted allyl electrophiles, complement the scope of corresponding iridium phosphoramidite-catalyzed allylic aminations, which require aryl-substituted allyl electrophiles to promote high levels of branched regioselectivity. Computational, kinetic, ESI-CID-MS, and isotopic labeling studies were undertaken to understand the mechanism of these processes, including the origins of regio- and enantioselectivity. Isotopic labeling studies suggest that C-N bond formation occurs through outer-sphere addition to the π-allyl. DFT calculations corroborate C-N bond formation via outer-sphere addition and suggest that early transition states and distinct trans effects of diastereomeric chiral-at-iridium π-allyl complexes render the reaction less sensitive to steric effects, accounting for complete levels of branched regioselectivity in reactions of hindered amine and nitronate nucleophiles. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, a first-order dependence on the catalyst, and a fractional-order dependence on the amine. As corroborated by ESI-CID-MS analysis, the 0.4 kinetic order dependence on the amine may reflect the intervention of cesium-bridged amine dimers, which dissociate to form monomeric cesium amide nucleophiles. Hence, the requirement of cesium carbonate (vs lower alkali metal carbonates) in these processes may reside in cesium's capacity for Lewis acid-enhanced Brønsted acidification of the amine pronucleophile. Beyond the development of catalytic processes for the synthesis of novel chiral amines, the present research was conducted by graduate students who benefited from career development experiences associated with training in both academic and industrial laboratories.
Collapse
Affiliation(s)
- Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Abstract
Indolizidine alkaloids have been the target of chemical and biological studies for decades, most recently highlighted by the isolation of the curvulamine and bipolamine polypyrrole-containing subclass. Herein we report a stereoselective 15-step synthesis of bipolamine I, a distinct member of the broader family, and through this work develop an intermediate that will serve to access other polypyrrole natural products and key analogues going forward.
Collapse
Affiliation(s)
- Xiang Qiu
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry and Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
21
|
Ortiz E, Chang YH, Shezaf JZ, Shen W, Krische MJ. Stereo- and Site-Selective Conversion of Primary Alcohols to Allylic Alcohols via Ruthenium-Catalyzed Hydrogen Auto-Transfer Mediated by 2-Butyne. J Am Chem Soc 2022; 144:8861-8869. [PMID: 35503919 DOI: 10.1021/jacs.2c03614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first enantioselective ruthenium-catalyzed carbonyl vinylations via hydrogen autotransfer are described. Using a ruthenium-JOSIPHOS catalyst, primary alcohols 2a-2m and 2-butyne 1a are converted to chiral allylic alcohols 3a-3m with excellent levels of absolute stereocontrol. Notably, 1°,2°-1,3-diols participate in site-selective C-C coupling, enabling asymmetric carbonyl vinylation beyond premetalated reagents, exogenous reductants, or hydroxyl protecting groups. Using 2-propanol as a reductant, aldehydes dehydro-2a, 2l participate in highly enantioselective 2-butyne-mediated vinylation under otherwise identical reaction conditions. Regio-, stereo-, and site-selective vinylations mediated by 2-pentyne 1b to form adducts 3n, 3o, and epi-3o also are described. The tiglyl alcohol motif obtained upon butyne-mediated vinylation, which is itself found in diverse secondary metabolites, may be converted to commonly encountered polyketide stereodiads, -triads, and -tetrads, as demonstrated by the formation of adducts 4a-4d. The collective mechanistic studies, including deuterium labeling experiments, corroborate a catalytic cycle involving alcohol dehydrogenation to form a transient aldehyde and a ruthenium hydride, which engages in alkyne hydrometalation to form a nucleophilic vinylruthenium species that enacts carbonyl addition. A stereochemical model for carbonyl addition invoking formyl CH···I[Ru] and CH···O≡C[Ru] hydrogen bonds is proposed based on prior calculations and crystallographic data.
