1
|
Behera M, Dharpure PD, Sahu AK, Bhat RG. Visible Light-Induced Organophotoredox-Catalyzed β-Hydroxytrifluoromethylation of Unactivated Alkenes. J Org Chem 2024; 89:14695-14709. [PMID: 39380340 DOI: 10.1021/acs.joc.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Herein, we report a mild transition metal-free organophotoredox-catalyzed approach for β-hydroxytrifluoromethylation of unactivated alkenes using CF3SO2Na and acridinium salt. The protocol is compatible with various mono-, di-, and trisubstituted aliphatic unactivated alkenes containing numerous functional groups and natural product derivatives. Further, the postsynthetic modifications of the synthesized trifluoromethylated products have been demonstrated through cross-coupling and functional group interconversion reactions. The method proved to be scalable and it works smoothly under the direct exposure of sunlight. A plausible mechanism has been proposed based on the fluorescence quenching experiment and cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ajit K Sahu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
2
|
Guo G, Ma J, Dong Y, Wu Q, Lv J, Shi Y, Yang D. Visible Light/Copper Catalysis-Enabled Arylation and Alkenylation of Phosphorothioates via Site-Selective C-H Thianthrenation. Org Lett 2024; 26:8382-8388. [PMID: 39316043 DOI: 10.1021/acs.orglett.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
An efficient visible light/copper-enabled arylation and alkenylation of phosphorothioates with thianthrenium salts via a C(sp2)-S cross-coupling reaction have been demonstrated. This strategy uses aryl/alkenyl thianthrenium salts as new electrophilic reagents, which can be easily prepared by the site-selective C-H thianthrenation of arenes/alkenes with high regioselectivity. Mechanistic studies revealed a crucial role of the in situ formed copper-sulfur complex, which undergoes a facile SET process with the thianthrenium salts under visible light conditions, thereby successfully achieving the desired cross-coupling reactivity.
Collapse
Affiliation(s)
- Guoju Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuzhen Dong
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Keshri SK, Kapur M. Room temperature C-O bond cleavage of vinyl cyclic synthons via a metallaphotoredox approach. Chem Commun (Camb) 2024; 60:11164-11167. [PMID: 39291592 DOI: 10.1039/d4cc02815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Herein, we report visible-light induced C-O bond cleavage of vinyl-appended cyclic synthons via a Co(II)-photoredox dual catalytic approach operating at room temperature. This methodology exhibits a broad scope and is capable of accessing linear as well as branched allyl arenes simply by tuning the ring size of the cyclic motifs, in a mild and environmentally friendly protocol. Mechanistic studies unveil an interesting aspect of the reaction pathway involving a challenging homolytic cleavage of the Co(III)-O bond, 1,5-HAT of an unstable Co(II)-organometallic intermediate, and the key roles of O2 and the photocatalyst. The successful removal of the directing group further adds an important dimension to the methodology.
Collapse
Affiliation(s)
- Santosh Kumar Keshri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
4
|
Wu Q, Li X, Ma J, Shi Y, Lv J, Yang D. Arylcyanation of Styrenes by Photoactive Electron Donor-Acceptor Complexes/Copper Catalysis. Org Lett 2024; 26:7949-7955. [PMID: 39259680 DOI: 10.1021/acs.orglett.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
Collapse
Affiliation(s)
- Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, P. R. China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
5
|
Doraghi F, Amini A, Ghanbarlou M, Larijani B, Mahdavi M. Metal-free 2-isocyanobiaryl-based cyclization reactions: phenanthridine framework synthesis. Mol Divers 2024; 28:419-435. [PMID: 37847467 DOI: 10.1007/s11030-023-10743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
The development of transition metal-free 2-isocyanobiaryl-based reactions has received much attention due to the widespread presence of phenanthidine frameworks as products in pharmacological chemistry and materials science. This review article focuses on the achievements from 2013 until now in various metal-free catalyzed reactions and discusses challenging mechanisms and features of the transformations.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghanbarlou
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Prince, Monika, Kumar P, Singh BK. Visible-Light-Driven Regioselective Decarboxylative Acylation of N-Methyl-3-phenylquinoxalin-2(1 H)-one by Dual Palladium-Photoredox Catalysis Through C-H Activation. ACS OMEGA 2024; 9:651-657. [PMID: 38239288 PMCID: PMC10796110 DOI: 10.1021/acsomega.3c06367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024]
Abstract
We report herein an efficient visible-light-promoted approach for the regioselective decarboxylative C-H acylation of N-methyl-3-phenylquinoxalin-2(1H)-ones using α-oxo-2-phenylacetic acids via dual palladium-photoredox catalysis. The reactions were carried out at room temperature in the presence of 24 W blue LEDs. The established protocol tolerated a wide range of functional groups and enabled the synthesis of several acylated N-methyl-3-phenylquinoxalin-2(1H)-ones in good to excellent yields. The proposed mechanism for this transformation was supported by control experiments.
