1
|
Ren B, Zhang D, Qiu X, Ding Y, Zhang Q, Fu Y, Liao JF, Poddar S, Chan CLJ, Cao B, Wang C, Zhou Y, Kuang DB, Zeng H, Fan Z. Full-color fiber light-emitting diodes based on perovskite quantum wires. SCIENCE ADVANCES 2024; 10:eadn1095. [PMID: 38748790 PMCID: PMC11095450 DOI: 10.1126/sciadv.adn1095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Fiber light-emitting diodes (Fi-LEDs), which can be used for wearable lighting and display devices, are one of the key components for fiber/textile electronics. However, there exist a number of impediments to overcome on device fabrication with fiber-like substrates, as well as on device encapsulations. Here, we uniformly grew all-inorganic perovskite quantum wire arrays by filling high-density alumina nanopores on the surface of Al fibers with a dip-coating process. With a two-step evaporation method to coat a surrounding transporting layer and semitransparent electrode, we successfully fabricated full-color Fi-LEDs with emission peaks at 625 nanometers (red), 512 nanometers (green), and 490 nanometers (sky-blue), respectively. Intriguingly, additional polydimethylsiloxane packaging helps instill the mechanical bendability, stretchability, and waterproof feature of Fi-LEDs. The plasticity of Al fiber also allows the one-dimensional architecture Fi-LED to be shaped and constructed for two-dimensional or even three-dimensional architectures, opening up a new vista for advanced lighting with unconventional formfactors.
Collapse
Affiliation(s)
- Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Fu
- School of Advanced Energy, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chak Lam Jonathan Chan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bryan Cao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Chen Wang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
2
|
Li S, Huang Z, Ding Y, Zhang C, Yu J, Feng Q, Feng J. Growth of BiSBr Microsheet Arrays for Enhanced Photovoltaics Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306964. [PMID: 38072815 DOI: 10.1002/smll.202306964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Indexed: 04/19/2024]
Abstract
In this study, single-crystalline BiSBr is synthesized using a solution-based approach and conducted a systematic characterization of its photoelectric properties and photovoltaic performances. UV photoelectron spectroscopy and density functional theory (DFT) calculations reveal that BiSBr is an indirect p-type semiconductor, characterized by distinct positions and compositions of the valence band maximum and conduction band minimum. The BiSBr single crystal microrod features a significant electrical conductivity of 14 800 S m-1 along the c-axis, denoting minimal carrier resistance in this direction. For photovoltaic performance assessment, the authors successfully fabricated two homogeneous BiSBr films on TiO2 porous substrates: A microsheet array film via physical vapor deposition (PVD) and solvothermal treatment, and a BiSBr microsheet film via PVD and thermal treatment. The solar cell, comprising a BiSBr microsheet array film with an architecture of fluorine-doped tin oxide FTO/TiO2/BiSBr/(I3 -/I-)/Pt, demonstrated a power conversation efficiency of 1.40%, ≈11 times that of BiSBr microsheet film counterpart. These preliminary results underscore the potential of BiSBr microsheet arrays, producible through low-cost solution processes, as adept light absorbers, enhancing photovoltaic efficiency through effective light scattering and promoting efficient electron-hole separation and transport.
Collapse
Affiliation(s)
- Sen Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhiyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yafei Ding
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chao Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, China
| | - Jingyan Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qi Feng
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Jun Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Zhu Y, Shu L, Poddar S, Zhang Q, Chen Z, Ding Y, Long Z, Ma S, Ren B, Qiu X, Fan Z. Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability. NANO LETTERS 2022; 22:9586-9595. [PMID: 36394382 DOI: 10.1021/acs.nanolett.2c03694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perovskite nanopillars (PNPs) are propitious candidates for solar irradiation harvesting and are potential alternatives to thin films in flexible photovoltaics. To realize efficient daily energy output, photovoltaics must absorb sunlight over a broad range of incident angles and wavelengths congruent with the solar spectrum. Herein, we report highly periodic three-dimensional (3D) PNP-based flexible photovoltaics possessing a core-shell structure. The vertically aligned PNP arrays demonstrate up to 95.70% and 75.10% absorption at peak and under an incident angle of 60°. The efficient absorption and the orthogonal carrier collection facilitate an external quantum efficiency of 84.0%-89.18% for broadband wavelength. PNPs have been successfully implemented in flexible solar cells. The porous alumina membrane protects PNPs against water and oxygen intrusion and thereby imparts robustness to photovoltaic devices. Meanwhile, the excellent tolerance to mechanical stress/strain enables our unique PNP-based device to provide efficient solar-to-electricity conversion while undergoing mechanical bending.
