1
|
Wang R, Guan C, Jin X, Chai J, Zhou F, Wang N, Song B. Sweat Pore-Inspired Functional Nanofiber Fabrics for Sweat Management and Simultaneous Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408465. [PMID: 39420703 DOI: 10.1002/smll.202408465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Functional fabric with directional sweat transport and simultaneous sweat detection is highly desirable in daily life due to its crucial role in ensuring exercise comfort and promoting health. Herein, the inspiration is drawn from both the perspiration function of sweat pores and the backflow prevention feature of the surrounding solid skin to develop bioinspired hydrophobic nanofiber fabric. When combined with commercial cotton, this fabric enables rapid discharge of sweat through the sweat pore-like channels at an ultrafast speed of 240 g s-1 m-2, while effectively preventing backflow around these channels to ensure highly efficient personal drying. The performance of the bioinspired nanofiber fabric surpasses that of five commercially available moisture-wicking fabrics by effectively guiding liquid transport while minimizing residual moisture accumulation on the inner side. Furthermore, a colorimetric analysis system is integrated into the bioinspired nanofiber fabric, which facilitates convenient sampling of sweat samples and detection of biomarkers in sweat such as chloride ion, calcium ion, and pH level. This innovative design based on the concept of sweat pores opens up new possibilities for developing intelligent fabrics, electronic skins, and point-of-care devices.
Collapse
Affiliation(s)
- Ruidong Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Chunsheng Guan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Xuening Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Jing Chai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fujin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
2
|
Nguyen TD, Roh S, Nguyen MTN, Lee JS. Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. MICROMACHINES 2023; 14:2022. [PMID: 38004879 PMCID: PMC10673317 DOI: 10.3390/mi14112022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials.
Collapse
Affiliation(s)
| | | | | | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea; (T.D.N.); (S.R.); (M.T.N.N.)
| |
Collapse
|
3
|
Wu Y, Liu Z, Wu H, Zhang K, Liu Q. Electrospinning Evolution Derived from TRIZ Theory for Directly Writing Patterned Nanofibers. Polymers (Basel) 2023; 15:3091. [PMID: 37514480 PMCID: PMC10385866 DOI: 10.3390/polym15143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Nanofibers (NFs) have the advantages of tremendous flexibility, small size and a high surface-to-weight ratio and are widely used in sensors, drug carriers and filters. Patterned NFs have expanded their application fields in tissue engineering and electronics. Electrospinning (ES) is widely used to prepare nonwoven NFs by stretching polymer solution jets with electric forces. However, patterned NFs cannot be easily fabricated using ordinary ES methods: the process gradually deteriorates them as repulsion effects between the deposited NFs and the incoming ones increase while residual charges in the fibers accumulate. Repulsion effects are unavoidable because charges in the polymer solution jets are the fundamental forces that are meant to stretch the jets into NFs. TRIZ theory is an effective innovation method for resolving conflicts and eliminating contradictions. Based on the material-field model and the contradiction matrix of TRIZ theory, we propose a strategy to improve ES devices, neutralizing the charges retained in NFs by alternating the current power of the correct frequency, thus successfully fabricating patterned NFs with clear boundaries and good continuity. This study demonstrates a strategy for resolving conflicts in innovation processes based on TRIZ theory and fabricating patterned NFs for potential applications in flexible electronics and wearable sensors.
Collapse
Affiliation(s)
- Yuchao Wu
- Aircraft Manufacturing School of Sichuan Aerospace Vocational College, Chengdu 610100, China
| | - Zhanghong Liu
- Aircraft Manufacturing School of Sichuan Aerospace Vocational College, Chengdu 610100, China
| | - Hongtao Wu
- Aircraft Manufacturing School of Sichuan Aerospace Vocational College, Chengdu 610100, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Qingjie Liu
- Aircraft Manufacturing School of Sichuan Aerospace Vocational College, Chengdu 610100, China
| |
Collapse
|
4
|
Chen F, Du X. Self-assembled micropillar arrays via near-field electrospinning. NANOSCALE 2023; 15:7292-7301. [PMID: 36975040 DOI: 10.1039/d3nr00113j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Self-assembly in near-field electrospinning is reported for the first time in this paper, which realized the conversion from two-dimensional planar printing to three-dimensional (3D) structures. Repeatedly stacked fibres formed a micropillar array structure (MPAS) with intervals on the deposition paths by adding carbonyl iron powder particles to a polyethylene oxide (PEO) solution. The growth process of the self-assembled MPAS is documented, and the mechanism of the self-assembled MPAS is proposed. In addition, the effects of substrate speed and injection speed on self-assembly were investigated. Electric field distribution simulations show that the electric field strength around the MPAS is enhanced by nearly ten times so that the micropillar can attract the jet for further deposition. Self-assembly can obtain MPASs with arbitrary paths on different substrates, and the interval of the MPAS can be controlled by using bulging substrates. Furthermore, a self-assembled MPAS has been successfully used to prepare mold cavities, which can be used to prepare MPASs of other materials. Due to their small feature size, large surface area and structural periodicity, micropillar arrays will have promising applications, such as hydrophobicity of surfaces and electrochemical detection. Self-assembly in near-field electrospinning can significantly reduce the preparation cost of an MPAS and provide new processes and ideas.
Collapse
Affiliation(s)
- Fengjun Chen
- National Engineering Research Centre for High-Efficiency Grinding, Hunan University, Changsha, China.
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China
| | - Xiaogang Du
- National Engineering Research Centre for High-Efficiency Grinding, Hunan University, Changsha, China.
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, China
| |
Collapse
|
5
|
Song JY, Kim S, Park J, Park SM. Highly Efficient, Dual-Functional Self-Assembled Electrospun Nanofiber Filters for Simultaneous PM Removal and On-Site Eye-Readable Formaldehyde Sensing. ADVANCED FIBER MATERIALS 2023; 5:1088-1103. [PMID: 37235136 PMCID: PMC9996567 DOI: 10.1007/s42765-023-00279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/25/2023]
Abstract
Air pollution containing particulate matter (PM) and volatile organic compounds has caused magnificent burdens on individual health and global economy. Although advances in highly efficient or multifunctional nanofiber filters have been achieved, many existing filters can only deal with one type of air pollutant, such as capturing PM or absorbing and detecting toxic gas. Here, highly efficient, dual-functional, self-assembled electrospun nanofiber (SAEN) filters were developed for simultaneous PM removal and onsite eye-readable formaldehyde sensing fabricated on a commercial fabric mask. With the use of an electrolyte solution containing a formaldehyde-sensitive colorimetric agent as a collector during electrospinning, the one-step fabrication of the dual-functional SAEN filter on commercial masks, such as a fabric mask and a daily disposable mask, was achieved. The electrolyte solution also allowed the uniform deposition of electrospun nanofibers, thereby achieving the high efficiency of PM filtration with an increased quality factor up to twice that of commercial masks. The SAEN filter enabled onsite and eye-readable formaldehyde gas detection by changing its color from yellow to red under a 5 ppm concentrated formaldehyde gas atmosphere. The repetitive fabrication and detachment of the SAEN filter on a fabric mask minimized the waste of the mask while maintaining high filtration efficiency by replenishing the SAEN filters and reusing the fabric mask. Given the dual functionality of SAEN filters, this process could provide new insights into designing and developing high performance and dual-functional electrospun nanofiber filters for various applications, including individual protection and indoor purification applications. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00279-3.