Collapse
Affiliation(s)
- Prince
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Monika
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Prashant Kumar
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
- Department
of Chemistry, SRM University Delhi-NCR Sonepat, Sonepat, Haryana 131029, India
| | - Brajendra Kumar Singh
- Bio-organic
Chemistry Laboratory, Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
7
|
Liang JY, Su YW, Zou YQ. Photochemical reductive deamination of alpha-amino aryl alkyl ketones. Chem Commun (Camb) 2023. [PMID: 37997158 DOI: 10.1039/d3cc04837c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Photochemical reductive deamination of alpha-amino aryl alkyl ketones under photosensitizer-free conditions is presented. This protocol features high efficiency and selectivity. A plausible reaction pathway is proposed based on ultraviolet-visible absorption investigation, control experiments and deuterium-labelling studies. Mechanistic study reveals that the alpha-hydrogen atom of the ketone product originated from water.
Collapse
Affiliation(s)
- Ji-Yuan Liang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Yi-Wen Su
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - You-Quan Zou
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, Hubei 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
8
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
9
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
10
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
11
|
Caminos DA, Rimondino GN, Gatica E, Massad WA, Argüello JE. Riboflavin and Eosin Y Supported on Chromatographic Silica Gel as Heterogeneous Photocatalysts. ACS OMEGA 2023; 8:30705-30715. [PMID: 37636947 PMCID: PMC10448656 DOI: 10.1021/acsomega.3c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Abstract
The application of photocatalysis for organic synthesis, both in the laboratory and on an industrial scale, will depend on the achieving of good yields and the ease with which it can be applied. Selective irradiation of the photocatalyst with LED light has made it possible to activate the reactions easily, without the need for UV or heat filters. However, a common problem is the need to separate the photocatalyst from the reaction products through extraction and chromatography isolation processes. These procedures make it difficult to recover and reuse the catalyst, which is not compatible with scale-up applications. Photocatalysts attached to heterogeneous supports resulted in an alternative, which facilitates their removal and reuse. In this study, we use chromatographic silica gel as a low-cost heterogeneous support to bind photosensitizers such as Riboflavin or Eosin Y. The modified silica gel was analyzed by FTIR-ATR and diffuse reflectance UV-visible spectroscopy, thermogravimetric analysis, and optical microscopy. These hybrid materials have a suitable size for easy separation by decantation and were found to be photoactive against two photooxidation reactions. These easy-to-handle materials open the door to effective applications for photoinduced organic synthesis methods at medium to large scale.
Collapse
Affiliation(s)
- Daniel A. Caminos
- Instituto
de Investigaciones en Fisicoquímica de Córdoba, INFIQC,
Consejo Nacional de Investigaciones Científicas y Técnicas,
CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende.
Ed Cs II. Córdoba, Córdoba X5000HUA, Argentina
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Universidad Nacional de Córdoba, Ciudad Universitaria, Haya
de la Torre y Medina Allende. Ed Cs II. Córdoba, Córdoba X5000HUA, Argentina
| | - Guido N. Rimondino
- Instituto
de Investigaciones en Fisicoquímica de Córdoba, INFIQC,
Consejo Nacional de Investigaciones Científicas y Técnicas,
CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende.
Ed Cs II. Córdoba, Córdoba X5000HUA, Argentina
- Departamento
de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria,
Haya de la Torre y Medina Allende. Córdoba, Córdoba X5000HUA, Argentina
| | - Eduardo Gatica
- Instituto
para el Desarrollo Agroindustrial y de la Salud (IDAS). CONICET −
UNRC. Depto. de Estudios Básicos y Agropecuarios, Facultad
de Agronomía y Veterinaria, Universidad
Nacional de Río Cuarto, Rio Cuarto X5804BYA, Argentina
| | - Walter A. Massad
- Instituto
para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET −
UNRC, Depto. de Química − FCEFQyN, Universidad Nacional de Río Cuarto, Rio Cuarto X5804BYA, Argentina
| | - Juan E. Argüello
- Instituto
de Investigaciones en Fisicoquímica de Córdoba, INFIQC,
Consejo Nacional de Investigaciones Científicas y Técnicas,
CONICET, Ciudad Universitaria, Haya de la Torre y Medina Allende.