Collapse
Affiliation(s)
- Yiyi Zhu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Lei Shu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Swapnadeep Poddar
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhesi Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhenghao Long
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Suman Ma
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Shenzhen, Southern University of Science and Technology, Shenzhen 518055, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
4
|
Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode. NANOMATERIALS 2021; 11:nano11123362. [PMID: 34947711 PMCID: PMC8708830 DOI: 10.3390/nano11123362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Conventional electrodes in typical photodetectors only conduct electrical signals and introduce high optical reflection, impacting the optical-to-electrical conversion efficiency. The created surface solar harvester with a multi-functional folded electrode (MFFE) realizes both a three-dimensional Schottky junction with a larger light detecting area as well as low optical reflection from 300 nm (ultra-violet light) to 1100 nm (near-infrared light) broadly without an additional anti-reflection layer. The MFFE needs silicon etching following the lithography process. The metal silver was deposited over structured silicon, completing the whole device simply. According to the experimental results, the width ratio of the bottom side to the top side in MFFE was 15.75, and it showed an optical reflection of 5–7% within the major solar spectrum of AM1.5G by the gradient refractive index effect and the multi-scattering phenomenon simultaneously. While the perovskite materials were deposited over the MFFE structure of the solar harvester, the three-dimensional electrode with lower optical reflection benefitted the perovskite solar cell with a larger detecting area and an additional anti-reflection function to absorb solar energy more efficiently. In this concept, because of the thin stacked film in the perovskite solar cell, the solar energy could be harvested by the prepared Schottky junction of the solar harvester again, except for the optical absorption of the perovskite materials. Moreover, the perovskite materials deposited over the MFFE structure could not absorb near-infrared (NIR) energies to become transparent. The NIR light could be harvested by the light detecting junction of the solar harvester to generate effective photocurrent output additionally for extending the detection capability of perovskite solar cell further. In this work, the concept of integration of a conventional perovskite solar cell with a silicon-based solar harvester having an MFFE structure was proposed and is expected to harvest broadband light energies under low optical reflection and enhance the solar energy conversion efficiency.
Collapse
|
5
|
Li S, Xu L, Kong X, Kusunose T, Tsurumach N, Feng Q. Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array. CHEMSUSCHEM 2021; 14:3351-3358. [PMID: 34213085 DOI: 10.1002/cssc.202101161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Indexed: 06/13/2023]
Abstract
BiSCl single-crystalline nanofibers were synthesized by a facile one-pot solvothermal approach for the first time. BiSCl possesses a double chain type structure and grows readily along the c-axis, resulting the fibrous morphology. UV/Vis absorption spectroscopy revealed that BiSCl nanofibers exhibit a strong light absorption in a wavelength range from UV to visible light, corresponding to a bandgap of 1.96 eV. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that BiSCl is a direct n-type semiconductor with valence band maximum and conduction band minimum located at 6.04 and 4.08 eV below the vacuum level, respectively. To investigate the photovoltaic performance, the homogeneous thin film of BiSCl-nanorod array was fabricated on a TiO2 porous film by a modified solvothermal process, where the nanorod array is oriented vertically to the surface of the TiO2 porous film. A proper band alignment of BiSCl-based solar cells with an architecture of fluorine-doped tin oxide (FTO)/TiO2 /BiSCl/(I3 - /I- )/Pt gave a PCE of 1.36 % and a relatively large short-circuit photocurrent density of 9.87 mA cm-2 for the first time. The preliminary photovoltaic study result revealed a potential possibility of BiSCl-nanorod array as a light absorber for solar cells that can be fabricated by the low-cost solution process.
Collapse
Affiliation(s)
- Sen Li
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Linfeng Xu
- Institute of Environment-friendly Materials and Occupational Health (Wuhu) and School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui, 241000, P. R. China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology Weiyang, Xi'an, Shaanxi, 710021, P. R. China
| | - Takafumi Kusunose
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Noriaki Tsurumach
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| | - Qi Feng
- Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan
| |
Collapse
|
6
|
Liu S, Tian J, Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: a review. NANOTECHNOLOGY 2021; 32:222001. [PMID: 0 DOI: 10.1088/1361-6528/abe25f] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Abstract
Due to the unique optical and electrochemical properties, large surface area, tunable properties, and high thermal stability, nanoporous anodic aluminum oxide (AAO) has become one of the most popular materials with a large potential to develop emerging applications in numerous areas, including biosensors, desalination, high-risk pollutants detection, capacitors, solar cell devices, photonic crystals, template-assisted fabrication of nanostructures, and so on. This review covers the mechanism of AAO formation, manufacturing technology, the relationship between the properties of AAO and fabrication conditions, and applications of AAO. Properties of AAO, like pore diameter, interpore distance, wall thickness, and anodized aluminum layer thickness, can be fully controlled by fabrication conditions, including electrolyte, applied voltage, anodizing and widening time. Generally speaking, the pore diameter of AAO will affect its specific application to a large extent. Moreover, manufacturing technology like one/two/multi step anodization, nanoimprint lithography anodization, and pulse/cyclic anodization also have a major impact on overall array arrangement. The review aims to provide a perspective overview of the relationship between applications and their corresponding AAO pore sizes, systematically. And the review also focuses on the strategies by which the structures and functions of AAO can be utilized.
