1
|
Petronijevic E, Cesca T, Scian C, Mattei G, Voti RL, Sibilia C, Belardini A. Demonstration of extrinsic chirality in self-assembled asymmetric plasmonic metasurfaces and nanohole arrays. Sci Rep 2024; 14:17210. [PMID: 39060402 PMCID: PMC11282274 DOI: 10.1038/s41598-024-68007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chirality, the lack of mirror symmetry, can be mimicked in nanophotonics and plasmonics by breaking the symmetry in light-nanostructure interaction. Here we report on versatile use of nanosphere lithography for the fabrication of low-cost metasurfaces, which exhibit broadband handedness- and angle-dependent extinction in the near-infrared range, thus offering extrinsic chiro-optical behavior. We measure wavelength and angle dependence of the extinction for four samples. Two samples are made of polystyrene nanospheres asymmetrically covered by silver and gold in one case and silver only in the other case, with a nanohole array at the bottom. The other two samples are nanohole arrays, obtained after the nanosphere removal from the first two samples. Rich extrinsic chiral features are governed by different chiro-optical mechanisms in the three-dimensional plasmonic semi-shells and planar nanohole arrays. We also measure Stokes parameters in the same wavelength and incidence angle range and show that the transmitted fields follow the extrinsic chirality features of the extinction dissymmetry. We further study the influences of the nanostructured shapes and in-plane orientations on the intrinsic vs extrinsic chirality. The nanoholes are modelled as oval shapes in metal, showing good agreement with the experiments. We thus confirm that nanosphere lithography can provide different geometries for chiral light manipulation at the nanoscale, with the possibility to extend functionalities with optimized oval shapes and combination of constituent metals.
Collapse
Affiliation(s)
- Emilija Petronijevic
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy.
| | - T Cesca
- Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - C Scian
- Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - G Mattei
- Physics and Astronomy Department, University of Padova, Via Marzolo 8, 35131, Padova, Italy
| | - R Li Voti
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - C Sibilia
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| | - A Belardini
- Department SBAI, Sapienza University of Roma, Via A. Scarpa 14, 00161, Rome, Italy
| |
Collapse
|
2
|
Yang K, Li M. The Sensitivity of a Hexagonal Au Nanohole Array under Different Incident Angles. BIOSENSORS 2023; 13:654. [PMID: 37367019 DOI: 10.3390/bios13060654] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Surface plasmon resonance sensors have been widely used in various fields for label-free and real-time detection of biochemical species due to their high sensitivity to the refractive index change of the surrounding environment. The common practices to achieve the improvement of sensitivity are to adjust the size and morphology of the sensor structure. This strategy is tedious and, to some extent, limits the applications of surface plasmon resonance sensors. Instead, the effect of the incident angle of excited light on the sensitivity of a hexagonal Au nanohole array sensor with a period of 630 nm and a hole diameter of 320 nm is theoretically investigated in this work. By exploring the peak shift of reflectance spectra of the sensor when facing a refractive index change in (1) the bulk environment and (2) the surface environment adjacent to the sensor, we can obtain the bulk sensitivity and surface sensitivity. The results show that the bulk sensitivity and surface sensitivity of the Au nanohole array sensor can be improved by 80% and 150%, respectively, by simply increasing the incident angle from 0° to 40°. The two sensitivities both remain nearly unchanged when the incident angle further changes from 40° to 50°. This work provides new understanding of the performance improvement and advanced sensing applications of surface plasmon resonance sensors.
Collapse
Affiliation(s)
- Kang Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| | - Meiying Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
3
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|
4
|
Lospinoso D, Colombelli A, Lomascolo M, Rella R, Manera MG. Self-Assembled Metal Nanohole Arrays with Tunable Plasmonic Properties for SERS Single-Molecule Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:380. [PMID: 35159725 PMCID: PMC8838393 DOI: 10.3390/nano12030380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Arrays of metal nano-holes have proved to be among of the most promising structures for applications in the field of nano-photonics and optoelectronics. Supporting both localized and propagating surface plasmons resonances, they are characterized by very high versatility thanks to the tunability of these modes, by means of the change of their periodicity, the size of the holes and metal composition. The interaction between different optical features can be exploited to modulate electromagnetic field distribution leading various hot-spots excitations on the metal surfaces. In this work, long range ordered arrays of nano-holes in thin gold films, with different geometrical characteristics, were fabricated by a modified nano-sphere lithography protocol, which allows precise control on holes' dimensions together with the preservation of the order and of the pristine periodicity of the array. An in-depth analysis of the correlation between surface plasmon modes interference and its effect on electromagnetic field distribution is proposed, both by numerical simulations and experimentally. Finally, metal nano-holes arrays are exploited for surface enhanced Raman experiments, evaluating and comparing their performances by the estimation of the enhancement factor. Values close to the single molecule detection are obtained for most of the samples, proving their potentialities in surface enhanced spectroscopy applications.
Collapse
Affiliation(s)
- Daniela Lospinoso
- CNR-IMM, Institute for Microelectronic and Microsystems, Lecce, University Campus Ecotekne, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.); (R.R.)
| | | | | | | | - Maria Grazia Manera
- CNR-IMM, Institute for Microelectronic and Microsystems, Lecce, University Campus Ecotekne, Via per Monteroni, 73100 Lecce, Italy; (A.C.); (M.L.); (R.R.)
| |
Collapse
|
5
|
Yang K, Yao X, Liu B, Ren B. Metallic Plasmonic Array Structures: Principles, Fabrications, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007988. [PMID: 34048123 DOI: 10.1002/adma.202007988] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Indexed: 05/18/2023]
Abstract
The vast development of nanofabrication has spurred recent progress for the manipulation of light down to a region much smaller than the wavelength. Metallic plasmonic array structures are demonstrated to be the most powerful platform to realize controllable light-matter interactions and have found wide applications due to their rich and tunable optical performance through the morphology and parameter engineering. Here, various light-management mechanisms that may exist on metallic plasmonic array structures are described. Then, the typical techniques for fabrication of metallic plasmonic arrays are summarized. Next, some recent applications of plasmonic arrays are reviewed, including plasmonic sensing, surface-enhanced spectroscopies, plasmonic nanolasing, and perfect light absorption. Lastly, the existing challenges and perspectives for metallic plasmonic arrays are discussed. The aim is to provide guidance for future development of metallic plasmonic array structures.
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xu Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bowen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
6
|
Plasmonic Elliptical Nanohole Arrays for Chiral Absorption and Emission in the Near-Infrared and Visible Range. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chiral plasmonic nanostructures with tunable handedness-dependent absorption in the visible and infrared offer chiro-optical control at the nanoscale. Moreover, coupling them with emitting layers could lead to chiral nanosources, important for nanophotonic circuits. Here, we propose plasmonic elliptical nanohole arrays (ENHA) for circularly dependent near-infrared and visible emission. We first investigate broadband chiral behavior in an Au-ENHA embedded in glass by exciting it with plane waves. We then study the coupling of ENHA with a thin emitting layer embedded in glass; we focus on the emission wavelengths which provided high chirality in plane-wave simulations. Our novel simulation set-up monitors the chirality of the far-field emission by properly averaging a large set of homogeneously distributed, randomly oriented quantum sources. The intrinsic chirality of ENHA influences the circular polarization degree of the emitting layer. Finally, we study the emission dependence on the field distribution at the excitation wavelength. We demonstrate the chiral absorption and emission properties for Au-ENHA emitting in the near-infrared range, and for Ag-ENHA which is excited in green range and emits in the Lumogen Red range. The simple geometry of ENHA can be fabricated with low-cost nanosphere lithography and be covered with emission gel. We thus believe that this design can be of great importance for tunable chiral nanosources.