Collapse
Affiliation(s)
- Jin Yeong Song
- School of Mechanical Engineering, Pusan National University, 63-2 Busan University-Ro, Geumjeong-Gu, Busan, 46241 South Korea
| | - Seongmin Kim
- School of Mechanical Engineering, Pusan National University, 63-2 Busan University-Ro, Geumjeong-Gu, Busan, 46241 South Korea
| | - Jaeseong Park
- School of Mechanical Engineering, Pusan National University, 63-2 Busan University-Ro, Geumjeong-Gu, Busan, 46241 South Korea
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, 63-2 Busan University-Ro, Geumjeong-Gu, Busan, 46241 South Korea
| |
Collapse
|
6
|
Rahmani M, Moghim MH, Zebarjad SM, Eqra R. Surface modification of a polypropylene separator by an electrospun coating layer of Poly(vinyl alchohol)-SiO2 for lithium-ion batteries. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Direct Fabrication of Functional Shapes on 3D Surfaces Using Electrospinning. Polymers (Basel) 2023; 15:polym15030533. [PMID: 36771836 PMCID: PMC9919392 DOI: 10.3390/polym15030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, we demonstrate the ability to simultaneously pattern fibers and fabricate functional 2D and 3D shapes (e.g., letters, mask-like structures with nose bridges and ear loops, aprons, hoods) using a single step electrospinning process. Using 2D and 3D mesh templates, electrospun fibers were preferentially attracted to the metal protrusions relative to the voids so that the pattern of the electrospun mat mimicked the woven mesh macroscopically. On a microscopic scale, the electrostatic lensing effect decreased fiber diameter and narrowed the fiber size distribution, e.g., the coefficient of variation of the fiber diameter for sample collected on a 0.6 mm mesh was 14% compared to 55% for the sample collected on foil). Functionally, the mesh did not affect the wettability of the fiber mats. Notably, the fiber patterning increased the rigidity of the fiber mat. There was a 2-fold increase in flexural rigidity using the 0.6 mm mesh compared to the sample collected on foil. Overall, we anticipate this approach will be a versatile tool for design and fabrication of 2D and 3D patterns with potential applications in personalized wound care and surgical meshes.
Collapse
|
8
|
Tang H, Wang X, Zheng J, Long YZ, Xu T, Li D, Guo X, Zhang Y. Formation of low-density electrospun fibrous network integrated mesenchymal stem cell sheet. J Mater Chem B 2023; 11:389-402. [PMID: 36511477 DOI: 10.1039/d2tb02029g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Cell sheets combined with electrospun fibrous mats represent an attractive approach for the repair and regeneration of injured tissues. However, the conventional dense electrospun mats as supportive substrates in forming "cell sheet on fiber mat" complexes suffer from problems of limiting the cellular function and eliciting a host response upon implantation. To give full play to the role of electrospun biomimicking fibers in forming quality cell sheets, this study proposed to develop a cell-fiber integrated sheet (CFIS) featuring a spatially homogeneous distribution of cells within the fiber structure by using a low-density fibrous network for cell sheet formation. A low-density electrospun polycaprolactone (PCL) fibrous network at a density of 103.8 ± 16.3 μg cm-2 was produced by controlling the fiber deposition for a short period of 1 min and subsequently transferred onto polydimethylsiloxane rings for facilitating cell sheet formation, in which rat bone marrow-derived mesenchymal cells were used. Using a dense electrospun PCL fibrous mat (481.5 ± 7.5 μg cm-2) as the control, it was found that cells on the low-density fibrous network (L-G) exhibited improved capacities in spreading, proliferation, stemness maintenance and matrix-remodeling during the process of CFIS formation. Structurally, the CFIS constructs revealed strong integration between the cells and the fibrous network, thus providing excellent cohesion and physical integrity to enable strengthening of the formed cell sheet. By contrast, the cell sheet formed on the dense fibrous mat (D-G) showed a two-layer (biphasic) structure due to the limitation of cellular invasion. Moreover, such engineered CFIS was identified with enhanced immunomodulatory effects by promoting LPS-stimulated macrophages towards an M2 phenotype in vitro. Our results suggest that the CFIS may be used as a native tissue equivalent "cell sheet" for improving the efficacy of the tissue engineering approach for the repair and regeneration of impaired tissues.
Collapse
Affiliation(s)
- Han Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China
| | - Yun-Ze Long
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Tingting Xu
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Donghong Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yanzhong Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China. .,Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
9
|
Electrospun aligned nanofibers: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Wu H, Shi J, Ning X, Long YZ, Zheng J. The High Flux of Superhydrophilic-Superhydrophobic Janus Membrane of cPVA-PVDF/PMMA/GO by Layer-by-Layer Electrospinning for High Efficiency Oil-Water Separation. Polymers (Basel) 2022; 14:621. [PMID: 35160610 PMCID: PMC8839309 DOI: 10.3390/polym14030621] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022] Open
Abstract
A simple and novel strategy of superhydrophilic-superhydrophobic Janus membrane was provided here to deal with the increasingly serious oil-water separation problem, which has a very bad impact on environmental pollution and resource recycling. The Janus membrane of cPVA-PVDF/PMMA/GO with opposite hydrophilic and hydrophobic properties was prepared by layer-by-layer electrospinning. The structure of the Janus membrane is as follows: firstly, the mixed solution of polyvinylidene fluoride (PVDF), polymethylmethacrylate (PMMA) and graphene oxide (GO) was electrospun to form a hydrophobic layer, then polyvinyl alcohol (PVA) nanofiber was coated onto the hydrophobic membrane by layer-by-layer electrospinning to form a composite membrane, and finally, the composite membrane was crosslinked to obtain a Janus membrane. The addition of GO can significantly improve the hydrophobicity, mechanical strength and stability of the Janus membrane. In addition, the prepared Janus membrane still maintained good oil-water separation performance and its separation efficiency almost did not decrease after many oil-water separation experiments. The flux in the process of oil-water separation can reach 1909.9 L m-2 h-1, and the separation efficiency can reach 99.9%. This not only proves the separation effect of the nanocomposite membrane, but also shows its high stability and recyclability. The asymmetric Janus membrane shows good oil-water selectivity, which gives Janus membrane broad application prospects in many fields.