Ed Cs II. Córdoba, Córdoba X5000HUA, Argentina
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas,
Universidad Nacional de Córdoba, Ciudad Universitaria, Haya
de la Torre y Medina Allende. Ed Cs II. Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
12
|
Quint V, Van Nguyen TH, Mathieu G, Chelli S, Breugst M, Lohier JF, Gaumont AC, Lakhdar S. Transition Metal-Free Regioselective Phosphonation of Pyridines: Scope and Mechanism. ACS ORGANIC & INORGANIC AU 2023; 3:151-157. [PMID: 37303502 PMCID: PMC10251503 DOI: 10.1021/acsorginorgau.2c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/13/2023]
Abstract
Regioselective phosphonation of pyridines is an interesting transformation in synthesis and medicinal chemistry. We report herein a metal-free approach enabling access to various 4-phosphonated pyridines. The method consists of simply activating the pyridine ring with a Lewis acid (BF3·OEt2) to facilitate the nucleophilic addition of a phosphine oxide anion. The formed sigma complex is subsequently oxidized with an organic oxidant (chloranil) to yield the desired adducts in good to excellent yields. We furthermore showed that access to C2-phosphoinated pyridines can be achieved in certain cases with strong Lewis basic phosphorus nucleophiles or with strong Lewis acidic pyridines. Both experimental and computational mechanistic investigations were undertaken and allowed us to understand the factors controlling the reactivity and selectivity of this reaction.
Collapse
Affiliation(s)
- Valentin Quint
- Normandie
University, LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal
Juin, Caen 14000-France
| | - Thi Hong Van Nguyen
- CNRS,
Université Paul Sabatier, Laboratoire Hétérochimie
Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Gary Mathieu
- Normandie
University, LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal
Juin, Caen 14000-France
| | - Saloua Chelli
- CNRS,
Université Paul Sabatier, Laboratoire Hétérochimie
Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| | - Martin Breugst
- Institut
für Chemie, Technische Universität
Chemnitz, 09111 Chemnitz, Germany
| | - Jean-François Lohier
- Normandie
University, LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal
Juin, Caen 14000-France
| | - Annie-Claude Gaumont
- Normandie
University, LCMT, ENSICAEN, UNICAEN, CNRS, 6, Boulevard Maréchal
Juin, Caen 14000-France
| | - Sami Lakhdar
- CNRS,
Université Paul Sabatier, Laboratoire Hétérochimie
Fondamentale et Appliquée (LHFA, UMR5069), 118 Route de Narbonne, 31062 Cedex 09 Toulouse, France
| |
Collapse
|
13
|
Xu H, Li X, Dong Y, Ji S, Zuo J, Lv J, Yang D. Thianthrenium-Enabled Phosphorylation of Aryl C-H Bonds via Electron Donor-Acceptor Complex Photoactivation. Org Lett 2023; 25:3784-3789. [PMID: 37191307 DOI: 10.1021/acs.orglett.3c01303] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An efficient strategy for the preparation of aryl phosphonates via blue-light-promoted single electron transfer process of an EDA complex between phosphites and thianthrenium salts has been demonstrated. The corresponding substituted aryl phosphonates were obtained in good to excellent yields, and the byproduct thianthrene can be recovered and reused in quantity. This developed method realizes the construction of aryl phosphonates through the indirect C-H functionalization of arenes, which has potential application value in drug discovery and development.
Collapse
Affiliation(s)
- Hao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, China
| | - Yuzheng Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuangran Ji
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Junze Zuo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Li H, Fu J, Fu J, Li X, Wei D, Chen H, Bai L, Yang L, Yang H, Wang W. Regioselective and Diastereoselective Halofunctionalization of Alkenes Promoted by Organophotocatalytic Solar Catalysis. J Org Chem 2023. [PMID: 37154472 DOI: 10.1021/acs.joc.3c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A visible-light metal-free photocatalytic regioselective and enantioselective alkene halofunctionalization reaction under mild conditions is reported. Various terminal and internal alkenes were transformed to their α-halogenated and α,β-dibrominated derivatives in good to excellent yields within reaction time as short as 5 min. Water can be used as the "green" nucleophile and solvent in the halohydroxylation and halo-oxidation reactions. Different types of products can be obtained by adjusting the reaction conditions. In addition, sunlight is proved to produce products with similar yields, representing a practical example of solar synthesis and providing an opportunity for solar energy utilization.