Collapse
|
7
|
Luo X, Zhu J, Jia W, Fang N, Wu P, Cai C, Zhu JJ. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18301-18313. [PMID: 33821612 DOI: 10.1021/acsami.1c01834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A fundamental challenge, particularly, in surface-enhanced Raman scattering (SERS) analysis is the detection of analytes that are distant from the sensing surface. To tackle this challenge, we herein report a long-range SERS (LR-SERS) substrate supporting an extension of electric field afforded by long-range surface plasmon resonance (LRSPR) excited in symmetrical dielectric environments. The LR-SERS substrate has a sandwich configuration with a triangle-shaped gold nanohole array embedded between two dielectrics with similar refractive indices (i.e., MgF2 and water). The finite-difference time-domain simulation was applied to guide the design of the LR-SERS substrate, which was engineered to have a wavelength-matched LRSPR with 785 nm excitation. The simulations predict that the LR-SERS substrate exhibits great SERS enhancement at distances of more than 10 nm beyond its top surface, and the enhancement factor (EF) has been improved by three orders of magnitude on LR-SERS substrates compared to that on conventional substrates. The experimental results show good agreement with the simulations, an EF of 4.1 × 105 remains available at 22 nm above the LR-SERS substrate surface. The LR-SERS substrate was further applied as a sensing platform to detect microRNA (miRNA) let-7a coupled with a hybridization chain reaction (HCR) strategy. The developed sensor displays a wide linear range from 10 aM to 1 nM and an ultralow detection limit of 8.5 aM, making it the most sensitive among the current detection strategies for miRNAs based on the SERS-HCR combination to the best of our knowledge.
Collapse
Affiliation(s)
- Xiaojun Luo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jingtian Zhu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wenyu Jia
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ningning Fang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Nangare SN, Patil PO. Affinity-Based Nanoarchitectured Biotransducer for Sensitivity Enhancement of Surface Plasmon Resonance Sensors for In Vitro Diagnosis: A Review. ACS Biomater Sci Eng 2020; 7:2-30. [DOI: 10.1021/acsbiomaterials.0c01203] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sopan N. Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| | - Pravin O. Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur−425405, Maharashtra India
| |
Collapse
|
9
|
Lenyk B, Figueroa‐Miranda G, Pavlushko I, Lo Y, Tanner JA, Offenhäusser A, Mayer D. Dual‐Transducer Malaria Aptasensor Combining Electrochemical Impedance and Surface Plasmon Polariton Detection on Gold Nanohole Arrays. ChemElectroChem 2020. [DOI: 10.1002/celc.202001212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bohdan Lenyk
- Institute of Biological Information Processing (IBI-3) Forschungszentrum Jülich 52428 Jülich Germany
- Department of Physics University of Konstanz 78464 Konstanz Germany
| | - Gabriela Figueroa‐Miranda
- Institute of Biological Information Processing (IBI-3) Forschungszentrum Jülich 52428 Jülich Germany
- RWTH Aachen University Aachen 52062 Germany
| | - Ivan Pavlushko
- Institute of Biological Information Processing (IBI-3) Forschungszentrum Jülich 52428 Jülich Germany
- Faculty of Radio Physics Electronics and Computer Systems Taras Shevchenko National University of Kyiv Kyiv 03680 Ukraine
| | - Young Lo
- School of Biomedical Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam, Hong Kong Special Administrative Region China
| | - Julian A. Tanner
- School of Biomedical Sciences Li Ka Shing Faculty of Medicine The University of Hong Kong Pokfulam, Hong Kong Special Administrative Region China
| | - Andreas Offenhäusser
- Institute of Biological Information Processing (IBI-3) Forschungszentrum Jülich 52428 Jülich Germany
- RWTH Aachen University Aachen 52062 Germany
| | - Dirk Mayer
- Institute of Biological Information Processing (IBI-3) Forschungszentrum Jülich 52428 Jülich Germany
| |
Collapse
|
10
|
Zhan C, Liu BW, Tian ZQ, Ren B. Determining the Interfacial Refractive Index via Ultrasensitive Plasmonic Sensors. J Am Chem Soc 2020; 142:10905-10909. [DOI: 10.1021/jacs.0c01907] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Bo-Wen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Dey P, Baumann V, Rodríguez-Fernández J. Gold Nanorod Assemblies: The Roles of Hot-Spot Positioning and Anisotropy in Plasmon Coupling and SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E942. [PMID: 32423172 PMCID: PMC7279447 DOI: 10.3390/nano10050942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/13/2022]
Abstract
Plasmon-coupled colloidal nanoassemblies with carefully sculpted "hot-spots" and intense surface-enhanced Raman scattering (SERS) are in high demand as photostable and sensitive plasmonic nano-, bio-, and chemosensors. When maximizing SERS signals, it is particularly challenging to control the hot-spot density, precisely position the hot-spots to intensify the plasmon coupling, and introduce the SERS molecule in those intense hot-spots. Here, we investigated the importance of these factors in nanoassemblies made of a gold nanorod (AuNR) core and spherical nanoparticle (AuNP) satellites with ssDNA oligomer linkers. Hot-spot positioning at the NR tips was made possible by selectively burying the ssDNA in the lateral facets via controlled Ag overgrowth while retaining their hybridization and assembly potential at the tips. This strategy, with slight alterations, allowed us to form nanoassemblies that only contained satellites at the NR tips, i.e., directional anisotropic nanoassemblies; or satellites randomly positioned around the NR, i.e., nondirectional nanoassemblies. Directional nanoassemblies featured strong plasmon coupling as compared to nondirectional ones, as a result of strategically placing the hot-spots at the most intense electric field position of the AuNR, i.e., retaining the inherent plasmon anisotropy. Furthermore, as the dsDNA was located in these anisotropic hot-spots, this allowed for the tag-free detection down to 10 dsDNA and a dramatic SERS enhancement of 1.6 × 108 for the SERS tag SYBR gold, which specifically intercalates into the dsDNA. This dramatic SERS performance was made possible by manipulating the anisotropy of the nanoassemblies, which allowed us to emphasize the critical role of hot-spot positioning and SERS molecule positioning in nanoassemblies.
Collapse
Affiliation(s)
- Priyanka Dey
- Department of Physics and CeNS, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (V.B.); (J.R.-F.)
- Nanosystems Initiative Munich (NIM), 80799 Munich, Germany
| | - Verena Baumann
- Department of Physics and CeNS, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (V.B.); (J.R.-F.)
- Nanosystems Initiative Munich (NIM), 80799 Munich, Germany
| | - Jessica Rodríguez-Fernández
- Department of Physics and CeNS, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (V.B.); (J.R.-F.)
- Nanosystems Initiative Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
12
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
13
|
Circular Dichroism in Low-Cost Plasmonics: 2D Arrays of Nanoholes in Silver. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arrays of nanoholes in metal are important plasmonic devices, proposed for applications spanning from biosensing to communications. In this work, we show that in such arrays the symmetry can be broken by means of the elliptical shape of the nanoholes, combined with the in-plane tilt of the ellipse axes away from the array symmetry lines. The array then differently interacts with circular polarizations of opposite handedness at normal incidence, i.e., it becomes intrinsically chiral. The measure of this difference is called circular dichroism (CD). The nanosphere lithography combined with tilted silver evaporation was employed as a low-cost fabrication technique. In this paper, we demonstrate intrinsic chirality and CD by measuring the extinction in the near-infrared range. We further employ numerical analysis to visualize the circular polarization coupling with the nanostructure. We find a good agreement between simulations and the experiment, meaning that the optimization can be used to further increase CD.