Collapse
Affiliation(s)
- Han Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; (H.W.); (J.S.); (X.N.); (Y.-Z.L.)
| | - Jia Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; (H.W.); (J.S.); (X.N.); (Y.-Z.L.)
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; (H.W.); (J.S.); (X.N.); (Y.-Z.L.)
| | - Yun-Ze Long
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; (H.W.); (J.S.); (X.N.); (Y.-Z.L.)
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, China; (H.W.); (J.S.); (X.N.); (Y.-Z.L.)
| |
Collapse
|
11
|
Yue H, Zeng Q, Huang J, Guo Z, Liu W. Fog collection behavior of bionic surface and large fog collector: A review. Adv Colloid Interface Sci 2022; 300:102583. [PMID: 34954474 DOI: 10.1016/j.cis.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Water shortages are currently becoming more and more serious due to complicated factors such as the development of the economy, environmental pollution, and climate deterioration. And it is the best solution to the problems faced by people in today's world to investigate the bionic structure of nature and explore effective methods for fog collection. Herein, we've illustrated the bionic structures of the Namib desert beetle, cactus spines, and spider silk, and we imitate and further modify the respective bionic structures, as well as construct multifunctional bionic structures to improve fog collection. In addition, we also expound the fog collection behavior of a large fog collector, and an excellent fog capture effect was achieved through studying the mesh structure, the surface modification of the mesh, and the construction of the fog collector. The advantages and limitations of fog collection by a harp fog collector were also explored. We hope that through this review, relevant researchers can have a deeper understanding of this field and thus promote the development of fog collection.
Collapse
Affiliation(s)
- Hao Yue
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Qinghong Zeng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
12
|
Gangolphe L, Leon-Valdivieso CY, Nottelet B, Déjean S, Bethry A, Pinese C, Bossard F, Garric X. Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112339. [PMID: 34579931 DOI: 10.1016/j.msec.2021.112339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022]
Abstract
Electrospun scaffolds combine suitable structural characteristics that make them strong candidates for their use in tissue engineering. These features can be tailored to optimize other physiologically relevant attributes (e.g. mechanical anisotropy and cellular affinity) while ensuring adequate degradation rates of the biomaterial. Here, we present the fabrication of microstructured scaffolds by using a combination of micropatterned electrospinning collectors (honeycomb- or square-patterned) and poly(lactic acid) (PLA)-based copolymers (linear or star-shaped). The resulting materials showed appropriate macropore size and fiber alignment that were key parameters to enhance their anisotropic properties in protraction. Moreover, their elastic modulus, which was initially similar to that of soft tissues, gradually changed in hydrolytic conditions, matching the degradation profile in a 2- to 3-month period. Finally, honeycomb-structured scaffolds exhibited enhanced cellular proliferation compared to standard electrospun mats, while cell colonization was shown to be guided by the macropore contour. Taking together, these results provide new insight into the rational design of microstructured materials that can mimic the progressive evolution of properties in soft tissue regeneration.
Collapse
Affiliation(s)
- Louis Gangolphe
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France; Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, 38000 Grenoble, France
| | - Christopher Y Leon-Valdivieso
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France
| | - Benjamin Nottelet
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France
| | - Stéphane Déjean
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France
| | - Audrey Bethry
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France
| | - Coline Pinese
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France
| | - Frédéric Bossard
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), LRP, 38000 Grenoble, France.
| | - Xavier Garric
- Department of Polymers for Health and Biomaterials, Max Mousseron Institute of Biomolecules (IBMM), UMR CNRS 5247, University of Montpellier, France.
| |
Collapse
|
13
|
Zamani F, Amani Tehran M, Abbasi A. Fabrication of PCL nanofibrous scaffold with tuned porosity for neural cell culture. Prog Biomater 2021; 10:151-160. [PMID: 34213756 DOI: 10.1007/s40204-021-00159-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
In tissue engineering, the structure of nanofibrous scaffolds and optimization of their properties play important role in the enhancement of cell growth and proliferation. Therefore, the basic idea of the current study is to find a proper method for tuning the extent of porosity of the scaffold, study the effect of porosity on the cell growth, and optimize the extent of porosity with the aim of achieving the maximum cell growth. To tune the scaffold's porosity, four types of metal mesh with different mesh sizes were employed as collectors. For this purpose, the structural properties of polycaprolactone nanofibrous layers which were electrospun on collectors, and the level of neural A-172 cell growth on layers were investigated, and the results were compared with the results attained for the fabricated nanofibrous layer on a flat aluminum collector. It was found that upon changing the porosity of the metal mesh as collector, the fibers' diameter would be inevitably changed, albeit insignificantly, and following no specific trends. However, changing the mesh size has shown a significant effect on the thickness and porosity of nanofibrous layer. According to the MTT assay results, the optimum neural cell growth was observed for the electrospun nanofibrous scaffold with the porosity of 96% and pore size of (0.42-23 µm) which has been fabricated on the type-4 collector having a mesh size of 10. The fabricated scaffold using this mesh with the optimum extent of porosity (58%) resulted in 44% enhancement in the cell growth as compared with the fabricated layer on the flat collector.