Collapse
|
7
|
Alsaigh RE, Bauer R, Lavery MPJ. Multi-element lenslet array for efficient solar collection at extreme angles of incidence. Sci Rep 2020; 10:8741. [PMID: 32457316 PMCID: PMC7250910 DOI: 10.1038/s41598-020-65437-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/21/2020] [Indexed: 11/08/2022] Open
Abstract
Photovoltaics (PV) are a versatile and compact route to harness solar power. One critical challenge with current PV is preserving the optimal panel orientation angle with respect to the sun for efficient energy conversion. We experimentally demonstrate a bespoke multi-element lenslet array that allows for an increased power collection over a wide field of view by increasing the effective optical interaction length by up to 13 times specifically at large angles of incidence. This design can potentially be retrofitted onto already deployed amorphous silicon solar panels to yield an increased daily power generation by a factor of 1.36 for solar equivalent illumination. We 3D printed an optical proof of concept multi-element lenslet array to confirm an increase in power density for optical rays incident between 40 and 80 degrees. Our design indicates a novel optical approach that could potentially enable increased efficient solar collection in extreme operating conditions such as on the body of planes or the side of buildings.
Collapse
Affiliation(s)
- Rakan E Alsaigh
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| | - Ralf Bauer
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | - Martin P J Lavery
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Random nanohole arrays and its application to crystalline Si thin foils produced by proton induced exfoliation for solar cells. Sci Rep 2019; 9:19736. [PMID: 31874998 PMCID: PMC6930296 DOI: 10.1038/s41598-019-56210-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022] Open
Abstract
We report high efficiency cell processing technologies for the ultra-thin Si solar cells based on crystalline Si thin foils (below a 50 µm thickness) produced by the proton implant exfoliation (PIE) technique. Shallow textures of submicrometer scale is essential for effective light trapping in crystalline Si thin foil based solar cells. In this study, we report the fabrication process of random Si nanohole arrays of ellipsoids by a facile way using low melting point metal nanoparticles of indium which were vacuum-deposited and dewetted spontaneously at room temperature. Combination of dry and wet etch processes with indium nanoparticles as etch masks enables the fabrication of random Si nanohole arrays of an ellipsoidal shape. The optimized etching processes led to effective light trapping nanostructures comparable to conventional micro-pyramids. We also developed the laser fired contact (LFC) process especially suitable for crystalline Si thin foil based PERC solar cells. The laser processing parameters were optimized to obtain a shallow LFC contact in conjunction with a low contact resistance. Lastly, we applied the random Si nanohole arrays and the LFC process to the crystalline Si thin foils (a 48 µm thickness) produced by the PIE technique and achieved the best efficiency of 17.1% while the planar PERC solar cell without the Si nanohole arrays exhibit 15.6%. Also, we demonstrate the ultra-thin wafer is bendable to have a 16 mm critical bending radius.
Collapse
|
9
|
Sarkar A, Mukherjee S, Das AK, Ray SK. Photoresponse characteristics of MoS 2 QDs/Si nanocone heterojunctions utilizing geometry controlled light trapping mechanism in black Si. NANOTECHNOLOGY 2019; 30:485202. [PMID: 31426032 DOI: 10.1088/1361-6528/ab3c9f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A unique light trapping mechanism associated with nano-conical textured black Si templates has been utilized to achieve improved photoresponse in MoS2QDs/Si heterojunctions over a wide wavelength range from visible to near infrared. Black Si templates have been fabricated by a simple and cost effective metal assisted chemical etching technique followed by spin-coating of colloidal MoS2 quantum dots (QDs) to form the heterojunction. A peak responsivity of as high as ∼1.39 A W-1 at ∼665 nm for a bias of 5 V has been achieved. The responsivity value is higher as compared to recently published results having similar device structure. The combination of MoS2 QDs and black Si has resulted in a broader spectral response with enhanced optical absorption in the nano-conical heterojunction devices. Finite element based optical simulation results revealed the superiority of MoS2 QDs/Si nano-conical heterojunctions due to improved light trapping. The results appear attractive for next generation Si CMOS compatible broad band photodetectors using two dimensional semiconductors.
Collapse
Affiliation(s)
- Arijit Sarkar
- Advanced Technology Development Center, Indian Institute of Technology, Kharagpur-721302, India
| | | | | | | |
Collapse
|
10
|
Martínez-Banderas AI, Aires A, Quintanilla M, Holguín-Lerma JA, Lozano-Pedraza C, Teran FJ, Moreno JA, Perez JE, Ooi BS, Ravasi T, Merzaban JS, Cortajarena AL, Kosel J. Iron-Based Core-Shell Nanowires for Combinatorial Drug Delivery and Photothermal and Magnetic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43976-43988. [PMID: 31682404 DOI: 10.1021/acsami.9b17512] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Combining different therapies into a single nanomaterial platform is a promising approach for achieving more efficient, less invasive, and personalized treatments. Here, we report on the development of such a platform by utilizing nanowires with an iron core and iron oxide shell as drug carriers and exploiting their optical and magnetic properties. The iron core has a large magnetization, which provides the foundation for low-power magnetic manipulation and magnetomechanical treatment. The iron oxide shell enables functionalization with doxorubicin through a pH-sensitive linker, providing selective intracellular drug delivery. Combined, the core-shell nanostructure features an enhanced light-matter interaction in the near-infrared region, resulting in a high photothermal conversion efficiency of >80% for effective photothermal treatment. Applied to cancer cells, the collective effect of the three modalities results in an extremely efficient treatment with nearly complete cell death (∼90%). In combination with the possibility of guidance and detection, this platform provides powerful tools for the development of advanced treatments.