Collapse
|
14
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
15
|
Liang Y, Yu Z, Li L, Xu T. A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Sci Rep 2019; 9:7379. [PMID: 31089174 PMCID: PMC6517425 DOI: 10.1038/s41598-019-43781-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/30/2019] [Indexed: 12/16/2022] Open
Abstract
The plasmonic optical fiber sensors have attracted wide attention for label-free biosensing application because of their high integration, small footprint and point-of-care measurement. However, the integration of plasmonic nanostructures on optical fiber probes always relies on the top-down nanofabrication approaches, which have several inherent shortcomings, including high cost, time-consuming, and low yields. Here, we develop a plasmonic nanohole-patterned multimode optical fiber probe by self-assembly nanosphere lithography technique with low fabrication cost and high yields. The multimode optical fiber possesses large facet area and high numerical aperture, which not only simplifies fabrication process, but also increases coupling efficiency of incident light. Originating from the resonant coupling of plasmonic modes, the plasmonic fiber nanoprobe has a distinct reflection dip in the spectrum and exhibits strong near-field electromagnetic enhancement. We experimentally investigate the sensing performances of plasmonic fiber nanoprobe, and further demonstrate it in real-time monitoring specific binding of protein molecules. The experimental results imply that the nanohole-patterned multimode optical fiber probe is a good candidate for developing miniaturized and portable biosensing systems.
Collapse
Affiliation(s)
- Yuzhang Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, China
| | - Zhiyong Yu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, China
| | - Lixia Li
- College of Physics and Material Science, Henan Normal University, Xinxiang, 453007, China
| | - Ting Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
16
|
Budimir M, Jijie R, Ye R, Barras A, Melinte S, Silhanek A, Markovic Z, Szunerits S, Boukherroub R. Efficient capture and photothermal ablation of planktonic bacteria and biofilms using reduced graphene oxide-polyethyleneimine flexible nanoheaters. J Mater Chem B 2019; 7:2771-2781. [PMID: 32255079 DOI: 10.1039/c8tb01676c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial infections are one of the leading causes of disease worldwide. Conventional antibiotics are becoming less efficient, due to antibiotic-resistant bacterial strains. Therefore, the development of novel antibacterial materials and advanced treatment strategies are becoming increasingly important. In the present work, we developed a simple and efficient strategy for effective bacterial capture and their subsequent eradication through photothermal killing. The developed device consists of a flexible nanoheater, comprising a Kapton/Au nanoholes substrate, coated with reduced graphene oxide-polyethyleneimine (K/Au NH/rGO-PEI) thin films. The Au NH plasmonic structure was tailored to feature strong absorption in the near-infrared (NIR) region, where most biological matter has limited absorption, while PEI was investigated for its strong binding with bacteria through electrostatic interactions. The K/Au NH/rGO-PEI device was demonstrated to capture and eliminate effectively both planktonic Gram-positive Staphilococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria after 10 min of NIR (980 nm) irradiation and, to destroy and eradicate Staphilococcus epidermidis (S. epidermidis) biofilms after 30 min irradiation. The technique developed herein is simple and universal with potential applications for eradication of different micro-organisms.
Collapse
Affiliation(s)
- Milica Budimir
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMN, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Zheng J, Yang W, Wang J, Zhu J, Qian L, Yang Z. An ultranarrow SPR linewidth in the UV region for plasmonic sensing. NANOSCALE 2019; 11:4061-4066. [PMID: 30776034 DOI: 10.1039/c8nr09703h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conventional surface plasmon resonance (SPR) modes based on gold and silver nanostructures only operate in the visible and near-infrared (NIR) regions. Nowadays, with the rapid development of strong coupling between molecules and plasmonic nanostructures and surface enhanced spectroscopy, it is highly desired to modulate the SPR modes with a narrow linewidth toward the ultraviolet (UV) wavelength region through a low cost and reproducible fabrication method. Herein, laser interference lithography is utilized to manufacture stable Al plasmonic arrays with well-controlled and tunable geometries. Importantly, an ultranarrow linewidth of SPR modes as narrow as 14 nm has been successfully obtained in the near UV region. The fabricated Al plasmonic arrays show a high sensitivity toward 485 nm RIU-1 when it is used as a refractive index sensor. The results reported here make a valuable extension of plasmonic resonant modes spanning visible and NIR into the UV region, and it may provide a robust way to achieve alternative plasmonic materials for plasmon-enhanced molecular sensing, plasmonic nanolasers, non-linear optics, strong coupling and surface enhanced spectroscopy in the UV regions.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, P. R. China.
| | - Weimin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, P. R. China.
| | - Jingyu Wang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, P. R. China.
| | - Jinfeng Zhu
- Department of Electronic Science, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Lihua Qian
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhilin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian 361005, P. R. China.
| |
Collapse
|
18
|
Cui W, Peng W, Yu L, Luo X, Gao H, Chu S, Masson JF. Hybrid Nanodisk Film for Ultra-Narrowband Filtering, Near-Perfect Absorption and Wide Range Sensing. NANOMATERIALS 2019; 9:nano9030334. [PMID: 30832315 PMCID: PMC6473987 DOI: 10.3390/nano9030334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/07/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022]
Abstract
The miniaturization and integration of photonic devices are new requirements in the novel optics field due to the development of photonic information technology. In this paper, we report that a multifunctional layered structure of Au, SiO2 and hexagonal nanodisk film is advantageous for ultra-narrowband filtering, near-perfect absorption and sensing in a wide refractive index (RI) region. This hexagonal nanostructure presented two remarkable polarization independent plasmon resonances with near-zero reflectivity and near-perfect absorptivity under normal incidence in the visible and near-infrared spectral ranges. The narrowest full width at half maximum (FWHM) of these resonances was predicted to be excellent at 5 nm. More notably, the double plasmon resonances showed extremely obvious differences in RI responses. For the first plasmon resonance, an evident linear redshift was observed in a wide RI range from 1.00 to 1.40, and a high RI sensitivity of 600 nm/RIU was obtained compared to other plasmonic nanostructures, such as square and honeycomb-like nanostructures. For the second plasmon resonance with excellent FWHM at 946 nm, its wavelength position almost remained unmovable in the case of changing RI surrounding nanodisks in the same regime. Most unusually, its resonant wavelength was insensitive to nearly all structural parameters except the structural period. The underlying physical mechanism was analyzed in detail for double plasmon resonances. This work was significant in developing high-performance integrated optical devices for filtering, absorbing and biomedical sensing.
Collapse
Affiliation(s)
- Wenli Cui
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China.