Collapse
Affiliation(s)
| | - Mohammad Amani Tehran
- Department of Textile Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Atiyeh Abbasi
- Department of Textile Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| |
Collapse
|
14
|
Palomares D, Ammann KR, Saldana Perez JJ, Gomez A, Barreda A, Russell-Cheung A, Martin A, Tran PL, Hossainy S, Slepian RC, Hossainy SF, Slepian MJ. Patterned Electrospinning: A Method of Generating Defined Fibrous Constructs Influencing Cell Adhesion and Retention. ACS APPLIED BIO MATERIALS 2021; 4:4084-4093. [DOI: 10.1021/acsabm.0c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Palomares
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Kaitlyn R. Ammann
- Department of Medicine, University of Arizona, Tucson, Arizona 85721-0072, United States
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Javier J. Saldana Perez
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Alexan Gomez
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Adriana Barreda
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
| | - Andrew Russell-Cheung
- Department of Biological & Biomedical Sciences, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Adriana Martin
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Phat Le Tran
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Sahir Hossainy
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Rebecca C. Slepian
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| | - Syed F.A. Hossainy
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Marvin J. Slepian
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721-0072, United States
- Department of Medicine, University of Arizona, Tucson, Arizona 85721-0072, United States
- Sarver Heart Center, University of Arizona, Tucson, Arizona 85721-0001, United States
| |
Collapse
|
15
|
Ryu HI, Koo MS, Kim S, Kim S, Park YA, Park SM. Uniform-thickness electrospun nanofiber mat production system based on real-time thickness measurement. Sci Rep 2020; 10:20847. [PMID: 33257811 PMCID: PMC7705742 DOI: 10.1038/s41598-020-77985-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 11/09/2022] Open
Abstract
Electrospinning is a simple versatile process used to produce nanofibers and collect them as a nanofiber mat. However, due to bending instability, electrospinning often produces a nanofiber mat with non-uniform mat thickness. In this study, we developed a uniform-thickness electrospun nanofiber mat (UTEN) production system with a movable collector based on real-time thickness measurement and thickness feedback control. This system is compatible with a collector with void regions such as a mesh-type collector, two-parallel-metal-plate collector, and ring-type collector, which facilitates the measurement of light transmittance across the produced nanofiber mat during electrospinning. A real-time measurement system was developed to measure light transmittance and convert it to the thickness of the nanofiber mat in real time using the Beer-Lambert law. Thickness feedback control was achieved by repeating the following sequences: (1) finding an optimal position of the movable collector based on the measured thickness of the nanofiber mat, (2) shifting the collector to an optimal position, and (3) performing electrospinning for a given time step. We found that the suggested thickness feedback control algorithm could significantly decrease the non-uniformity of the nanofiber mat by reducing the standard deviation by more than 8 and 3 times for the numerical simulation and experiments, respectively, when compared with the conventional electrospinning. As a pioneering research, this study will contribute to the development of an electrospinning system to produce robust and reliable nanofiber mats in many research and industrial fields such as biomedicine, environment, and energy.
Collapse
Affiliation(s)
- Hyun Il Ryu
- School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Min Seok Koo
- School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Seokjun Kim
- School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Songkil Kim
- School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea
| | - Young-Ah Park
- Division of Cardiology, Inje University, Busan Paik Hospital, Busan, 47392, South Korea.
| | - Sang Min Park
- School of Mechanical Engineering, Pusan National University, Busan, 46241, South Korea.
| |
Collapse
|
16
|
Mondésert H, Bossard F, Favier D. Anisotropic electrospun honeycomb polycaprolactone scaffolds: Elaboration, morphological and mechanical properties. J Mech Behav Biomed Mater 2020; 113:104124. [PMID: 33091720 DOI: 10.1016/j.jmbbm.2020.104124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineering technology requires porous scaffolds, based on biomaterials, which have to mimic as closely as possible the morphological and anisotropic mechanical properties of the native tissue to substitute. Anisotropic fibrous scaffolds fabricated by template-assisted electrospinning are investigated in this study. Fibers of electrospun Polycaprolactone (PCL) were successfully arranged spatially into honeycomb structures by using well-shaped 3D micro-architected metal collectors. Fibrous scaffolds present 2 × 4 mm2 wide elementary patterns with low and high fiber density areas. Distinct regions of the honeycomb patterns were analyzed through SEM images revealing different fiber diameters with specific fiber orientation depending on the regions of interest. Tensile test experiments were carried out with an optical observation of the local deformation at the pattern scale, allowing the determination and analysis, at small and large deformation, of the axial and transverse local strains. The honeycomb patterned mats showed significantly different mechanical properties along the two orthogonal directions probing an anisotropic ratio of 4.2. Stress relaxation test was performed on scaffolds at 15% of strain. This measurement pointed out the low contribution of the viscosity of about 20% in the mechanical response of the scaffold. An orthotropic linear elastic model was consequently proposed to characterize the anisotropic behavior of the produced patterned membranes. This new versatile method to produce architected porous materials, adjustable to several polymers and structures, will provide appealing benefits for soft regenerative medicine application and the development of custom-made scaffolds.
Collapse
Affiliation(s)
- Hugues Mondésert
- Univ. Grenoble Alpes, CNRS, Grenoble INP(1), LRP, Grenoble, 38000, France; Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP(1), TIMC-IMAG, Grenoble, 38000, France
| | - Frédéric Bossard
- Univ. Grenoble Alpes, CNRS, Grenoble INP(1), LRP, Grenoble, 38000, France.
| | - Denis Favier
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP(1), TIMC-IMAG, Grenoble, 38000, France
| |
Collapse
|
17
|
Park YS, Kim J, Oh JM, Park S, Cho S, Ko H, Cho YK. Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios. NANO LETTERS 2020; 20:441-448. [PMID: 31763856 DOI: 10.1021/acs.nanolett.9b04162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Near-field electrospinning (NFES) was developed to overcome the intrinsic instability of traditional electrospinning processes and to facilitate the controllable deposition of nanofibers under a reduced electric field. This technique offers a straightforward and versatile method for the precision patterning of two-dimensional (2D) nanofibers. However, three-dimensional (3D) stacked structures built by NFES have been limited to either micron-scale sizes or special shapes. Herein, we report on a direct-write 3D NFES technique to construct self-aligned, template-free, 3D stacked nanoarchitectures by simply adding salt to the polymer solution. Numerical simulations suggested that the electric field could be tuned to achieve self-aligned nanofibers by adjusting the conductivity of the polymer solution. This was confirmed experimentally by using poly(ethylene oxide) (PEO) solutions containing 0.1-1.0 wt% NaCl. Using 0.1 wt% NaCl, nanowalls with a maximum of 80 layers could be built with a width of 92 ± 3 nm, height of 6.6 ± 0.1 μm, and aspect ratio (height/width) of 72. We demonstrate the 3D printing of nanoskyscrapers with various designs, such as curved "nanowall arrays", nano "jungle gyms," and "nanobridges". Further, we present an application of the 3D stacked nanofiber arrays by preparing transparent and flexible polydimethylsiloxane films embedded with Ag-sputtered nanowalls as 3D nanoelectrodes. The conductivity of the nanoelectrodes can be precisely tuned by adjusting the number of 3D printed layers, without sacrificing transmittance (98.5%). The current NFES approach provides a simple, reliable route to build 3D stacked nanoarchitectures with high-aspect ratios for potential application in smart materials, energy devices, and biomedical applications.