Collapse
Affiliation(s)
- Huili Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jianmin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jundong Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xueji Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
15
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
16
|
Xu H, Li X, Ma J, Zuo J, Song X, Lv J, Yang D. An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
17
|
Jacques A, Devaux A, Rubay C, Pennetreau F, Desmecht A, Robeyns K, Hermans S, Elias B. Polypyridine Iridium(III) and Ruthenium(II) Complexes for Homogeneous and Graphene‐Supported Photoredox Catalysis. ChemCatChem 2023. [DOI: 10.1002/cctc.202201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Alexandre Jacques
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alexandre Devaux
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christophe Rubay
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Florence Pennetreau
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute of Condensed Matter and Nanosciences Molecular Chemistry Materials and Catalysis Division (IMCN/MOST) Université catholique de Louvain (UCLouvain) Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
18
|
Dulov DA, Bogdanov AV, Dorofeev SG, Magdesieva TV. N, N'-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones. Molecules 2022; 28:221. [PMID: 36615415 PMCID: PMC9822323 DOI: 10.3390/molecules28010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
An inexpensive and highly efficient metal-free alternative to commonly used Ru- and Ir-based catalysts was proposed. It was shown that the new 2,7-di-tert-butyl-5,10-bis(4-trifluoromethylphenyl)-5,10-dihydrophenazine outcompeted the iridium phenylpyridyl complex in photoredox activity in the alkylation of silyl enol ethers yielding aryl alkyl ketones. The reaction occurred under visible light irradiation at room temperature and was also applicable to drug derivatives (ibuprofen and naproxen). In-depth photophysical, electrochemical, and quantum chemical studies showed that the aforementioned N,N-diaryldihydrophenazine exhibited enhanced properties that were essential for the photoredox catalysis (a long-lived triplet excited state, strong reducing ability, high stability of the radical cations formed in single-electron-transfer event, and chemical inertness of the catalyst with respect to reactants). Importantly, the substituted N,N'-diaryldihydrophenazines could be obtained directly from diaryl amines; a facile, easily handled and scaled-up one-pot synthetic procedure was elaborated.
Collapse
Affiliation(s)
- Dmitry A Dulov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Sergey G Dorofeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
19
|
Skolia E, Kokotos CG. Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides. ACS ORGANIC & INORGANIC AU 2022; 3:96-103. [PMID: 37035280 PMCID: PMC10080724 DOI: 10.1021/acsorginorgau.2c00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on N-aliphatic maleimides or using metal catalysts for visible-light driven reactions of N-aromatic maleimides. Herein, we identify the differences in reactivity between N-alkyl and N-aryl maleimides. For our optimized protocols, in the case of N-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of N-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
20
|
Rao WH, Li Q, Jiang LL, Li YG, Xu P, Deng XW, Li M, Zou GD, Cao X. Photoredox-Catalyzed Acyl Lactonization of Alkenes with Aldehydes: Synthesis of Acyl Lactones. J Org Chem 2022; 87:14194-14207. [PMID: 36265020 DOI: 10.1021/acs.joc.2c01732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An acyl lactonization of alkenes with aldehydes under visible-light photoredox catalysis is described. With the protocol, a broad scope of alkenoic acids and aldehydes could be compatible and good functional group tolerance is obtained. A series of acyl lactones are obtained with isolated yields ranging from 50-95%. Mechanistic studies revealed that the transformation should proceed via a radical chain process.
Collapse
Affiliation(s)
- Wei-Hao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Qi Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Li-Li Jiang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ying-Ge Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Pan Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xue-Wan Deng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
21
|
Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Gupta A, Iqbal S, Roohi, Hussain MK, Zaheer MR, Shankar K. Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4'-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 M pro. ACS OMEGA 2022; 7:34583-34598. [PMID: 36188265 PMCID: PMC9520760 DOI: 10.1021/acsomega.2c04506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 08/25/2023]
Abstract
A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC50 of 5.45 and 9.47 μM, respectively. A molecular docking study with respect to COVID-19 main protease (Mpro) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (-8.3 and -8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors.