- College of Science, North University of China, Taiyuan 030051, China.
| | - Wei Peng
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Li Yu
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaolin Luo
- College of mechatronic Engineering, North University of China, Taiyuan 030051, China.
| | - Huixuan Gao
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Shuwen Chu
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jean-Francois Masson
- Department of Chemistry, University of Montréal, Montréal, Quebec H3C 3J7, Canada.
| |
Collapse
|
19
|
McKeating KS, Couture M, Dinel MP, Garneau-Tsodikova S, Masson JF. High throughput LSPR and SERS analysis of aminoglycoside antibiotics. Analyst 2018; 141:5120-6. [PMID: 27412506 DOI: 10.1039/c6an00540c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aminoglycoside antibiotics are used in the treatment of infections caused by Gram-negative bacteria, and are often dispensed only in severe cases due to their adverse side effects. Patients undergoing treatment with these antibiotics are therefore commonly subjected to therapeutic drug monitoring (TDM) to ensure a safe and effective personalised dosage. The ability to detect these antibiotics in a rapid and sensitive manner in human fluids is therefore of the utmost importance in order to provide effective monitoring of these drugs, which could potentially allow for a more widespread use of this class of antibiotics. Herein, we report on the detection of various aminoglycosides, by exploiting their ability to aggregate gold nanoparticles. The number and position of the amino groups of aminoglycoside antibiotics controlled the aggregation process. We investigated the complementary techniques of surface enhanced Raman spectroscopy (SERS) and localized surface plasmon resonance (LSPR) for dual detection of these aminoglycoside antibiotics and performed an in-depth study of the feasibility of carrying out TDM of tobramycin using a platform amenable to high throughput analysis. Herein, we also demonstrate dual detection of tobramycin using both LSPR and SERS in a single platform and within the clinically relevant concentration range needed for TDM of this particular aminoglycoside. Additionally we provide evidence that tobramycin can be detected in spiked human serum using only functionalised nanoparticles and SERS analysis.
Collapse
Affiliation(s)
- Kristy S McKeating
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Maxime Couture
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Marie-Pier Dinel
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Jean-Francois Masson
- Département de chimie and Centre for self-assembled chemical structures (CSACS), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
20
|
Stelling C, Fossati S, Dostalek J, Retsch M. Surface plasmon modes of nanomesh-on-mirror nanocavities prepared by nanosphere lithography. NANOSCALE 2018; 10:17983-17989. [PMID: 30226239 DOI: 10.1039/c8nr05499a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-insulator-metal (MIM) structures show great potential for numerous photonic applications due to their ability to confine light energy to volumes with deeply sub-wavelength dimensions. Here, MIM structures comprising hexagonal gold nanohole arrays were prepared by nanosphere lithography. Angle-resolved UV-vis-NIR spectroscopy revealed a series of narrow, dispersive and non-dispersive modes, which were attributed to the excitation of surface plasmon polariton (SPP) modes. Applying finite-difference time-domain (FDTD) simulations and analytical diffraction phase-matching theory all resonances can be ascribed to only two SPP modes traveling at the outer gold surface and in the gap layer sandwiched between two metal films. Metamaterial resonances, as reported in the literature for similar structures, are not needed to fully explain the reflectance spectra. Bragg scattering of the symmetric gap SPP mode results in a gap resonance, which is insensitive to the angle of incidence over a broad angular range. The spectral position of this flat band can be controlled by tuning the grating period of the nanohole array as well as the thickness and the refractive index of the dielectric gap.
Collapse
Affiliation(s)
- Christian Stelling
- Department of Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | | | | | | |
Collapse
|
21
|
Zuo Z, Wen Y, Zhang S. Interface-induced nucleation and growth: a new route for fabricating ordered silver nanohole arrays. NANOSCALE 2018; 10:14039-14046. [PMID: 29995028 DOI: 10.1039/c8nr00639c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal nanohole arrays exhibit fascinating optical properties originating from the excitation of surface plasmons, and have been demonstrated to be of great potential in many applications. However, the fabrication of large-area ordered metal nanohole arrays with a tunable optical response is still highly desired. Herein, a novel interface-induced vapor phase growth method is developed to achieve hexagonally arranged silver nanohole arrays with a centimeter-scale area, in which an interface is introduced via an ordered template and used to induce Ag selective nucleation and growth. The adhesive force of the template with the substrate is found to be crucial in the determination of the nucleation sites and the resulting nanostructures. The plasmonic responses of the nanohole arrays are regulated by controlling their structural features, which are realized through simply changing the template parameters and the Ag deposition thickness. The Ag nanohole array exhibits more than 20-fold Raman enhancement compared to a rough Ag film when its localized surface plasmon resonance (LSPR) is tuned to an optimized range, which indicates its potential in biochemical sensing applications. The present method for the preparation of large-area metal nanohole arrays may open up a new avenue to fabricate novel metal nanostructures and develop high-performance plasmonic devices.
Collapse
Affiliation(s)
- Zewen Zuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China. and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yibing Wen
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China.
| | - Sheng Zhang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology (OEMST), College of Physics and Electronics Information, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
22
|
Lotito V, Zambelli T. Pattern Formation in Binary Colloidal Assemblies: Hidden Symmetries in a Kaleidoscope of Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7827-7843. [PMID: 29886749 DOI: 10.1021/acs.langmuir.8b01411] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of nonpreservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are important for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor the physical properties of colloidal assemblies.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics , Institute for Biomedical Engineering, ETH Zurich , Gloriastrasse 35 , 8092 Zurich , Switzerland
| |
Collapse
|
23
|
Lee KL, Chang CC, You ML, Pan MY, Wei PK. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance. Sci Rep 2018; 8:9762. [PMID: 29950690 PMCID: PMC6021451 DOI: 10.1038/s41598-018-28122-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022] Open
Abstract
Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.
Collapse
Affiliation(s)
- Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan.
| | - Chia-Chun Chang
- Department of Optoelectronics, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Meng-Lin You
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan
| | - Ming-Yang Pan
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, 128, section 2, Academia Road, Nangkang, Taipei, 11529, Taiwan.
- Department of Optoelectronics, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Institute of Biophotonics, National Yang-Ming University, Taipei, 11221, Taiwan.
| |
Collapse
|
24
|
Lu M, Hong L, Liang Y, Charron B, Zhu H, Peng W, Masson JF. Enhancement of Gold Nanoparticle Coupling with a 2D Plasmonic Crystal at High Incidence Angles. Anal Chem 2018; 90:6683-6692. [PMID: 29738232 DOI: 10.1021/acs.analchem.8b00496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2D nanoplasmonic substrates excited in transmission spectroscopy are ideal for several biosensing, metamaterial, and optical applications. We show that their excellent properties can be further improved with plasmonic coupling of Au nanoparticles (AuNPs) on gold-coated nanodisk arrays excited at large incidence angles of up to 50°. The Bragg modes (BM) thereby strongly couple to AuNP immobilized on the plasmonic substrate due to shorter decay length of the plasmon at higher incidence angles, leading to a further enhanced field between the AuNP and the plasmonic substrate. The field was highest and two hotspots were created at orthogonal positions for AuNP located close to the corner of the Au film and Au nanodisk, which was also observed for AuNP dimers. Hybridization between single-stranded DNA (ssDNA) immobilized on the surface of the AuNPs and the capture ssDNA on the gold-coated nanodisk arrays led to at least a 5-fold signal improvement and a 7-fold lower limit of detection at 7 pM for ssDNA-functionalized AuNPs at large incident angles. Thus, we demonstrate that higher field strength can be accessed and the significant advantages of working with high incidence angles with AuNP on a 2D plasmonic crystal in plasmonic sensing.