Collapse
Affiliation(s)
- Yang-Seok Park
- Department of Biomedical Engineering, School of Life Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
- Center for Soft and Living Matter , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Junyoung Kim
- Department of Biomedical Engineering, School of Life Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
- Center for Soft and Living Matter , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Jung Min Oh
- Department of Biomedical Engineering, School of Life Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
- Center for Soft and Living Matter , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
| | - Seungyoung Park
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, School of Life Sciences , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
- Center for Soft and Living Matter , Institute for Basic Science (IBS) , Ulsan 44919 , Republic of Korea
- School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| |
Collapse
|
18
|
Liu Q, Wu Q, Xie S, Zhao L, Chen Z, Ding Z, Li X. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. NANOTECHNOLOGY 2019; 30:375301. [PMID: 31195376 DOI: 10.1088/1361-6528/ab29ac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning is becoming an efficient method to produce fibers in the submicron range, but the bending instability of conventional electrospinning system (CES) brings limitations in the distinctive deposition of electrospun fibers. Herein, we proposed a strategy to update the electrospinning system through establishment of a uniform electric field, realizing 3D printing of electrospun fibers with well-controlled, low-cost, and template-free manners. The uniform field electrospinning (UFES) apparatus is configured by inserting the electrospinning nozzle into the center of an aided metal plate. The electric field simulation of UFES indicates a uniform distribution between the aided metal plate and the collector, while a diverging and weaker electric field is produced by CES. The collector of UFES is mounted on a translation stage, which moves along x and y axes under computer control. The distinctive deposition of electrospun fibers produces fibrous mats with rectangular patterns of different grid sizes, and butterfly and TaiJi figures with high resolutions are directly written by UFES. The layer-by-layer deposition of electrospun fibers under UFES produces microscale Mongolian yurts with distinct hollow structure. Fibrous blocks with an average width of 120 μm and height of 630 μm were printed by UFES from conductive polymer composites and constructed into strain sensors. The electric current strength of fibrous microblocks changes sharply in response to the finger bending and release, indicating the capability to monitor human motions. Thus, this study demonstrates that the UFES becomes an easy-handling strategy for 3D printing of electrospun fibers to create complex geometries.
Collapse
|
19
|
Harnessing the Topography of 3D Spongy-Like Electrospun Bundled Fibrous Scaffold via a Sharply Inclined Array Collector. Polymers (Basel) 2019; 11:polym11091444. [PMID: 31484363 PMCID: PMC6780350 DOI: 10.3390/polym11091444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022] Open
Abstract
To date, many researchers have studied a considerable number of three-dimensional (3D) cotton-like electrospun scaffolds for tissue engineering, including the generation of bone, cartilage, and skin tissue. Although numerous 3D electrospun fibrous matrixes have been successfully developed, additional research is needed to produce 3D patterned and sophisticated structures. The development of 3D fibrous matrixes with patterned and sophisticated structures (FM-PSS) capable of mimicking the extracellular matrix (ECM) is important for advancing tissue engineering. Because modulating nano to microscale features of the 3D fibrous scaffold to control the ambient microenvironment of target tissue cells can play a pivotal role in inducing tissue morphogenesis after transplantation in a living system. To achieve this objective, the 3D FM-PSSs were successfully generated by the electrospinning using a directional change of the sharply inclined array collector. The 3D FM-PSSs overcome the current limitations of conventional electrospun cotton-type 3D matrixes of random fibers.
Collapse
|
20
|
Pan N, Qin J, Feng P, Song B. Window screen inspired fibrous materials with anisotropic thickness gradients for improving light transmittance. NANOSCALE 2019; 11:13521-13531. [PMID: 31290508 DOI: 10.1039/c9nr02810b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fibrous materials with high light transmittance exhibit great potential in a wide range of applications; unfortunately, fabrication of such materials still remains a challenge due to the strong light scattering caused by the rough fibrous structure and the voids between fibers. Window screens are commonly used in our daily life, and their unique woven structure ensures excellent mechanical properties, while the voids between wires allow light to pass through. By learning from the architecture of window screens, we proposed a novel patterned electrospinning approach with window screen like wire meshes as collectors to deposit fibers with anisotropic thickness gradients and further to improve the optical properties. The results indicated that the obtained fibrous mats closely copied the structure of the wire meshes, and exhibited unique thickness anisotropy with most of the fibers densely packed on the wires in a small area, while very few fibers sparsely suspended in the voids over a large area. Owing to the large area of the thin region within fibrous mats, the overall light transmittance of such a well-organized mat was greatly improved as compared with that of an isotropous mat. Furthermore, by carefully investigating the microstructure of the fibrous mats and simulating the electric field distribution with the software Comsol Multiphysics, a novel needle array collector with an ultra large area of voids was designed to achieve optimal light transparency. Finally, as proof of concepts, we investigated the potential use of transparent fibrous mats as a visual wound dressing and a window dust filter, respectively.
Collapse
Affiliation(s)
- Nan Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Juanrong Qin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
21
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Zhang S, Liu H, Tang N, Ge J, Yu J, Ding B. Direct electronetting of high-performance membranes based on self-assembled 2D nanoarchitectured networks. Nat Commun 2019; 10:1458. [PMID: 30926802 PMCID: PMC6441005 DOI: 10.1038/s41467-019-09444-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/11/2019] [Indexed: 12/26/2022] Open
Abstract
There is an increasing demand worldwide on advanced two-dimensional (2D) nanofibrous networks with applications ranging from environmental protection and electrical devices to bioengineering. Design of such nanoarchitectured materials has been considered a long-standing challenge. Herein, we report a direct electronetting technology for the fabrication of self-assembled 2D nanoarchitectured networks (nano-nets) from various materials. Tailoring of the precursor solution and of the microelectric field allows charged droplets, which are ejected from a Taylor cone, to levitate, deform and phase separate before they self-assemble a 2D nanofibre network architecture. The fabricated nano-nets show mechanical robustness and benefit from nanostructural properties such as enhanced surface wettability, high transparency, separation and improved air filtration properties. Calcination of the nano-nets results in the formation of carbon nano-nets with electric conductivity and titanium dioxide nano-nets with bioprotective properties.