Collapse
Affiliation(s)
- Eliezer Ortiz
- University of Texas at Austin, Department of Chemistry, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu-Hsiang Chang
- University of Texas at Austin, Department of Chemistry, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jonathan Z Shezaf
- University of Texas at Austin, Department of Chemistry, 105 East 24th Street, Austin, Texas 78712, United States
| | - Weijia Shen
- University of Texas at Austin, Department of Chemistry, 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Schempp TT, Krische MJ. Total Synthesis of the Acetyl CoA Carboxylase Inhibitor Soraphen A: Asymmetric Tsuji Reduction Enables Successive Olefin Metathesis. J Am Chem Soc 2022; 144:1016-1022. [PMID: 35005976 PMCID: PMC8852841 DOI: 10.1021/jacs.1c12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The total synthesis of soraphen A, a myxobacterial metabolite and inhibitor of acetyl CoA carboxylase, was completed in 11 steps (longest linear sequence), less than half the steps previously required. Seven metal-catalyzed processes were deployed to unlock step-economy (comprising five asymmetric processes and four C-C bond formations). The present route does not utilize chiral auxiliaries, and four of five C-C bond formations exploit non-premetalated partners. To maximize convergency, an asymmetric Tsuji reduction was developed using a Pd-AntPhos catalyst that allows a metathesis-inactive allylic carbonate to serve as a masked terminal olefin, thereby enabling successive olefin metathesis events.
Collapse
Affiliation(s)
- Tabitha T. Schempp
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Andler O, Kazmaier U. Application of Allylzinc Reagents as Nucleophiles in Matteson Homologations. Org Lett 2021; 23:8439-8444. [PMID: 34633200 DOI: 10.1021/acs.orglett.1c03164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allylzinc reagents are versatile nucleophiles that can be used in Matteson homologations. The linear substitution products are formed almost exclusively, and excellent E selectivities are observed in reactions of reagents with sterically demanding or aryl substituents on the double bond. The allylated boronic esters obtained can be converted into trifluoroborates or subjected to further homologations. Ozonolysis of the double bond provides aldehydes or ketones, and therefore, allylzinc reagents are useful acetaldehyde or ketone enolate equivalents.
Collapse
Affiliation(s)
- Oliver Andler
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany
| | - Uli Kazmaier
- Organic Chemistry I, Saarland University, Campus Building C4.2, D-66123 Saarbrücken, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus C8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
24
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021; 60:24096-24106. [PMID: 34608723 DOI: 10.1002/anie.202107004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 12/14/2022]
Abstract
We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α-CH2 Bpin-substituted crotylboronate. Chiral phosphoric acid (S)-A-catalyzed asymmetric allyl addition with the reagent gave Z-anti-homoallylic alcohols with excellent enantioselectivities and Z-selectivities. When the enantiomeric acid catalyst (R)-A was utilized, the stereoselectivity was completely reversed and E-anti-homoallylic alcohols were obtained with high E-selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA.,Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
25
|
Expeditious Asymmetric Synthesis of Polypropionates Relying on Sulfur Dioxide-Induced C–C Bond Forming Reactions. Catalysts 2021. [DOI: 10.3390/catal11111267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For a long time, the organic chemistry of sulfur dioxide (SO2) consisted of sulfinates that react with carbon electrophiles to generate sulfones. With alkenes and other unsaturated compounds, SO2 generates polymeric materials such as polysulfones. More recently, H-ene, sila-ene and hetero-Diels–Alder reactions of SO2 have been realized under conditions that avoid polymer formation. Sultines resulting from the hetero-Diels–Alder reactions of conjugated dienes and SO2 are formed more rapidly than the corresponding more stable sulfolenes resulting from the cheletropic additions. In the presence of a protic or Lewis acid catalyst, the sultines derived from 1-alkoxydienes are ionized into zwitterionic intermediates bearing 1-alkoxyallylic cation moieties which react with electro-rich alkenes such as enol silyl ethers and allylsilanes with high stereoselectivity. (C–C-bond formation through Umpolung induced by SO2). This produces silyl sulfinates that react with carbon electrophiles to give sulfones (one-pot four component asymmetric synthesis of sulfones), or with Cl2, generating the corresponding sulfonamides that can be reacted in situ with primary and secondary amines (one-pot four component asymmetric synthesis of sulfonamides). Alternatively, Pd-catalyzed desulfinylation generates enantiomerically pure polypropionate stereotriads in one-pot operations. The chirons so obtained are flanked by an ethyl ketone moiety on one side and by a prop-1-en-1-yl carboxylate group on the other. They are ready for two-directional chain elongations, realizing expeditious synthesis of long-chain polypropionates and polyketides. The stereotriads have also been converted into simpler polypropionates such as the cyclohexanone moiety of baconipyrone A and B, Kishi’s stereoheptad unit of rifamycin S, Nicolaou’s C1–C11-fragment and Koert’s C16–CI fragment of apoptolidin A. This has also permitted the first total synthesis of (-)-dolabriferol.