Collapse
Affiliation(s)
- Mengdi Lu
- College of Physics and Optoelectronics Engineering , Dalian University of Technology , Dalian 116024 , China.,Département de chimie and Centre Québécois sur les Matériaux Fonctionnels (CQMF) , Université de Montréal , CP. 6128 Succ. Centre-Ville , Montreal , QC H3C 3J7 , Canada
| | - Long Hong
- School of Life Sciences , Peking University , Beijing 100871 , China
| | - Yuzhang Liang
- National Laboratory of Solid State Microstructures , Nanjing University , Nanjing 210093 , China
| | - Benjamin Charron
- Département de chimie and Centre Québécois sur les Matériaux Fonctionnels (CQMF) , Université de Montréal , CP. 6128 Succ. Centre-Ville , Montreal , QC H3C 3J7 , Canada
| | - Hu Zhu
- Département de chimie and Centre Québécois sur les Matériaux Fonctionnels (CQMF) , Université de Montréal , CP. 6128 Succ. Centre-Ville , Montreal , QC H3C 3J7 , Canada
| | - Wei Peng
- College of Physics and Optoelectronics Engineering , Dalian University of Technology , Dalian 116024 , China
| | - Jean-Francois Masson
- Département de chimie and Centre Québécois sur les Matériaux Fonctionnels (CQMF) , Université de Montréal , CP. 6128 Succ. Centre-Ville , Montreal , QC H3C 3J7 , Canada
| |
Collapse
|
25
|
Barreda ÁI, Otaduy D, Martín-Rodríguez R, Merino S, Fernández-Luna JL, González F, Moreno F. Electromagnetic behavior of dielectric objects on metallic periodically nanostructured substrates. OPTICS EXPRESS 2018; 26:11222-11237. [PMID: 29716047 DOI: 10.1364/oe.26.011222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
In this research, we investigate the electromagnetic behavior of a metallic thin-film with a periodic array of subwavelength apertures when dielectric objects are located on it. The influence of size, geometry and optical properties of the objects on the transmission spectra is numerically analyzed. We study the sensitivity of this system to changes in the refractive index of the illuminated volume induced by the presence of objects with sizes from hundreds of nanometers (submicron-sized objects) to a few microns (micron-sized objects). Parameters such as the object volume within the penetration depth of the surface plasmon in the buffer medium or the contact surface between the object and the nanostructured substrate strongly affect the sensitivity. The proposed system models the presence of objects and their detection through the spectral shifts undergone by the transmission spectra. Also, we demonstrate that these can be used for obtaining information about the refractive index of a micron-sized object immersed in a buffer and located on the nanostructured sensitive surface. We believe that results found in this study can help biomedical researchers and experimentalists in the process of detecting and monitoring biological organisms of large sizes (notably, cells).
Collapse
|
26
|
Jackman JA, Rahim Ferhan A, Cho NJ. Nanoplasmonic sensors for biointerfacial science. Chem Soc Rev 2018; 46:3615-3660. [PMID: 28383083 DOI: 10.1039/c6cs00494f] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, nanoplasmonic sensors have become widely used for the label-free detection of biomolecules across medical, biotechnology, and environmental science applications. To date, many nanoplasmonic sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level. One of the most promising directions has been surface-based nanoplasmonic sensors, and the potential of such technologies is still emerging. Going beyond detection, surface-based nanoplasmonic sensors open the door to enhanced, quantitative measurement capabilities across the biointerfacial sciences by taking advantage of high surface sensitivity that pairs well with the size of medically important biomacromolecules and biological particulates such as viruses and exosomes. The goal of this review is to introduce the latest advances in nanoplasmonic sensors for the biointerfacial sciences, including ongoing development of nanoparticle and nanohole arrays for exploring different classes of biomacromolecules interacting at solid-liquid interfaces. The measurement principles for nanoplasmonic sensors based on utilizing the localized surface plasmon resonance (LSPR) and extraordinary optical transmission (EOT) phenomena are first introduced. The following sections are then categorized around different themes within the biointerfacial sciences, specifically protein binding and conformational changes, lipid membrane fabrication, membrane-protein interactions, exosome and virus detection and analysis, and probing nucleic acid conformations and binding interactions. Across these themes, we discuss the growing trend to utilize nanoplasmonic sensors for advanced measurement capabilities, including positional sensing, biomacromolecular conformation analysis, and real-time kinetic monitoring of complex biological interactions. Altogether, these advances highlight the rich potential of nanoplasmonic sensors and the future growth prospects of the community as a whole. With ongoing development of commercial nanoplasmonic sensors and analytical models to interpret corresponding measurement data in the context of biologically relevant interactions, there is significant opportunity to utilize nanoplasmonic sensing strategies for not only fundamental biointerfacial science, but also translational science applications related to clinical medicine and pharmaceutical drug development among countless possibilities.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | |
Collapse
|
27
|
Liang Y, Li L, Lu M, Yuan H, Long Z, Peng W, Xu T. Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array. NANOSCALE 2018; 10:548-555. [PMID: 29185577 DOI: 10.1039/c7nr07124h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmonic nanostructures have become the most promising candidates for biosensing applications because of their miniature sizes, ease of integration, and high-throughput detection. Both propagating and localized surface plasmon modes in the nanostructures have been used for sensing and biomolecular detection. However, to maximize the biosensing potential of nanostructures, the choice of an optimized sensing detection strategy among two plasmon modes depends on the relationship between the biomolecule sizes and field decay length of plasmon modes. Here, we propose and investigate plasmonic coupling on a single-crystalline gold film, wherein there are two distinct optical modes, a gap mode (localized surface plasmon) originating from the parallel coupling of a nanoring and a surface lattice mode (propagating surface plasmon) originating from the anti-parallel coupling of a nanoring in an array. The sensing performances of the above two modes are thoroughly investigated and compared by considering two aspects, i.e., bulk and surface sensitivities. It is demonstrated that there is a reciprocal relationship between bulk and surface sensitivities for two modes, which also illustrates that the surface sensitivity is indispensable to fully describe the sensing performance of nanostructures. Furthermore, due to their different decay lengths, the gap and surface lattice modes on a single optical substrate can achieve simultaneous detection of target analytes with various sizes. Therefore, we can provide a high performance sensing platform based on a metallic nanoring array for a broad range of biomolecules with various sizes.
Collapse
Affiliation(s)
- Yuzhang Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hinman SS, McKeating KS, Cheng Q. Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Anal Chem 2018; 90:19-39. [PMID: 29053253 PMCID: PMC6041476 DOI: 10.1021/acs.analchem.7b04251] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel S. Hinman
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
| | - Kristy S. McKeating
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| | - Quan Cheng
- Environmental Toxicology, University of California–Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California–Riverside, Riverside, California 92521, United States
| |
Collapse
|
29
|
Li C, Ye R, Bouckaert J, Zurutuza A, Drider D, Dumych T, Paryzhak S, Vovk V, Bilyy RO, Melinte S, Li M, Boukherroub R, Szunerits S. Flexible Nanoholey Patches for Antibiotic-Free Treatments of Skin Infections. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36665-36674. [PMID: 28956593 DOI: 10.1021/acsami.7b12949] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite the availability of different antibiotics, bacterial infections are still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic treatment is due to a general poor antibiotic penetration to bacterial infection sites as well as the development of antibiotic-resistant pathogens. In the case of skin infection, the wound is covered by exudate, making it impermeable to topical antibiotics. The development of a flexible patch allowing a rapid and highly efficient treatment of subcutaneous wound infections via photothermal irradiation is presented here. The skin patch combines the near-infrared photothermal properties of a gold nanohole array formed by self-assembly of colloidal structures on flexible polyimide films with that of reduced graphene oxide nanosheets for laser-gated pathogen inactivation. In vivo tests performed on mice with subcutaneous skin infection and treated with the photothermal skin patch show wound healing of the infected site, while nontreated areas result in necrotic muscular fibers and bacterial infiltrate. No loss in efficiency is observed upon multiple use of these patches during in vivo experiments because of their robustness.