Collapse
Affiliation(s)
- Shichao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Hui Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ning Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianlong Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
23
|
Song J, Zhu G, Gao H, Wang L, Li N, Shi X, Wang Y. Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.12.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Xiao W, Li Q, He H, Li W, Cao X, Dong H. Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8465-8473. [PMID: 29461036 DOI: 10.1021/acsami.7b18423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Precise manipulation of biomolecule distribution and functions via biomolecule-matrix interaction is very important and challenging for tissue engineering and regenerative medicine. As a well-known biomimetic matrix, electrospun fibers often lack the unique spatial complexity compared to their natural counterparts in vivo and thus cannot deliver fully the regulatory cues to biomolecules. In this paper, we report a facile and reliable method to fabricate micro- and nanostructured poly(l-lactic acid) (PLLA) fibrous matrices with spatial complexity by a combination of advanced electrospinning and agarose hydrogel stamp-based micropatterning. Specifically, advanced electrospinning is used to construct multi-nanostructures of fibrous matrices while solvent-loaded agarose hydrogel stamps are used to create microstructures. Compared with other methods, our method shows extreme simplicity and flexibility originated from the mono-/multi-spinneret conversion and limitless micropatterns of agarose hydrogel stamps. Three types of PLLA fibrous matrices including patterned nano-Ag/PLLA hybrid fibers, patterned bicompartment polyethylene terephthalate/PLLA fibers, and patterned hollow PLLA fibers are fabricated and their capability to manipulate biomolecule distribution and functions, that is, bacterial distribution and antibacterial performance, cell patterning and adhesion/spreading behaviors, and protein adsorption and delivery, is demonstrated in detail. The method described in our paper provides a powerful tool to restore spatial complexity in biomimetic matrices and would have promising applications in the field of biomedical engineering.
Collapse
Affiliation(s)
- Wenwu Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Huimin He
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Wenxiu Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
- Guangdong Province Key Laboratory of Biomedical Engineering , South China University of Technology , Guangzhou 510641 , China
| | - Hua Dong
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR) , Guangzhou 510006 , China
| |
Collapse
|
26
|
Park SM, Eom S, Kim W, Kim DS. Role of Grounded Liquid Collectors in Precise Patterning of Electrospun Nanofiber Mats. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:284-290. [PMID: 29215895 DOI: 10.1021/acs.langmuir.7b03547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid collectors are applicable as ground collectors in electrospinning, which fabricates complex nanofiber architectures. However, the influence of the electrical properties of liquid collectors on the controlled deposition of electrospun nanofiber mats has received little attention. Here, we prepare two types of liquid collectors (electrolyte solutions and dielectric liquids) and newly scrutinize their roles in the patterning of electrospun nanofiber mats in experiments and in numerical simulations. By simulating the concentrations of the electric fields around the liquid collectors, we indirectly evaluated the patternability of the collectors. The patternability trends were verified by the patterning of nanofiber mats on line-array-shaped liquid collectors fabricated by electrospinning. The deposition accuracy of the electrolyte solution collector was very high, equivalent to that of a conventional metal collector even at low salt concentrations (e.g., 0.01 M KCl). However, the nanofiber mats fabricated by electrospinning with the dielectric liquid collector showed retarded patternability.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Seongsu Eom
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Wonkyoung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
27
|
Zhou Q, Zhang H, Zhou Y, Yu Z, Yuan H, Feng B, van Rijn P, Zhang Y. Alkali-Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding. Macromol Biosci 2017; 17. [PMID: 29068545 DOI: 10.1002/mabi.201700268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Abstract
Electrospun natural-synthetic composite nanofibers, which possess favorable biological and mechanical properties, have gained widespread attention in tissue engineering. However, the development of biomimetic nanofibers of hybrids remains a huge challenge due to phase separation of the polymer blends. Here, aqueous sodium hydroxide (NaOH) solution is proposed to modulate the miscibility of a representative natural-synthetic hybrid of gelatin (GT) and polycaprolactone (PCL) for electrospinning homogeneous composite nanofibers. Alkali-doped GT/PCL solutions and nanofibers examined at macroscopic, microscopic, and internal molecular levels demonstrate appropriate miscibility of GT and PCL after introducing the alkali dopant. Particularly, homogeneous GT/PCL nanofibers with smooth surface and uniform diameter are obtained when aqueous NaOH solution with a concentration of 10 m is used. The fibers become more hydrophilic and possess improved mechanical properties both in dry and wet conditions. Moreover, biocompatibility experiments show that stem cells adhere to and proliferate better on the alkali-modified nanofibers than the untreated one. This study provides a facile and effective approach to solve the phase separation issue of the synthetic-natural hybrid GT/PCL and establishes a correlation of compositionally and morphologically homogeneous composite nanofibers with respect to cell responses.
Collapse
Affiliation(s)
- Qihui Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of GroningenUniversity Medical Center Groningen, A. Deusinglaan 1,, 9713, AV Groningen, The Netherlands
| | - Huilan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Ya Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Zhepao Yu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Huihua Yuan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Bei Feng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of GroningenUniversity Medical Center Groningen, A. Deusinglaan 1,, 9713, AV Groningen, The Netherlands
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
28
|
Dhand C, Venkatesh M, Barathi VA, Harini S, Bairagi S, Goh Tze Leng E, Muruganandham N, Low KZW, Fazil MHUT, Loh XJ, Srinivasan DK, Liu SP, Beuerman RW, Verma NK, Ramakrishna S, Lakshminarayanan R. Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity. Biomaterials 2017; 138:153-168. [DOI: 10.1016/j.biomaterials.2017.05.043] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 01/19/2023]
|
29
|
Noreikaitė A, Antanavičiūtė I, Mikalayeva V, Darinskas A, Tamulevičius T, Adomavičiūtė E, Šimatonis L, Akramienė D, Stankevičius E. Scaffold design for artificial tissue with bone marrow stem cells. MEDICINA-LITHUANIA 2017; 53:203-210. [PMID: 28774494 DOI: 10.1016/j.medici.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The aim of this study was to test polymeric materials (collagen, fibrin, polyimide film, and polylactic acid) for single- and multi-layer scaffold formation. MATERIALS AND METHODS In our study, we used rabbit bone marrow stem cells (rBMSCs) and human mesenchymal stem cells (hMSCs) with materials of a different origin for the formation of an artificial scaffold, such as a collagen scaffold, fibrin scaffold produced from clotted rabbit plasma, electrospun poly(lactic acid) (PLA) mats, polyimide film (PI), and the combination of the latter two. Cell imaging was performed 3-14 days after cell cultivation in the scaffolds. Time-lapse imaging was used to determine hMSC mobility on the PI film. RESULTS Cell incorporation in collagen and clotted fibrin scaffolds was evaluated after 2-week cultivation in vitro. Histological analysis showed that cells penetrated only external layers of the collagen scaffold, while the fibrin clot was populated with rBMSCs through the entire scaffold thickness. As well, cell behavior on the laser micro-structured PI film was analyzed. The mobility of hMSCs on the smooth PI film and the micro-machined surface was 20±2μm/h and 18±4μm/h, respectively. After 3-day cultivation, hMSCs were capable of spreading through the whole 100±10μm-thick layer of the electrospun PLA scaffold and demonstrated that the multilayer scaffold composed of PI and PLA materials ensured a suitable environment for cell growth. CONCLUSIONS The obtained results suggest that electrospinning technology and femtosecond laser micro-structuring could be employed for the development of multi-layer scaffolds. Different biopolymers, such as PLA, fibrin, and collagen, could be used as appropriate environments for cell inhabitation and as an inner layer of the multi-layer scaffold. PI could be suitable as a barrier blocking cell migration from the scaffold. However, additional studies are needed to determine optimal parameters of inner and outer scaffold layers.