Collapse
|
26
|
Gao S, Duan M, Liu J, Yu P, Houk KN, Chen M. Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Meng Duan
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Jiaming Liu
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles California 90095 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
27
|
Hirao Y, Kanzaki Y, Mitsunuma H, Kanai M. A 4-hydroxyproline/trimethyl borate system for asymmetric synthesis of triple aldols from double aldol cyclic hemiacetals. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Siu YM, Roane J, Krische MJ. Total Synthesis of Leiodermatolide A via Transfer Hydrogenative Allylation, Crotylation, and Propargylation: Polyketide Construction beyond Discrete Allyl- or Allenylmetal Reagents. J Am Chem Soc 2021; 143:10590-10595. [PMID: 34237219 DOI: 10.1021/jacs.1c06062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The total synthesis of leiodermatolide A was accomplished in 13 steps (LLS). Transfer hydrogenative variants of three carbonyl additions that traditionally rely on premetalated reagents (allylation, crotylation, and propargylation) are deployed together in one total synthesis.
Collapse
Affiliation(s)
- Yuk-Ming Siu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - James Roane
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Yoo M, Krische MJ. Total Synthesis of the Spliceosome Modulator Pladienolide B via Asymmetric Alcohol‐Mediated
syn
‐ and
anti
‐Diastereoselective Carbonyl Crotylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minjin Yoo
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
30
|
Yoo M, Krische MJ. Total Synthesis of the Spliceosome Modulator Pladienolide B via Asymmetric Alcohol-Mediated syn- and anti-Diastereoselective Carbonyl Crotylation. Angew Chem Int Ed Engl 2021; 60:13923-13928. [PMID: 33794050 DOI: 10.1002/anie.202103845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/12/2022]
Abstract
The potent spliceosome modulator pladienolide B, which bears 10 stereogenic centers, is prepared in 10 steps (LLS). Asymmetric alcohol-mediated carbonyl crotylations catalyzed by ruthenium and iridium that occur with syn- and anti-diastereoselectivity, respectively, were used to form the C20-C21 and C10-C11 C-C bonds.
Collapse
Affiliation(s)
- Minjin Yoo
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
31
|
Andler O, Kazmaier U. Total synthesis of apratoxin A and B using Matteson's homologation approach. Org Biomol Chem 2021; 19:4866-4870. [PMID: 33998628 DOI: 10.1039/d1ob00713k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Apratoxin A and B, two members of an interesting class of marine cyclodepsipeptides are synthesized in a straightforward manner via Matteson homologation. Starting from a chiral boronic ester, the polyketide fragment of the apratoxins was obtained via five successive homologation steps in an overall yield of 27% and very good diastereoselectivity. This approach is highly flexible and should allow modification also of this part of the natural products, while previous modifications have been carried out mainly in the peptide fragment.
Collapse
Affiliation(s)
- Oliver Andler
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | - Uli Kazmaier
- Organic Chemistry, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany.
| |
Collapse
|
32
|
Santana CG, Krische MJ. From Hydrogenation to Transfer Hydrogenation to Hydrogen Auto-Transfer in Enantioselective Metal-Catalyzed Carbonyl Reductive Coupling: Past, Present, and Future. ACS Catal 2021; 11:5572-5585. [PMID: 34306816 PMCID: PMC8302072 DOI: 10.1021/acscatal.1c01109] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atom-efficient processes that occur via addition, redistribution or removal of hydrogen underlie many large volume industrial processes and pervade all segments of chemical industry. Although carbonyl addition is one of the oldest and most broadly utilized methods for C-C bond formation, the delivery of non-stabilized carbanions to carbonyl compounds has relied on premetalated reagents or metallic/organometallic reductants, which pose issues of safety and challenges vis-à-vis large volume implementation. Catalytic carbonyl reductive couplings promoted via hydrogenation, transfer hydrogenation and hydrogen auto-transfer allow abundant unsaturated hydrocarbons to serve as substitutes to organometallic reagents, enabling C-C bond formation in the absence of stoichiometric metals. This perspective (a) highlights past milestones in catalytic hydrogenation, hydrogen transfer and hydrogen auto-transfer, (b) summarizes current methods for catalytic enantioselective carbonyl reductive couplings, and (c) describes future opportunities based on the patterns of reactivity that animate transformations of this type.