Collapse
Affiliation(s)
- Chengnan Li
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Ran Ye
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain , 1348 Louvain-la-Neuve, Belgium
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR 8576 du CNRS et Université de Lille, 50 Av. de Halley, 59658 Villeneuve d'Ascq, France
| | - Amaia Zurutuza
- Graphenea S.A., Tolosa Hiribidea 76, 20018 Donostia, San Sebastian, Spain
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille1 , EA 7394 Lille, France
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University , 79010 Lviv, Ukraine
| | - Solomiya Paryzhak
- Danylo Halytsky Lviv National Medical University , 79010 Lviv, Ukraine
| | - Volodymyr Vovk
- Danylo Halytsky Lviv National Medical University , 79010 Lviv, Ukraine
| | - Rostyslav O Bilyy
- Danylo Halytsky Lviv National Medical University , 79010 Lviv, Ukraine
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain , 1348 Louvain-la-Neuve, Belgium
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Rabah Boukherroub
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Centrale Lille, ISEN, Université de Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
30
|
Zhou Z, Yu Y, Sun N, Möhwald H, Gu P, Wang L, Zhang W, König TAF, Fery A, Zhang G. Broad-Range Electrically Tunable Plasmonic Resonances of a Multilayer Coaxial Nanohole Array with an Electroactive Polymer Wrapper. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35244-35252. [PMID: 28925685 DOI: 10.1021/acsami.7b11139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plasmonic assemblies featuring high sensitivity that can be readily shifted by external fields are the key for sensitive and versatile sensing devices. In this paper, a novel fast-responsive plasmonic nanocomposite composed of a multilayer nanohole array and a responsive electrochromic polymer is proposed with the plasmonic mode appearance vigorously cycled upon orthogonal electrical stimuli. In this nanocomposite, the coaxially stacked plasmonic nanohole arrays can induce multiple intense Fano resonances, which result from the crosstalk between a broad surface plasmon resonance (SPR) and the designed discrete transmission peaks with ultrahigh sensitivity; the polymer wrapper could provide the sensitive nanohole array with real-time-varied surroundings of refractive indices upon electrical stimuli. Therefore, a pronounced pure electroplasmonic shift up to 72 nm is obtained, which is the largest pure electrotuning SPR range to our knowledge. The stacked nanohole arrays here are also directly used as a working electrode, and they ensure sufficient contact between the working electrode (plasmonic structure) and the electroactive polymer, thus providing considerably improved response speed (within 1 s) for real-time sensing and switching.
Collapse
Affiliation(s)
| | - Ye Yu
- Leibniz Institut für Polymerforschung Dresden e.V , Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, D-01069 Dresden, Germany
| | | | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , D-14424 Potsdam, Germany
| | | | | | | | - Tobias A F König
- Leibniz Institut für Polymerforschung Dresden e.V , Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, D-01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (CfAED), Technische Universitat Dresden , D-01062 Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e.V , Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, D-01069 Dresden, Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (CfAED), Technische Universitat Dresden , D-01062 Dresden, Germany
| | | |
Collapse
|
31
|
Couture M, Brulé T, Laing S, Cui W, Sarkar M, Charron B, Faulds K, Peng W, Canva M, Masson JF. High Figure of Merit (FOM) of Bragg Modes in Au-Coated Nanodisk Arrays for Plasmonic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28834166 DOI: 10.1002/smll.201700908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/19/2017] [Indexed: 05/16/2023]
Abstract
Gold-coated nanodisk arrays of nearly micron periodicity are reported that have high figure of merit (FOM) and sensitivity necessary for plasmonic refractometric sensing, with the added benefit of suitability for surface-enhanced Raman scattering (SERS), large-scale microfabrication using standard photolithographic techniques and a simple instrumental setup. Gold nanodisk arrays are covered with a gold layer to excite the Bragg modes (BM), which are the propagative surface plasmons localized by the diffraction from the disk array. This generates surface-guided modes, localized as standing waves, leading to highly confined fields confirmed by a mapping of the SERS intensity and numerical simulations with 3D finite element method. The optimal gold-coated nanodisk arrays are applied for refractometric sensing in transmission spectroscopy with better performance than nanohole arrays and they are integrated to a 96-well plate reader for detection of IgY proteins in the nanometer range in PBS. The potential for sensing in biofluids is assessed with IgG detection in 1:1 diluted urine. The structure exhibits a high FOM of up to 46, exceeding the FOM of structures supporting surface plasmon polaritons and comparable to more complex nanostructures, demonstrating that subwavelength features are not necessary for high-performance plasmonic sensing.
Collapse
Affiliation(s)
- Maxime Couture
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Thibault Brulé
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Stacey Laing
- Bionanotechnologies, Department of Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Wenli Cui
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mitradeep Sarkar
- Laboratoire Charles Fabry Institut d'Optique Graduate School, Université Paris Sud, CNRS, 2 Avenue Augustin Fresnel, 91127, Palaiseau, France
- Laboratoire Nanotechnologies Nanosystèmes LN2 - CNRS, Université de Sherbrooke, Institut Interdisciplinaire d'Innovation Technologique, 3000 boul. de l'Université Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Benjamin Charron
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Karen Faulds
- Bionanotechnologies, Department of Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK
| | - Wei Peng
- College of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Michael Canva
- Laboratoire Charles Fabry Institut d'Optique Graduate School, Université Paris Sud, CNRS, 2 Avenue Augustin Fresnel, 91127, Palaiseau, France
- Laboratoire Nanotechnologies Nanosystèmes LN2 - CNRS, Université de Sherbrooke, Institut Interdisciplinaire d'Innovation Technologique, 3000 boul. de l'Université Université de Sherbrooke, Sherbrooke, QC, J1K 0A5, Canada
| | - Jean-Francois Masson
- Département de chimie, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Centre Québécois sur les Matériaux Fonctionnels (CQMF)
| |
Collapse
|
32
|
Hu J, Shen M, Li Z, Li X, Liu G, Wang X, Kan C, Li Y. Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array. NANOTECHNOLOGY 2017; 28:215205. [PMID: 28358302 DOI: 10.1088/1361-6528/aa6a38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultraviolet (UV) surface plasmon (SP) has distinct applications in UV filters, high-density optical storage, spectral enhancement, optical detectors, and nanolithography, which are closely related to plasmon-induced extraordinary optical transmission (EOT). However, such EOT in the UV region has not been the subject of detailed research. We report UV transmission based on theoretical research using the finite-difference time-domain method, by modulating the Al thickness, hole size, array periodicity, and SiO2 overlayer thickness. It is notable that we can obtain dual-channel UV transmission peaks with excellent qualities such as high transmissivity, zero cross-talk, narrow bandwidth, and perfect symmetry, by optimizing the parameters. The UV transmission peaks have been discovered to non-monotonously shift with increasing hole size. Although array periodicity has great influence on the transmission peak position, the peak energy in the UV region is much less than the value predicted by the well-known periodicity-related surface plasmon polariton (SPP) wavelength equation; the energy discrepancy in the UV region can reach above 20%, which is much larger than the value (typically 4%) in the visible-infrared region. Furthermore, the SiO2 overlayer may significantly modify the transmission properties. The Al nanohole arrays have also been found to exhibit distinct multi-band UV electric field enhancement properties with special interface effect and size effect. Such extraordinary dual-channel UV transmission with zero cross-talk, based on a very simple Al nanohole array, has promising application in dual-channel UV filters, high-density optical storage, and plasmon-enhanced fluorescence/Raman spectroscopy, which generally involves two wavebands (writing/reading storage or exciting/emission wavelengths). This study is expected to broaden our fundamental understanding of the UV EOT phenomenon, and provide references for experimental research and application of deep-UV and near-UV-related dual-band plasmonic devices.