Collapse
Affiliation(s)
- Aurelija Noreikaitė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Valeryia Mikalayeva
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Adas Darinskas
- Laboratory of Immunology, National Cancer Institute, Vilnius, Lithuania
| | - Tomas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Erika Adomavičiūtė
- Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
| | - Linas Šimatonis
- Institute of Materials Science, Kaunas University of Technology, Kaunas, Lithuania
| | - Dalia Akramienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Edgaras Stankevičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
30
|
Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Nakajima M, Shibata-Seki T, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y. Microfluidic-Nanofiber Hybrid Array for Screening of Cellular Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603104. [PMID: 28272774 DOI: 10.1002/smll.201603104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
Collapse
Affiliation(s)
- Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Teiko Shibata-Seki
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Kasuga, Tsukuba-shi, Ibaraki, 305-0821, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France
| |
Collapse
|
31
|
Kakunuri M, Wanasekara ND, Sharma CS, Khandelwal M, Eichhorn SJ. Three-dimensional electrospun micropatterned cellulose acetate nanofiber surfaces with tunable wettability. J Appl Polym Sci 2017. [DOI: 10.1002/app.44709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Manohar Kakunuri
- Department of Material Science and Metallurgical Engineering; Indian Institute of Technology Hyderabad; Kandi Telangana 502285 India
| | - Nandula D. Wanasekara
- College of Engineering, Mathematics and Physical Sciences; University of Exeter; Exeter Devon EX4 4QF United Kingdom
| | - Chandra S. Sharma
- Department of Chemical Engineering; Indian Institute of Technology Hyderabad; Kandi Telangana 502285 India
| | - Mudrika Khandelwal
- Department of Material Science and Metallurgical Engineering; Indian Institute of Technology Hyderabad; Kandi Telangana 502285 India
| | - Stephen J. Eichhorn
- College of Engineering, Mathematics and Physical Sciences; University of Exeter; Exeter Devon EX4 4QF United Kingdom
| |
Collapse
|
32
|
Bessaire B, Mathieu M, Salles V, Yeghoyan T, Celle C, Simonato JP, Brioude A. Synthesis of Continuous Conductive PEDOT:PSS Nanofibers by Electrospinning: A Conformal Coating for Optoelectronics. ACS APPLIED MATERIALS & INTERFACES 2017; 9:950-957. [PMID: 27973763 DOI: 10.1021/acsami.6b13453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A process to synthesize continuous conducting nanofibers were developed using PEDOT:PSS as a conducting polymer and an electrospinning method. Experimental parameters were carefully explored to achieve reproducible conductive nanofibers synthesis in large quantities. In particular, relative humidity during the electrospinning process was proven to be of critical importance, as well as doping post-treatment involving glycols and alcohols. The synthesized fibers were assembled as a mat on glass substrates, forming a conductive and transparent electrode and their optoelectronic have been fully characterized. This method produces a conformable conductive and transparent coating that is well-adapted to nonplanar surfaces, having very large aspect ratio features. A demonstration of this property was made using surfaces having deep trenches and high steps, where conventional transparent conductive materials fail because of a lack of conformability.
Collapse
Affiliation(s)
- Bastien Bessaire
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interface, Université Claude Bernard LYON1, Université de Lyon , F-69622 Villeurbanne, France
- CEA, LITEN/DTNM/SEN/LSIN, Université de Grenoble Alpes , F-38054 Grenoble, France
| | - Maillard Mathieu
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interface, Université Claude Bernard LYON1, Université de Lyon , F-69622 Villeurbanne, France
| | - Vincent Salles
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interface, Université Claude Bernard LYON1, Université de Lyon , F-69622 Villeurbanne, France
| | - Taguhi Yeghoyan
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interface, Université Claude Bernard LYON1, Université de Lyon , F-69622 Villeurbanne, France
| | - Caroline Celle
- CEA, LITEN/DTNM/SEN/LSIN, Université de Grenoble Alpes , F-38054 Grenoble, France
| | - Jean-Pierre Simonato
- CEA, LITEN/DTNM/SEN/LSIN, Université de Grenoble Alpes , F-38054 Grenoble, France
| | - Arnaud Brioude
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interface, Université Claude Bernard LYON1, Université de Lyon , F-69622 Villeurbanne, France
| |
Collapse
|
33
|
Hu T, Li Q, Dong H, Xiao W, Li L, Cao X. Patterning Electrospun Nanofibers via Agarose Hydrogel Stamps to Spatially Coordinate Cell Orientation in Microfluidic Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602610. [PMID: 27792275 DOI: 10.1002/smll.201602610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/29/2016] [Indexed: 06/06/2023]
Abstract
A straightforward, inexpensive, and reliable approach to pattern electrospun nanofibers via solvent-containing agarose hydrogel stamps is reported. Complex hierarchical microstructures can be further constructed via appropriate multistep permutation of microcontact patterning and electrospinning. As a proof-of-concept application, the patterned electrospun nanofibers are employed to spatially coordinate cell orientation in microfluidic devices.
Collapse
Affiliation(s)
- Tao Hu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
| | - Wenwu Xiao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Ling Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
34
|
Han J, Wu Q, Xia Y, Wagner MB, Xu C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 2016; 16:740-50. [PMID: 27131761 PMCID: PMC4903921 DOI: 10.1016/j.scr.2016.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022] Open
Abstract
Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) will facilitate their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured for two weeks on Matrigel-coated anisotropic (aligned) and isotropic (random) polycaprolactone (PCL) fibrous scaffolds, as well as tissue culture polystyrenes (TCPs) as a control. As expected, hPSC-CMs grown on the two types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs, hPSC-CMs cultured on these scaffolds expressed CM-associated proteins and were pharmacologically responsive to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependent manner. Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single method, have limited effect on improving the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Jingjia Han
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qingling Wu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mary B Wagner
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Parker H. Petit Institute for Biotechnology and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
35
|
Park JY, Lee ES, Amna T, Jang Y, Park DH, Kim BS. Effects of heat-treatment on surface morphologies, mechanical properties of nanofibrous poly(propylene carbonate) biocomposites and its cell culture. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.11.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Yu GF, Yan X, Yu M, Jia MY, Pan W, He XX, Han WP, Zhang ZM, Yu LM, Long YZ. Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. NANOSCALE 2016; 8:2944-50. [PMID: 26781815 DOI: 10.1039/c5nr08618c] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10,000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.