Collapse
Affiliation(s)
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
33
|
Zhang TY, Deng Y, Wei K, Yang YR. Enantioselective Iridium-Catalyzed Allylic Alkylation of Racemic Branched Alkyl-Substituted Allylic Acetates with Malonates. Org Lett 2021; 23:1086-1089. [PMID: 33480703 DOI: 10.1021/acs.orglett.0c04309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regio- and enantioselective allylic substitution of branched alkyl-substituted allylic acetates employing malonates has been achieved through a process that calls for Krische's π-allyliridium C,O-benzoate catalyst. The protocol reported herein can be applied to a diverse set of branched alkyl substrates that are generally not well tolerated in the other two types of Ir-catalyzed allylation.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yu-Rong Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
34
|
Andler O, Kazmaier U. A Straightforward Synthesis of Polyketides via Ester Dienolate Matteson Homologation. Chemistry 2021; 27:949-953. [PMID: 33089903 PMCID: PMC7839490 DOI: 10.1002/chem.202004650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/22/2022]
Abstract
Application of ester dienolates as nucleophiles in Matteson homologations allows for the stereoselective synthesis of highly substituted α,β-unsaturated δ-hydroxy carboxyl acids, structural motifs widespread found in polyketide natural products. The protocol is rather flexible and permits the introduction of substituents and functionalities also at those positions which are not accessible by the commonly used aldol reaction. Therefore, this ester dienolate Matteson approach is an interesting alternative to the "classical" polyketide syntheses.
Collapse
Affiliation(s)
- Oliver Andler
- Institut für Organische ChemieUniversität des SaarlandesCampus C4.266123SaarbrückenGermany
| | - Uli Kazmaier
- Institut für Organische ChemieUniversität des SaarlandesCampus C4.266123SaarbrückenGermany
| |
Collapse
|
35
|
Chen J, Miliordos E, Chen M. Highly Diastereo- and Enantioselective Synthesis of 3,6'-Bisboryl-anti-1,2-oxaborinan-3-enes: An Entry to Enantioenriched Homoallylic Alcohols with A Stereodefined Trisubstituted Alkene. Angew Chem Int Ed Engl 2020; 60:840-848. [PMID: 32986252 DOI: 10.1002/anie.202006420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Indexed: 01/17/2023]
Abstract
A Cu-catalyzed regio-, diastereo-, and enantioselective carboboration of 1,1-bisboryl-1,3-butadiene is developed to generate enantioenriched 3,6'-bisboryl-anti-1,2-oxaborinan-3-enes. DFT calculations indicate that the initial diene 1,2-borocupration forms a 3 η-allylic copper as the most stable intermediate. Subsequent aldehyde addition, however, operates under Curtin-Hammett control via a more reactive α,α-bisboryl tertiary allylcopper species to furnish products with high enantioselectivities. The three boryl groups in the products are properly differentiated and can undergo a variety of chemoselective transformations to produce enantioenriched homoallylic alcohols with a stereodefined trisubstituted alkene.
Collapse
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
36
|
Chen J, Miliordos E, Chen M. Highly Diastereo‐ and Enantioselective Synthesis of 3,6′‐Bisboryl‐
anti
‐1,2‐oxaborinan‐3‐enes: An Entry to Enantioenriched Homoallylic Alcohols with A Stereodefined Trisubstituted Alkene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| | - Ming Chen
- Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
| |
Collapse
|
37
|
Friedrich RM, Friestad GK. Inspirations from tetrafibricin and related polyketides: new methods and strategies for 1,5-polyol synthesis. Nat Prod Rep 2020; 37:1229-1261. [PMID: 32412021 DOI: 10.1039/c9np00070d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2019 Selective synthesis with control of remote stereogenic centers has long been a challenge in organic chemistry. In recent years the interest in this topic has been energized by isolation and synthetic studies of tetrafibricin and other natural products containing 1,5-polyols, such as amphidinol 3, marinomycins, and caylobolide. Here we discuss recent developments in 1,5-polyol synthesis, including an overview of selected bioactive natural products in this class and examples of new synthetic methodologies and strategies dedicated to remote stereocontrol in these structures. To illustrate in greater depth, we review several instructive examples of how these innovations have been applied in synthetic studies on tetrafibricin.