Collapse
Affiliation(s)
- Jinlian Hu
- School of Materials Science and Engineering, and Anhui Key Laboratory of Metal Materials and Processing, Anhui University of Technology, Ma-An-Shan, Anhui 243002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xue P, Ye S, Su H, Wang S, Nan J, Chen X, Ruan W, Zhang J, Cui Z, Yang B. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range. NANOSCALE 2017; 9:6724-6733. [PMID: 28485438 DOI: 10.1039/c7nr01505d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.
Collapse
Affiliation(s)
- Peihong Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Sci Rep 2017; 7:42530. [PMID: 28198406 PMCID: PMC5309773 DOI: 10.1038/srep42530] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/09/2017] [Indexed: 01/04/2023] Open
Abstract
In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the optical properties are correlated with the power conversion efficiency (PCE) of the solar cells. A cavity mode is identified at the absorption edge of the active layer material. The resonance wavelength of this cavity mode is hardly defined by the nanomesh periodicity but rather by the absorption of the photoactive layer. This constitutes a fundamental dilemma when using nanomeshes as ITO replacement. The highest plasmonic enhancement requires small periodicities. This is accompanied by an overall low transmittance and high parasitic absorption losses. Consequently, larger periodicities with a less efficient cavity mode, yet lower absorptive losses were found to yield the highest PCE. Nevertheless, ITO-free solar cells reaching ~77% PCE compared to ITO reference devices are fabricated. Concomitantly, the benefits and drawbacks of this transparent nanomesh electrode are identified, which is of high relevance for future ITO replacement strategies.
Collapse
|
35
|
Abstract
The design and application of sensors for monitoring biomolecules in clinical samples is a common goal of the sensing research community. Surface plasmon resonance (SPR) and other plasmonic techniques such as localized surface plasmon resonance (LSPR) and imaging SPR are reaching a maturity level sufficient for their application in monitoring biomolecules in clinical samples. In recent years, the first examples for monitoring antibodies, proteins, enzymes, drugs, small molecules, peptides, and nucleic acids in biofluids collected from patients afflicted with a series of medical conditions (Alzheimer's, hepatitis, diabetes, leukemia, and cancers such as prostate and breast cancers, among others) demonstrate the progress of SPR sensing in clinical chemistry. This Perspective reviews the current status of the field, showcasing a series of early successes in the application of SPR for clinical analysis and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, and comparing SPR with ELISA, while providing an outlook of the challenges currently associated with plasmonic materials, instrumentation, microfluidics, bioreceptor selection, selection of a clinical market, and validation of a clinical assay for applying SPR sensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical applications.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Département
de chimie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada
- Centre
for self-assembled chemical structures (CSACS), McGill University, 801
Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
36
|
Genslein C, Hausler P, Kirchner EM, Bierl R, Baeumner AJ, Hirsch T. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1564-1573. [PMID: 28144507 PMCID: PMC5238696 DOI: 10.3762/bjnano.7.150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
The label-free nature of surface plasmon resonance techniques (SPR) enables a fast, specific, and sensitive analysis of molecular interactions. However, detection of highly diluted concentrations and small molecules is still challenging. It is shown here that in contrast to continuous gold films, gold nanohole arrays can significantly improve the performance of SPR devices in angle-dependent measurement mode, as a signal amplification arises from localized surface plasmons at the nanostructures. This leads consequently to an increased sensing capability of molecules bound to the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore allows fast response times. In fact, it was found that nanohole arrays demonstrated a higher shift in the resonance angle of 250-380% compared to a continuous gold film. At the same time the nanohole array structure as characterized by its diameter-to-periodicity ratio had minimal influence on the binding capacity of the sensor surface. As a simple and environmentally highly relevant model, binding of the plasticizer diethyl phthalate (DEP) via π-stacking was monitored on the rGO gold nanohole array realizing a limit of detection of as low as 20 nM. The concentration-dependent signal change was studied with the best performing rGO-modified nanohole arrays. Compared to continuous gold films a diameter-to-periodicity ratio (D/P) of 0.43 lead to a 12-fold signal enhancement. Finally, the effect of environmental waters on the sensor was evaluated using samples from sea, lake and river waters spiked with analytically relevant amounts of DEP during which significant changes in the SPR signal are observed. It is expected that this concept can be successfully transferred to enhance the sensitivity in SPR sensors.
Collapse
Affiliation(s)
- Christa Genslein
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Peter Hausler
- Sensorik-ApplikationsZentrum, OTH Regensburg, Franz-Mayer-Str. 1, 93053 Regensburg, Germany
| | - Eva-Maria Kirchner
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Rudolf Bierl
- Sensorik-ApplikationsZentrum, OTH Regensburg, Franz-Mayer-Str. 1, 93053 Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
37
|
Weiler M, Menzel C, Pertsch T, Alaee R, Rockstuhl C, Pacholski C. Bottom-Up Fabrication of Hybrid Plasmonic Sensors: Gold-Capped Hydrogel Microspheres Embedded in Periodic Metal Hole Arrays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26392-26399. [PMID: 27668665 DOI: 10.1021/acsami.6b08636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The high potential of bottom-up fabrication strategies for realizing sophisticated optical sensors combining the high sensitivity of a surface plasmon resonance with the exceptional properties of stimuli-responsive hydrogel is demonstrated. The sensor is composed of a periodic hole array in a gold film whose holes are filled with gold-capped poly(N-isoproyl-acrylamide) (polyNIPAM) microspheres. The production of this sensor relies on a pure chemical approach enabling simple, time-efficient, and cost-efficient preparation of sensor platforms covering areas of cm2. The transmission spectrum of this plasmonic sensor shows a strong interaction between propagating surface plasmon polaritons at the metal film surface and localized surface plasmon resonance of the gold cap on top of the polyNIPAM microspheres. Computer simulations support this experimental observation. These interactions lead to distinct changes in the transmission spectrum, which allow for the simultaneous, sensitive optical detection of refractive index changes in the surrounding medium and the swelling state of the embedded polyNIPAM microsphere under the gold cap. The volume of the polyNIPAM microsphere located underneath the gold cap can be changed by certain stimuli such as temperature, pH, ionic strength, and distinct molecules bound to the hydrogel matrix facilitating the detection of analytes which do not change the refractive index of the surrounding medium significantly.
Collapse
Affiliation(s)
- Markus Weiler
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Christoph Menzel
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller Universität Jena , Albert Einstein Straße 15, 07745 Jena, Germany
| | - Thomas Pertsch
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller Universität Jena , Albert Einstein Straße 15, 07745 Jena, Germany
| | - Rasoul Alaee
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology , Wolfgang- Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology , Wolfgang- Gaede-Str. 1, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology , P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Claudia Pacholski
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems , Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Chemistry, University of Potsdam , Am Mühlenberg 3, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
38
|
Zheng P, Cushing SK, Suri S, Wu N. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Phys Chem Chem Phys 2016; 17:21211-9. [PMID: 25586930 DOI: 10.1039/c4cp05291a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wide plasmonic tuning range of nanotriangle and nanohole array patterns fabricated by nanosphere lithography makes them promising in surface-enhanced Raman scattering (SERS) sensors. Unfortunately, it is challenging to optimize these patterns for SERS sensing because their optical response is a complex mixture of localized surface plasmon resonance (SPR) and propagating surface plasmon polariton (SPP). In this paper, transmission and reflection measurements are combined with finite difference time domain simulations to identify and separate each plasmonic mode, discerning which resonance leads to the electromagnetic field enhancement. The SERS enhancement is found to be dominated by the absorption, which is shifted from the transmission and reflection dips usually used as tuning points, and by the 'gap' defects formed within the pattern. These effects have different spectral and geometric dependences, forming two optimization curves which can be used to predict the best performance for a given excitation wavelength. The developed model is verified with experimental SERS measurements for several nanohole sizes and periodicities, and then used to give optimal fabrication parameters for a range of measurement conditions. The results will promote the application of two-dimensional plasmonic nanoarrays in SERS sensors.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA.