Collapse
Affiliation(s)
- Aldo Isaac Martínez-Banderas
- Division of Biological and Environmental Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Antonio Aires
- CIC biomaGUNE , Parque Tecnológico de San Sebastián , Paseo Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Marta Quintanilla
- CIC biomaGUNE , Parque Tecnológico de San Sebastián , Paseo Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Jorge A Holguín-Lerma
- Division of Computer, Electrical, and Mathematical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Claudia Lozano-Pedraza
- iMdea Nanociencia, Campus Universitario de Cantoblanco , C\Faraday, 9 , 28049 Madrid , Spain
| | - Francisco J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco , C\Faraday, 9 , 28049 Madrid , Spain
- Nanobiotechnology Unit (iMdea Nanociencia) associated with Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco , Madrid 28049 , Spain
| | - Julián A Moreno
- Division of Computer, Electrical, and Mathematical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Jose E Perez
- Division of Biological and Environmental Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Boon S Ooi
- Division of Computer, Electrical, and Mathematical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Jasmeen S Merzaban
- Division of Biological and Environmental Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| | - Aitziber L Cortajarena
- CIC biomaGUNE , Parque Tecnológico de San Sebastián , Paseo Miramón 182 , 20014 Donostia-San Sebastián , Spain
- iMdea Nanociencia, Campus Universitario de Cantoblanco , C\Faraday, 9 , 28049 Madrid , Spain
- Nanobiotechnology Unit (iMdea Nanociencia) associated with Centro Nacional de Biotecnología (CNB-CSIC), Campus Universitario de Cantoblanco , Madrid 28049 , Spain
- Ikerbasque , Basque Foundation for Science , Ma Dı́az de Haro 3 , 48013 Bilbao , Spain
| | - Jürgen Kosel
- Division of Computer, Electrical, and Mathematical Sciences and Engineering , King Abdullah University of Science and Technology , Thuwal Jeddah 23955-6900 , Saudi Arabia
| |
Collapse
|
11
|
Chen W, Roca I Cabarrocas P. Rational design of nanowire solar cells: from single nanowire to nanowire arrays. NANOTECHNOLOGY 2019; 30:194002. [PMID: 30654343 DOI: 10.1088/1361-6528/aaff8d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this review, we report several rational designs of nanowire-based solar cells from single nanowire to nanowire arrays. Two methods of nanowires fabrication: via 'top-down' and 'bottom-up', and two types of configurations including axial and radial junction are presented for nanowire-based solar cells. To enhance absorption, several photon management schemes are shown in detail, including anti-reflection coating, diffractive grating, and plasmonics. Considering the rational design of nanowire arrays, we summarize a total of seven solar cell structures including axial junctions, radial junctions, substrate interfacial junctions, planar junctions, conductors, junctionless and tandem. Each type is supported by examples which are presented and discussed. Finally, a general comparison between bulk and nanowire solar cell efficiencies is given.
Collapse
Affiliation(s)
- Wanghua Chen
- Faculty of Science, Ningbo University, 315211 Ningbo, People's Republic of China. LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, F-91128 Palaiseau, France. IPVF, Institut Photovoltaïque d'Île-de-France, F-91120 Palaiseau, France
| | | |
Collapse
|
12
|
Pimenta ACS, Limborço H, González JC, Cifuentes N, Ramos SLLM, Matinaga FM. Photodegradation of Si-doped GaAs nanowire. RSC Adv 2019; 9:39488-39494. [PMID: 35540654 PMCID: PMC9076065 DOI: 10.1039/c9ra06365j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/14/2019] [Indexed: 01/31/2023] Open
Abstract
Researching optical effects in nanowires may require a high pump intensity which under ambient conditions can degrade nanowires due to thermal oxidation. In this work we investigated the photodegradation of a single Si-doped GaAs nanowire by laser heating in air. To understand the changes that occurred on the nanowire we carried out Raman spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence spectroscopy in laser damaged regions as well as in non-affected ones. From Raman Stokes and anti-Stokes measurements we estimated the local temperature that the oxidation process of the nanowire (NW) surface starts at as 661 K, resulting in two new Raman modes at 200 cm−1 and 259 cm−1. Scanning electron microscopy and energy dispersive X-ray spectroscopy measurements showed a significant loss of arsenic in the oxidized regions, but no erosion of the nanowire. Micro-photoluminescence measurements showed the near-band-edge emission of GaAs along the nanowire, as well as a new emission band at 755 nm corresponding to polycrystalline β-Ga2O3 formation. Our results also indicate that neither amorphous As nor crystalline As were deposited on the surface of the nanowire. Combining different experimental techniques, this study showed the formation of polycrystalline β-Ga2O3 by oxidation of the nanowire surface and the limits for performing spectroscopic investigations on individual GaAs NWs under ambient air conditions. In order to comprehend the photodegradation of GaAs NWs, we investigated their thermal oxidation process in air induced by laser heating in a broad local temperature range.![]()