Collapse
Affiliation(s)
- Gui-Feng Yu
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China. and College of Science & Information, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xu Yan
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China.
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China. and Department of Mechanical Engineering, Columbia University, New York, 10027, USA
| | - Meng-Yang Jia
- Key Laboratory of Marine Chemistry Theory & Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Wei Pan
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China. and College of Chemistry & Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Xiao He
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China.
| | - Wen-Peng Han
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China.
| | - Zhi-Ming Zhang
- Key Laboratory of Marine Chemistry Theory & Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Liang-Min Yu
- Key Laboratory of Marine Chemistry Theory & Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, P. R. China. and Collaborative Innovation Center for Marine Biomass Fibers, Materials & Textiles of Shandong Province, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
37
|
|
38
|
Facile method for fabricating uniformly patterned and porous nanofibrous scaffolds for tissue engineering. Macromol Res 2015. [DOI: 10.1007/s13233-015-3147-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Rasel S, Rizvi G. Fabrication of fibrous patterned architectures with controlled deposition and multidirectional alignment. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheikh Rasel
- Department of Automotive, Mechanical, and Manufacturing Engineering; University of Ontario Institute of Technology; 2000 Simcoe Street North Oshawa Ontario L1H 7K4 Canada
| | - Ghaus Rizvi
- Department of Automotive, Mechanical, and Manufacturing Engineering; University of Ontario Institute of Technology; 2000 Simcoe Street North Oshawa Ontario L1H 7K4 Canada
| |
Collapse
|
40
|
Huang C, Ouyang Y, Niu H, He N, Ke Q, Jin X, Li D, Fang J, Liu W, Fan C, Lin T. Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7189-7196. [PMID: 25786058 DOI: 10.1021/am509227t] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel fibrous conduit consisting of well-aligned nanofibers with longitudinal nanogrooves on the fiber surface was prepared by electrospinning and was subjected to an in vivo nerve regeneration study on rats using a sciatic nerve injury model. For comparison, a fibrous conduit having a similar fiber alignment structure without surface groove and an autograft were also conducted in the same test. The electrophysiological, walking track, gastrocnemius muscle, triple-immunofluorescence, and immunohistological analyses indicated that grooved fibers effectively improved sciatic nerve regeneration. This is mainly attributed to the highly ordered secondary structure formed by surface grooves and an increase in the specific surface area. Fibrous conduits made of longitudinally aligned nanofibers with longitudinal nanogrooves on the fiber surface may offer a new nerve guidance conduit for peripheral nerve repair and regeneration.
Collapse
Affiliation(s)
- Chen Huang
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuanming Ouyang
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- ‡Department of Orthopaedic Surgery, the Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Haitao Niu
- §Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Nanfei He
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qinfei Ke
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Xiangyu Jin
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dawei Li
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jun Fang
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Wanjun Liu
- †Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Cunyi Fan
- ‡Department of Orthopaedic Surgery, the Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | - Tong Lin
- §Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
41
|
Park SM, Kim DS. Electrolyte-assisted electrospinning for a self-assembled, free-standing nanofiber membrane on a curved surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1682-1687. [PMID: 25594630 DOI: 10.1002/adma.201404741] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/13/2014] [Indexed: 06/04/2023]
Abstract
A free-standing nanofiber membrane can be simultaneously fabricated, patterned, and integrated with electrolyte-assisted electrospinning (ELES). The fluidic nature of the electrolyte collector enables flexible patterning and facile integration of the free-standing nanofiber membrane on complex substrates from a 2D flat surface to a 3D curved geometry via ELES. The structural integrity and performance of the free-standing nanofiber membrane are verified, and this plays a crucial role for future applications, including organ-on-a-chip, tissue scaffolds, and biosensors.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | | |
Collapse
|
42
|
Sun B, Jiang XJ, Zhang S, Zhang JC, Li YF, You QZ, Long YZ. Electrospun anisotropic architectures and porous structures for tissue engineering. J Mater Chem B 2015; 3:5389-5410. [DOI: 10.1039/c5tb00472a] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in electrospun anisotropic architectures and porous structures, as well as their applications in tissue engineering, are presented.
Collapse
Affiliation(s)
- Bin Sun
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Xue-Jun Jiang
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Shuchao Zhang
- Department of Blood Transfusion
- the Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
- Department of Immunology
| | - Jun-Cheng Zhang
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| | - Yi-Feng Li
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Qin-Zhong You
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
| | - Yun-Ze Long
- College of Physics
- Qingdao University
- Qingdao 266071
- P. R. China
- Key Laboratory of Photonics Materials and Technology in Universities of Shandong (Qingdao University)
| |
Collapse
|
43
|
Prabhakaran MP, Vatankhah E, Kai D, Ramakrishna S. Methods for Nano/Micropatterning of Substrates: Toward Stem Cells Differentiation. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.945207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Lu W, Sun J, Jiang X. Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J Mater Chem B 2014; 2:2369-2380. [PMID: 32261409 DOI: 10.1039/c3tb21478h] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrospinning technology underwent rapid development in recent years, which can be used for fabricating electrospun fibers with different morphologies and multidimensional structures. These fibers are widely applied in medical diagnosis, tissue engineering, replica molding and other applications. Here we review the recent advances in the electrospinning technology, especially technical progress in fabricating electrospun fibers and assemblies with multidimensional structures, and the biomedical applications of these fibers.
Collapse
Affiliation(s)
- Wenjing Lu
- Beijing Engineering Research Center for BioNanotechnology & Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, #11 Beiyitiao, ZhongGuanCun, Beijing, P. R. China.
| | | | | |
Collapse
|
45
|
Reis TC, Correia IJ, Aguiar-Ricardo A. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs. NANOSCALE 2013; 5:7528-7536. [PMID: 23836136 DOI: 10.1039/c3nr01668d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters--deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity--were evaluated in an attempt to control material's design.
Collapse
Affiliation(s)
- Tiago C Reis
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | | | | |
Collapse
|