| | | | | | | |
Collapse
|
39
|
Shinohara S, Tanaka D, Okamoto K, Tamada K. Colorimetric plasmon sensors with multilayered metallic nanoparticle sheets. Phys Chem Chem Phys 2016; 17:18606-12. [PMID: 26113242 DOI: 10.1039/c5cp02564h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colorimetric plasmon sensors for naked-eye detection of molecular recognition events have been proposed. Here, 3-layered Ag nanoparticle (NP) sheets on a Au substrate fabricated using the Langmuir-Schaefer method were utilized as the detection substrates. A drastic color change was observed following the binding of Au NPs via avidin-biotin interactions at less than 30% surface coverage. The color change was attributed not only to the localized surface plasmon resonance (LSPR) of the adsorbed Au NPs but also to the multiple light trapping effect derived from the stratified Au and Ag NPs, as predicted by a finite-difference time-domain (FDTD) simulation. This plasmonic multi-color has great potential in the development of simple and highly sensitive diagnostic systems.
Collapse
Affiliation(s)
- Shuhei Shinohara
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka Nishi-ku Fukuoka, 819-0395, Japan.
| | | | | | | |
Collapse
|
40
|
Couture M, Ray KK, Poirier-Richard HP, Crofton A, Masson JF. 96-Well Plasmonic Sensing with Nanohole Arrays. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxime Couture
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Korak Kumar Ray
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Hugo-Pierre Poirier-Richard
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Anthony Crofton
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Jean-Francois Masson
- Département
de Chimie and ‡Centre for Self-Assembled Chemical Structures
(CSACS), Université de Montréal, CP. 6128 Succ. Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
41
|
Liang Y, Peng W, Li L, Qian S, Wang Q. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing. OPTICS LETTERS 2015; 40:3909-3912. [PMID: 26274691 DOI: 10.1364/ol.40.003909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Introducing a conducting metal layer and the structural asymmetry to elliptical annular aperture arrays, multiple plasmonic coupled-resonant modes are generated under normal incidence in the visible light range. The electromagnetic fields can be strongly enhanced at resonant modes in this device, which increases the interaction volume of the detected analyte and optical fields; therefore, multiple plamonic coupled modes exhibit higher refractive index sensitivity than as large as 610 nm/RIU. The distinct Fano-like resonance around a wavelength of 681 nm originates from the interference between bonding dipolar and the quadrupolar modes. Due to the excitation of sharp spectral features as narrow as 7 nm, high figure of merits of 94 at the Fano-like dip is obtained in a wide refractive index range of 1.33-1.40. Furthermore, to generate strong Fano-like resonance, the geometric shape of ellipse is selected, which is a good geometric shape candidate compared to the circle shape. This device is promising for biosensing applications with high sensitivity and low limit of detection.
Collapse
|
42
|
Zheng P, Li M, Jurevic R, Cushing SK, Liu Y, Wu N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva. NANOSCALE 2015; 7:11005-12. [PMID: 26008641 PMCID: PMC4476066 DOI: 10.1039/c5nr02142a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(I) and Hg(II) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
A review of sensing applications based on plasmonic nanopores is given. Many new types of plasmonic nanopores have recently been fabricated, including pores penetrating multilayers of thin films, using a great variety of fabrication techniques based on either serial nanolithography or self-assembly. One unique advantage with nanopores compared to other plasmonic sensors is that sample liquids can flow through the surface, which increases the rate of binding and improves the detection limit under certain conditions. Also, by utilizing the continuous metal films, electrical control can be implemented for electrochemistry, dielectrophoresis and resistive heating. Much effort is still spent on trying to improve sensor performance in various ways, but the literature uses inconsistent benchmark parameters. Recently plasmonic nanopores have been used to analyse targets of high clinical or academic interest. Although this is an important step forward, one should probably reflect upon whether the same results could have been achieved with another optical technique. Overall, this critical review suggests that the research field would benefit by focusing on applications where plasmonic nanopores truly can offer unique advantages over similar techniques.
Collapse
Affiliation(s)
- Andreas B Dahlin
- Chalmers University of Technology, Dept. of Applied Physics, Fysikgränd 3, 41296 Göteborg, Sweden.
| |
Collapse
|
44
|
Prikulis J, Tamulevičius T, Poplausks R, Bergs G, Apsite I, Malinovskis U, Actins A, Erts D. Optical properties of thin metal films with nanohole arrays on porous alumina–aluminum structures. RSC Adv 2015. [DOI: 10.1039/c5ra12880c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Enhanced plasmonic attenuation of reflection is observed in a gold–alumina–aluminum multilayer system near the interferometric anti-reflection condition.
Collapse
Affiliation(s)
- Juris Prikulis
- Institute of Chemical Physics
- University of Latvia
- Riga LV-1586
- Latvia
| | | | | | - Gatis Bergs
- Institute of Chemical Physics
- University of Latvia
- Riga LV-1586
- Latvia
| | - Indra Apsite
- Institute of Chemical Physics
- University of Latvia
- Riga LV-1586
- Latvia
| | | | | | - Donats Erts
- Institute of Chemical Physics
- University of Latvia
- Riga LV-1586
- Latvia
| |
Collapse
|
45
|
Poirier-Richard HP, Couture M, Brule T, Masson JF. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence. Analyst 2015; 140:4792-8. [DOI: 10.1039/c4an02257b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of experimental parameters on the performance of plasmonic sensors is of great importance in analytical sciences.
Collapse
Affiliation(s)
| | - M. Couture
- Departement de chimie
- Université de Montréal
- Montreal
- Canada
| | - T. Brule
- Departement de chimie
- Université de Montréal
- Montreal
- Canada
| | - J.-F. Masson
- Departement de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|
46
|
Yue W, Wang Z, Yang Y, Li J, Wu Y, Chen L, Ooi B, Wang X, Zhang XX. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications. NANOSCALE 2014; 6:7917-23. [PMID: 24898441 DOI: 10.1039/c4nr01001a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extraordinary optical transmission (EOT) through arrays of gold nanoholes was studied with light across the visible to the near-infrared spectrum. The EOT effect was found to be improved by bridging pairs of nanoholes due to the concentration of the electromagnetic field in the slit between the holes. The geometrical shape and separation of the holes in these pairs of nanoholes affected the intensity of the transmission and the wavelength of resonance. Changing the geometrical shapes of these nanohole pairs from triangles to circles to squares leads to increased transmission intensity as well as red-shifting resonance wavelengths. The performance of bridged nanohole pairs as a plasmonic sensor was investigated. The bridged nanohole pairs were able to distinguish methanol, olive oil and microscope immersion oil for the different surface plasmon resonance in transmission spectra. Numerical simulation results were in agreement with experimental observations.
Collapse
Affiliation(s)
- Weisheng Yue
- Advanced Nanofabrication Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kegel LL, Boyne D, Booksh KS. Sensing with Prism-Based Near-Infrared Surface Plasmon Resonance Spectroscopy on Nanohole Array Platforms. Anal Chem 2014; 86:3355-64. [DOI: 10.1021/ac4035218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laurel L. Kegel
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Devon Boyne
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Karl S. Booksh
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|