Collapse
Affiliation(s)
| | - H. Limborço
- Microscopy Centre of UFMG
- UFMG
- Belo Horizonte
- Brazil
| | - J. C. González
- Nanodevices and Sensors Laboratory
- UFMG
- Belo Horizonte
- Brazil
| | - N. Cifuentes
- Nanodevices and Sensors Laboratory
- UFMG
- Belo Horizonte
- Brazil
| | | | | |
Collapse
|
13
|
Xu Q, Chen L, Yang F, Cao H. Integral Equation Prediction of the Structure of Alternating Copolymer Nanocomposites near a Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11612-11628. [PMID: 30221946 DOI: 10.1021/acs.langmuir.8b01882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The packing structure and phase behavior of polymer-nanoparticle mixtures under confinement play an important role in developing strategies for rational design of nanomaterials. However, understanding the microscopic dispersion and aggregation mechanism of polymer nanocomposites is a great challenge through experimental techniques. In this work, the microscopic structure of alternating copolymer nanocomposites (ACNs) near a substrate is investigated systematically through extension of the inhomogeneous polymer reference interaction site model (PRISM) theory. In order to characterize the flexibility and internal chain stiffness of copolymers, a semiflexible chain model is introduced to describe the intramolecular correlations between different monomers. Based on the bridge functionals derived from the fluids density functional theory, the modified hypernetted chain closure is integrated with the PRISM equation to form a full theoretical framework to capture the density distributions of ACNs. The influence of the particle volume fraction, nanoparticle diameter, and adsorption strengths between different interaction sites on the packing structure of ACNs under confinement is analyzed and discussed in detail. With the increase of the particle volume fraction, the size asymmetry between nanoparticles and copolymer monomers can greatly influence the density profiles of ACNs near a substrate. Increasing the nanoparticle diameter, the density distribution of nanoparticles experiences a process from absorbing onto the solid surface to segregating from the wall to larger distances. With increasing the adsorption strength between copolymers and nanoparticles, the density distribution of nanoparticles decreases, which is similar to the case of nanoparticles containing attractive interactions. All these characteristics of ACNs show that the current inhomogeneous PRISM theory can give a detailed description of the packing behavior of different segments. Predictive approaches could be desired and developed for design control of alternating copolymer nanocomposites under confinement.
Collapse
Affiliation(s)
- Qinzhi Xu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 , China
- Beijing Key Laboratory of Three-Dimensional and Nanometer Integrated Circuit Design Automation Technology, Beijing 100029 , China
| | - Lan Chen
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 , China
- Beijing Key Laboratory of Three-Dimensional and Nanometer Integrated Circuit Design Automation Technology, Beijing 100029 , China
| | - Fei Yang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 , China
- Beijing Key Laboratory of Three-Dimensional and Nanometer Integrated Circuit Design Automation Technology, Beijing 100029 , China
| | - He Cao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029 , China
- Beijing Key Laboratory of Three-Dimensional and Nanometer Integrated Circuit Design Automation Technology, Beijing 100029 , China
| |
Collapse
|
14
|
Takeda Y, Iizuka H, Yamada N, Ito T. Light trapping for photovoltaic cells using polarization-insensitive angle-selective filters under monochromatic illumination. APPLIED OPTICS 2017; 56:5761-5767. [PMID: 29047719 DOI: 10.1364/ao.56.005761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
We have proposed a light-trapping concept for photovoltaic (PV) cells under monochromatic illumination with restricted incident angles. We employed a configuration consisting of a shortpass filter (SPF) on the front surface and a diffuse reflector on the rear surface of the cell. The SPF was designed so that it functioned as a polarization-insensitive angle-selective filter. We fabricated 30-80-μm-thick crystalline silicon samples for incident angles changing within 30°, and analyzed the measured results using a ray-trace simulation with the Monte Carlo method. The ratio of the absorbed intensity to the 1064 nm illumination intensity was 0.69-0.85, which was higher than those equipped with antireflection coatings instead of the SPFs by 0.19-0.13. Thus, we have proven the light-trapping concept of the SPF/diffuse reflector configuration for monochromatic illumination. The PV cells could be applied to wireless power supply, in particular from solar-pumped lasers.