Collapse
Affiliation(s)
- Ryan M Friedrich
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| | - Gregory K Friestad
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
| |
Collapse
|
38
|
Ruthenium-catalysed multicomponent synthesis of the 1,3-dienyl-6-oxy polyketide motif. Nat Chem 2020; 12:629-637. [PMID: 32483385 DOI: 10.1038/s41557-020-0464-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Polyketide natural products are an important class of biologically active compounds. Although substantial progress has been made on the synthesis of repetitive polyketide motifs through the iterative application of a single reaction type, synthetic access to more diverse motifs that require more than one type of carbon-carbon bond connection remains a challenge. Here we describe a catalytic, multicomponent method for the synthesis of the privileged polyketide 1,3-dienyl-6-oxy motif. The method allows for the formation of two new carbon-carbon bonds and two stereodefined olefins. It generates products that contain up to three contiguous sp3 stereocentres with a high stereoselectivity in a single operation and can be used to generate chiral products. The successful development of this methodology relies on the remarkable efficiency of the ruthenium-catalysed alkene-alkyne coupling reaction between readily available vinyl boronic acids and alkynes to provide unsymmetrical 3-boryl-1,4-diene reagents. In the presence of carbonyl compounds, these reagents undergo highly diastereoselective allylations to afford the desired 1,3-dienyl-6-oxy motif and enable complex polyketide synthesis in a rapid and asymmetric fashion.
Collapse
|
39
|
Development of Multi‐Catalytic Strategies Based on the Combination between Iron‐/Copper‐ and Organo‐Catalysis. Isr J Chem 2020. [DOI: 10.1002/ijch.202000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Sperandio C, Rodriguez J, Quintard A. Three-Component Multi-Catalytic Enantioselective Oxa-Michael/Aldolization Sequence and Application to (+)-Yashabushitriol Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Céline Sperandio
- Centrale Marseille, iSm2; Aix Marseille Univ, CNRS; Marseille France
| | - Jean Rodriguez
- Centrale Marseille, iSm2; Aix Marseille Univ, CNRS; Marseille France
| | - Adrien Quintard
- Centrale Marseille, iSm2; Aix Marseille Univ, CNRS; Marseille France
| |
Collapse
|
41
|
Sperandio C, Rodriguez J, Quintard A. Catalytic strategies towards 1,3-polyol synthesis by enantioselective cascades creating multiple alcohol functions. Org Biomol Chem 2020; 18:1025-1035. [PMID: 31976499 DOI: 10.1039/c9ob02675d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the different enantioselective catalyst-controlled cascades creating multiple alcohol functions through the formation of several carbon-carbon bonds. Through subsequent simple derivatization, these strategies ensure the rapid preparation of 1,3-polyols. Thanks to the use of efficient metal- or organo-catalysts, these cascades enable the selective assembly of multiple substrates considerably limiting operations and waste generation. For this purpose, several mono- or bi-directional approaches have been devised allowing successive C-C bond-forming events. The considerable synthetic economies these cascades enable have been demonstrated in the preparation of a wide variety of complex bioactive natural products, notably polyketides.
Collapse
Affiliation(s)
- Céline Sperandio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
42
|
Di Sanza R, Nguyen TLN, Iqbal N, Argent SP, Lewis W, Lam HW. Enantioselective nickel-catalyzed arylative and alkenylative intramolecular 1,2-allylations of tethered allene-ketones. Chem Sci 2020; 11:2401-2406. [PMID: 34084403 PMCID: PMC8157472 DOI: 10.1039/c9sc05246a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023] Open
Abstract
The enantioselective nickel-catalyzed reaction of tethered allene-ketones with (hetero)arylboronic acids or potassium vinyltrifluoroborate is described. Carbonickelation of the allene gives allylnickel species, which undergo cyclization by 1,2-allylation to produce chiral tertiary-alcohol-containing aza- and carbocycles in high diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Riccardo Di Sanza
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Thi Le Nhon Nguyen
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Naeem Iqbal
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Stephen P Argent
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - William Lewis
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| | - Hon Wai Lam
- The Glaxo Smith Kline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham Jubilee Campus, Triumph Road Nottingham NG7 2TU UK
- School of Chemistry, University of Nottingham University Park Nottingham NG7 2RD UK
| |
Collapse
|
43
|
Garduño‐Castro MH, Procter DJ. Diastereoselective Hydroxyethylation of
β
‐Hydroxyketones: A
Reformatsky
Cyclization‐Lactone Reduction Cascade Mediated by SmI
2
−H
2
O. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - David J. Procter
- Department of ChemistryUniversity of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
44
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal-Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target-Oriented Synthesis. Angew Chem Int Ed Engl 2019; 58:14055-14064. [PMID: 31162793 PMCID: PMC6764920 DOI: 10.1002/anie.201905532] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 12/11/2022]
Abstract
Use of abundant feedstock pronucleophiles in catalytic carbonyl reductive coupling enhances efficiency in target-oriented synthesis. For such reactions, equally inexpensive reductants are desired or, ideally, corresponding hydrogen autotransfer processes may be enacted wherein alcohols serve dually as reductant and carbonyl proelectrophile. As described in this Minireview, these concepts allow reactions that traditionally require preformed organometallic reagents to be conducted catalytically in a byproduct-free manner from inexpensive π-unsaturated precursors.