Collapse
|
15
|
Lin Q, Sarkar D, Lin Y, Yeung M, Blankemeier L, Hazra J, Wang W, Niu S, Ravichandran J, Fan Z, Kapadia R. Scalable Indium Phosphide Thin-Film Nanophotonics Platform for Photovoltaic and Photoelectrochemical Devices. ACS NANO 2017; 11:5113-5119. [PMID: 28463486 DOI: 10.1021/acsnano.7b02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent developments in nanophotonics have provided a clear roadmap for improving the efficiency of photonic devices through control over absorption and emission of devices. These advances could prove transformative for a wide variety of devices, such as photovoltaics, photoelectrochemical devices, photodetectors, and light-emitting diodes. However, it is often challenging to physically create the nanophotonic designs required to engineer the optical properties of devices. Here, we present a platform based on crystalline indium phosphide that enables thin-film nanophotonic structures with physical morphologies that are impossible to achieve through conventional state-of-the-art material growth techniques. Here, nanostructured InP thin films have been demonstrated on non-epitaxial alumina inverted nanocone (i-cone) substrates via a low-cost and scalable thin-film vapor-liquid-solid growth technique. In this process, indium films are first evaporated onto the i-cone structures in the desired morphology, followed by a high-temperature step that causes a phase transformation of the indium into indium phosphide, preserving the original morphology of the deposited indium. Through this approach, a wide variety of nanostructured film morphologies are accessible using only control over evaporation process variables. Critically, the as-grown nanotextured InP thin films demonstrate excellent optoelectronic properties, suggesting this platform is promising for future high-performance nanophotonic devices.
Collapse
Affiliation(s)
- Qingfeng Lin
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Debarghya Sarkar
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Yuanjing Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Matthew Yeung
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Louis Blankemeier
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Jubin Hazra
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Wei Wang
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| | - Shanyuan Niu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Jayakanth Ravichandran
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rehan Kapadia
- Ming Hsieh Department of Electrical Engineering, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Leung SF, Zhang Q, Tavakoli MM, He J, Mo X, Fan Z. Progress and Design Concerns of Nanostructured Solar Energy Harvesting Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2536-2548. [PMID: 26918386 DOI: 10.1002/smll.201502015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Integrating devices with nanostructures is considered a promising strategy to improve the performance of solar energy harvesting devices such as photovoltaic (PV) devices and photo-electrochemical (PEC) solar water splitting devices. Extensive efforts have been exerted to improve the power conversion efficiencies (PCE) of such devices by utilizing novel nanostructures to revolutionize device structural designs. The thicknesses of light absorber and material consumption can be substantially reduced because of light trapping with nanostructures. Meanwhile, the utilization of nanostructures can also result in more effective carrier collection by shortening the photogenerated carrier collection path length. Nevertheless, performance optimization of nanostructured solar energy harvesting devices requires a rational design of various aspects of the nanostructures, such as their shape, aspect ratio, periodicity, etc. Without this, the utilization of nanostructures can lead to compromised device performance as the incorporation of these structures can result in defects and additional carrier recombination. The design guidelines of solar energy harvesting devices are summarized, including thin film non-uniformity on nanostructures, surface recombination, parasitic absorption, and the importance of uniform distribution of photo-generated carriers. A systematic view of the design concerns will assist better understanding of device physics and benefit the fabrication of high performance devices in the future.
Collapse
Affiliation(s)
- Siu-Fung Leung
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Mohammad Mahdi Tavakoli
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jin He
- Shenzhen SOC Key Laboratory, Peking University-HKUST Shenzhen-Hong Kong Institution, Shenzhen, 518051, China
| | - Xiaoliang Mo
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
17
|
Exact comprehensive equations for the photon management properties of silicon nanowire. Sci Rep 2016; 6:24847. [PMID: 27103087 PMCID: PMC4840328 DOI: 10.1038/srep24847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/06/2016] [Indexed: 11/30/2022] Open
Abstract
Unique photon management (PM) properties of silicon nanowire (SiNW) make it an attractive building block for a host of nanowire photonic devices including photodetectors, chemical and gas sensors, waveguides, optical switches, solar cells, and lasers. However, the lack of efficient equations for the quantitative estimation of the SiNW’s PM properties limits the rational design of such devices. Herein, we establish comprehensive equations to evaluate several important performance features for the PM properties of SiNW, based on theoretical simulations. Firstly, the relationships between the resonant wavelengths (RW), where SiNW can harvest light most effectively, and the size of SiNW are formulized. Then, equations for the light-harvesting efficiency at RW, which determines the single-frequency performance limit of SiNW-based photonic devices, are established. Finally, equations for the light-harvesting efficiency of SiNW in full-spectrum, which are of great significance in photovoltaics, are established. Furthermore, using these equations, we have derived four extra formulas to estimate the optimal size of SiNW in light-harvesting. These equations can reproduce majority of the reported experimental and theoretical results with only ~5% error deviations. Our study fills up a gap in quantitatively predicting the SiNW’s PM properties, which will contribute significantly to its practical applications.
Collapse
|
18
|
Wu ML, Wang D, Wan LJ. Directed block copolymer self-assembly implemented via surface-embedded electrets. Nat Commun 2016; 7:10752. [PMID: 26876792 PMCID: PMC4756386 DOI: 10.1038/ncomms10752] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/15/2016] [Indexed: 12/03/2022] Open
Abstract
Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- University of CAS, Beijing 100049, China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Wang Y, Wang Y, Wang H, Wang X, Cong M, Xu W, Xu S. Hierarchical ultrathin alumina membrane for the fabrication of unique nanodot arrays. NANOTECHNOLOGY 2016; 27:025302. [PMID: 26630155 DOI: 10.1088/0957-4484/27/2/025302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ultrathin alumina membranes (UTAMs) as evaporation masks have been a powerful tool for the fabrication of high-density nanodot arrays and have received much attention in magnetic memory devices, photovoltaics, and nanoplasmonics. In this paper, we report the fabrication of a hierarchical ultrathin alumina membrane (HUTAM) with highly ordered submicro/nanoscale channels and its application as an evaporation mask for the realization of unique non-hexagonal nanodot arrays dependent on the geometrical features of the HUTAM. This is the first report of a UTAM with a hierarchical geometry, breaking the stereotype that only limited sets of nanopatterns can be realized using the UTAM method (with typical inter-pore distance of 100 nm). The fabrication of a HUTAM is discussed in detail. An improved, longer wet etching time than previously reported is found to effectively remove the barrier layer and widen the pores of a HUTAM. A growth sustainability issue brought about by pre-patterning is discussed. Spectral comparison was made to distinguish the UTAM nanodots and HUTAM nanodots. Our results can be an inspiration for more sophisticated applications of pre-patterned anodized aluminum oxide in photocatalysis, photovoltaics, and nanoplasmonics.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 2699 Qianjin Ave., Changchun, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Sanatinia R, Berrier A, Dhaka V, Perros AP, Huhtio T, Lipsanen H, Anand S. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices. NANOTECHNOLOGY 2015; 26:415304. [PMID: 26403979 DOI: 10.1088/0957-4484/26/41/415304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.
Collapse
Affiliation(s)
- Reza Sanatinia
- School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Al-Zoubi OH, Said TM, Alher MA, El-Ghazaly S, Naseem H. Broadband high efficiency silicon nanowire arrays with radial diversity within diamond-like geometrical distribution for photovoltaic applications. OPTICS EXPRESS 2015; 23:A767-A778. [PMID: 26367679 DOI: 10.1364/oe.23.00a767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study we report novel silicon nanowire (SiNW) array structures that have near-unity absorption spectrum. The design of the new SiNW arrays is based on radial diversity of nanowires with periodic diamond-like array (DLA) structures. Different array structures are studied with a focus on two array structures: limited and broad diversity DLA structures. Numerical electromagnetic modeling is used to study the light-array interaction and to compute the optical properties of SiNW arrays. The proposed arrays show superior performance over other types of SiNW arrays. Significant enhancement of the array absorption is achieved over the entire solar spectrum of interest with significant reduction of the amount of material. The arrays show performance independent of angle of incidence up to 70 degrees, and polarization. The proposed arrays achieved ultimate efficiency as high as 39% with filling fraction as low as 19%.
Collapse
|
22
|
Cornago I, Dominguez S, Ezquer M, Rodríguez MJ, Lagunas AR, Pérez-Conde J, Rodriguez R, Bravo J. Periodic nanostructures on unpolished substrates and their integration in solar cells. NANOTECHNOLOGY 2015; 26:095301. [PMID: 25665632 DOI: 10.1088/0957-4484/26/9/095301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a novel fabrication process based on laser interference lithography, lift-off and reactive ion etching, which allows us to fabricate periodic nanostructures on photovoltaic substrates with an average root mean square (RMS) roughness of 750 nm. We fabricate nanostructures on unpolished crystalline silicon substrates, which reduces their reflectance 30% as fabricated. When an additional passivation layer is deposited, the light trapping grows, achieving a reflectance reduction of 60%. In addition, we have successfully integrated the nanostructured substrates in silicon wafer-based solar cells following standard processes, achieving a final efficiency of 15.56%.
Collapse
Affiliation(s)
- I Cornago
- CEMITEC, Poligono Mocholi Plaza Cein 4, Noain, 31110, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin Q, Leung SF, Lu L, Chen X, Chen Z, Tang H, Su W, Li D, Fan Z. Inverted nanocone-based thin film photovoltaics with omnidirectionally enhanced performance. ACS NANO 2014; 8:6484-90. [PMID: 24873372 DOI: 10.1021/nn5023878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Thin film photovoltaic (PV) technologies are highly attractive for low-cost solar energy conversion and possess a wide range of potential applications from building-integrated PV generation to portable power sources. Inverted nanocones (i-cones) have been demonstrated as a promising structure for practical thin film PV devices/modules, owning to their antireflection effect, self-cleaning function, superior mechanical robustness, and so forth. In this work, we have demonstrated a low-cost and scalable approach to achieve perfectly ordered i-cone arrays. Thereafter, thin film amorphous silicon (a-Si:H) solar cells have been fabricated based on various i-cone substrates with different aspect ratios and pitches to investigate the impact of geometry of i-cone nanostructures on the performance of the as-obtained PV devices. Intriguingly, the optical property investigations and device performance characterizations demonstrated that the 0.5-aspect-ratio i-cone-based device performed the best on both light absorption capability and energy conversion efficiency, which is 34% higher than that of the flat counterpart. Moreover, the i-cone-based device enhanced the light absorption and device performance over the flat reference device omnidirectionally. These results demonstrate a viable and convenient route toward scalable fabrication of nanostructures for high-performance thin film PV devices based on a broad range of materials.