Collapse
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Cole C. Meyer
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry Welch Hall (A5300), 105 E 24 St., Austin, TX 78712, USA
| |
Collapse
|
45
|
Della-Felice F, Sarotti AM, Krische MJ, Pilli RA. Total Synthesis and Structural Validation of Phosdiecin A via Asymmetric Alcohol-Mediated Carbonyl Reductive Coupling. J Am Chem Soc 2019; 141:13778-13782. [PMID: 31433167 DOI: 10.1021/jacs.9b07512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first total synthesis and structural validation of phosdiecin A was accomplished in 13 steps through asymmetric iridium-catalyzed alcohol-mediated carbonyl reductive coupling. The present route is the shortest among >30 total and formal syntheses of fostriecin family members.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry , University of Campinas (UNICAMP) , P.O. Box 6154, CEP 13083-970 Campinas , São Paulo , Brazil.,Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ariel M Sarotti
- Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario-CONICET , Suipacha 531, S2002LRK Rosario , Argentina
| | - Michael J Krische
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ronaldo A Pilli
- Institute of Chemistry , University of Campinas (UNICAMP) , P.O. Box 6154, CEP 13083-970 Campinas , São Paulo , Brazil
| |
Collapse
|
46
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol-Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019; 58:10718-10722. [PMID: 31166641 PMCID: PMC6656614 DOI: 10.1002/anie.201906259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 11/07/2022]
Abstract
The 20-membered marine macrodiolide clavosolide A is prepared in 7 steps (LLS) in the absence of protecting groups or chiral auxiliaries via enantioselective alcohol-mediated carbonyl addition. In 9 prior total syntheses, 11-34 steps (LLS) were required.
Collapse
Affiliation(s)
- James M. Cabrera
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry 105 E 24th St. (A5300), Austin, TX 78712-1167 (USA)
| |
Collapse
|
47
|
Cabrera JM, Krische MJ. Total Synthesis of Clavosolide A via Asymmetric Alcohol‐Mediated Carbonyl Allylation: Beyond Protecting Groups or Chiral Auxiliaries in Polyketide Construction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- James M. Cabrera
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at AustinDepartment of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
48
|
Doerksen RS, Meyer CC, Krische MJ. Feedstock Reagents in Metal‐Catalyzed Carbonyl Reductive Coupling: Minimizing Preactivation for Efficiency in Target‐Oriented Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rosalie S. Doerksen
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Cole C. Meyer
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| | - Michael J. Krische
- University of Texas at Austin Department of Chemistry 105 E 24th St. (A5300) Austin TX 78712-1167 USA
| |
Collapse
|
49
|
Kanzaki Y, Hirao Y, Mitsunuma H, Kanai M. Amine-tethered phenylboronic acid-enabling ring-opening strategy for carbon chain elongation from double aldol cyclic hemiacetals. Org Biomol Chem 2019; 17:6562-6565. [PMID: 31233053 DOI: 10.1039/c9ob01263j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The addition of carbon nucleophiles to cyclic hemiacetal forms of double aldols is a promising approach toward the synthesis of structurally attractive 1,3-polyol derivatives. Cyclic hemiacetals are generally unreactive to carbon nucleophiles under neutral conditions, however, because the electrophilic aldehyde function is masked. Here we developed an amine-tethered phenylboronic acid 7g, which transforms double aldol cyclic hemiacetals to ring-opened linear aldehydes. Combined with the previously-developed copper-catalysed asymmetric double aldol reaction (L. Lin, K. Yamamoto, H. Mitsunuma, Y. Kanzaki, S. Matsunaga and M. Kanai, J. Am. Chem. Soc., 2015, 137, 15418), this method produced synthetically useful chiral building blocks containing a 1,3-di- or tri-ol moiety.
Collapse
Affiliation(s)
- Yamato Kanzaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
50
|
Matsumoto A, Asano K, Matsubara S. Asymmetric
syn
‐1,3‐Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Matsumoto
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Keisuke Asano
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| | - Seijiro Matsubara
- Department of Material Chemistry Graduate School of EngineeringKyoto University Kyotodaigaku-katsura, Nishikyo Kyoto 615-8510 Japan
| |
Collapse
|