Collapse
Affiliation(s)
- Qingfeng Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mendes MJ, Morawiec S, Simone F, Priolo F, Crupi I. Colloidal plasmonic back reflectors for light trapping in solar cells. NANOSCALE 2014; 6:4796-4805. [PMID: 24664403 DOI: 10.1039/c3nr06768h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.
Collapse
|
25
|
Tsui KH, Lin Q, Chou H, Zhang Q, Fu H, Qi P, Fan Z. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:2805-2811. [PMID: 24448979 DOI: 10.1002/adma.201304938] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/16/2013] [Indexed: 06/03/2023]
Abstract
Low-cost engineered nanotemplates are used to mold flexible nanocone anti-reflection (AR) films. Both optical reflectance measurements and photovoltaics characterizations demonstrate that the flexible nanocone AR films can considerably suppress device front-side reflectance and thus improve the power conversion efficiency of high-efficiency thin-film CdTe solar cells. Additionally, these nanocone AR films are found to be superhydrophobic and thus possess self-cleaning capability.
Collapse
Affiliation(s)
- Kwong-Hoi Tsui
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China SAR
| | | | | | | | | | | | | |
Collapse
|
26
|
Leung SF, Zhang Q, Xiu F, Yu D, Ho JC, Li D, Fan Z. Light Management with Nanostructures for Optoelectronic Devices. J Phys Chem Lett 2014; 5:1479-1495. [PMID: 26269997 DOI: 10.1021/jz500306f] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Light management is of paramount importance to improve the performance of optoelectronic devices including photodetectors, solar cells, and light-emitting diodes. Extensive studies have shown that the efficiency of these optoelectronic devices largely depends on the device structural design. In the case of solar cells, three-dimensional (3-D) nanostructures can remarkably improve device energy conversion efficiency via various light-trapping mechanisms, and a number of nanostructures were fabricated and exhibited tremendous potential for highly efficient photovoltaics. Meanwhile, these optical absorption enhancement schemes can benefit photodetectors by achieving higher quantum efficiency and photon extraction efficiency. On the other hand, low extraction efficiency of a photon from the emissive layer to outside often puts a constraint on the external quantum efficiency (EQE) of LEDs. In this regard, different designs of device configuration based on nanostructured materials such as nanoparticles and nanotextures were developed to improve the out-coupling efficiency of photons in LEDs under various frameworks such as waveguides, plasmonic theory, and so forth. In this Perspective, we aim to provide a comprehensive review of the recent progress of research on various light management nanostructures and their potency to improve performance of optoelectronic devices including photodetectors, solar cells, and LEDs.
Collapse
Affiliation(s)
- Siu-Fung Leung
- †Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- †Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Fei Xiu
- ‡Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Dongliang Yu
- §Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
| | - Johnny C Ho
- ‡Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Dongdong Li
- §Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201210, China
| | - Zhiyong Fan
- †Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
27
|
Wu ML, Li J, Wan LJ, Wang D. Monolayer graphene-supported free-standing PS-b-PMMA thin film with perpendicularly orientated microdomains. RSC Adv 2014. [DOI: 10.1039/c4ra12655f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile way to fabricate robust free-standing PS-b-PMMA thin films with perpendicularly orientated microdomains on monolayer graphene is reported.
Collapse
Affiliation(s)
- Mei-Ling Wu
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, P. R. China
- University of CAS
| | - Jing Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, P. R. China
- University of CAS
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190, P. R. China
| |
Collapse
|
28
|
Lin Q, Leung SF, Tsui KH, Hua B, Fan Z. Programmable nanoengineering templates for fabrication of three-dimensional nanophotonic structures. NANOSCALE RESEARCH LETTERS 2013; 8:268. [PMID: 23742170 PMCID: PMC3685551 DOI: 10.1186/1556-276x-8-268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 05/23/2023]
Abstract
Porous anodic alumina membranes (AAMs) have attracted great amount of attention due to their potential application as templates for nanoengineering. Template-guided fabrication and assembly of nanomaterials based on AAMs are cost-effective and scalable methods to program and engineer the shape and morphology of nanostructures and nanomaterials. In this work, perfectly ordered AAMs with the record large pitch up to 3 μm have been fabricated by properly controlling the anodization conditions and utilization of nanoimprint technique. Due to the capability of programmable structural design and fabrication, a variety of nanostructures, including nanopillar arrays, nanotower arrays, and nanocone arrays, have been successfully fabricated using nanoengineered AAM templates. Particularly, amorphous Si nanocones have been fabricated as three-dimensional nanophotonic structures with the characterization of their intriguing optical anti-reflection property. These results directly indicate the potential application of the reported approach for photonics and optoelectronics.
Collapse
Affiliation(s)
- Qingfeng Lin
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Siu-Fung Leung
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Kwong-Hoi Tsui
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bo Hua
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|