Collapse
Affiliation(s)
- Anamika Gupta
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Safia Iqbal
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Roohi
- Protein
Research Laboratory, Department of Bioengineering, Integral University, Lucknow226026, Uttar Pradesh, India
| | - Mohd. Kamil Hussain
- Department
of Chemistry, Govt. Raza PG College, Rampur24901, Uttar Pradesh, India
| | - Mohd. Rehan Zaheer
- Department
of Chemistry, R.M.P.S.P. Girls Post Graduate
College, Basti272301, Uttar Pradesh, India
| | - Krapa Shankar
- Sun
Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, Haryana122015, India
| |
Collapse
|
23
|
Yang L, Li WY, Hou L, Zhan T, Cao W, Liu X, Feng X. Nickel II-catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chem Sci 2022; 13:8576-8582. [PMID: 35974747 PMCID: PMC9337722 DOI: 10.1039/d2sc02721f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
A diastereo- and enantioselective photoenolization/Mannich (PEM) reaction of ortho-alkyl aromatic ketones with benzosulfonimides was established by utilizing a chiral N,N'-dioxide/Ni(OTf)2 complex as the Lewis acid catalyst. It afforded a series of benzosulfonamides and the corresponding ring-closure products, and a reversal of diastereoselectivity was observed through epimerization of the benzosulfonamide products under continuous irradiation. On the basis of the control experiments, the role of the additive LiNTf2 in achieving high stereoselectivity was elucidated. This PEM reaction was proposed to undergo a direct nucleophilic addition mechanism rather than a hetero-Diels-Alder/ring-opening sequence. A possible transition state model with a photoenolization process was proposed to explain the origin of the high level of stereoinduction.
Collapse
Affiliation(s)
- Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Wang-Yuren Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
24
|
One-pot synthesis of pompon-like magnetic hollow SiO2-supported Ag nanoparticles for catalytic application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Jayawardana SG, Madura EC, García-López V. Photocatalytic molecular containers enable unique reactivity modes in confinement. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Moghadam Farid S, Seifinoferest B, Gholamhosseyni M, Larijani B, Mahdavi M. Modern metal-catalyzed and organocatalytic methods for synthesis of coumarin derivatives: a review. Org Biomol Chem 2022; 20:4846-4883. [PMID: 35642609 DOI: 10.1039/d2ob00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin is an important pharmaceutical structural motif, abundantly found in numerous commonly used drugs. Compounds containing this core show a broad spectrum of medicinal properties and biological activities. The increasing importance and wide usages of coumarin derivatives have drawn attention to its synthetic methods, among which metal-catalyzed and organocatalytic methods have proved the most effective. Several metal-catalyzed and/or organocatalytic synthetic strategies for coumarin have been investigated and reported in recent decades. This review focuses on more recent reports on catalysis methods for synthesizing coumarin and coumarin-like structures (including light-mediated methods and nano-catalysts), exploring the mechanistic aspects, simplicity, efficiency, repeatability, and other advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnoush Seifinoferest
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maral Gholamhosseyni
- Department of Chemistry, College of Chemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Pandey AK, Kumar A, Srivastava SK. Blue Light-Induced Coupling of N-Hydroxy Sulfonamides: An Efficient and Green Approach to Symmetrical Thiosulfonates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Kshirsagar N, Sonawane R, Pathan S, Kamble G, Pal Singh G. A Review on Synthetic Approaches of Phenanthridine. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210218211424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The phenanthridine family is widely found in medicinal chemistry and material science because
of the biological activity and its presence in a variety of significant natural products and synthetic
dye stuffs. The phenanthridine has many clinical applications, for e.g., being used as an anticancer agent,
possessing antibacterial, antiprotozoal, pharmaceutical, and optoelectronic properties. Many methods
have been reported for the synthesis of phenanthridine and phenanthridine alkaloids, such as Pd catalyzed
C-C bond formation, a reaction involving C-H activation, radical, microwave-assisted, transition
metal-catalyzed, one-pot cascade, benzyne mediated, photochemical, hypervalent iodine promoted methods,
etc. Here, we have summarized the literature data from 2014 to the present concerning novel or
improved synthetic approaches.
Collapse
Affiliation(s)
| | | | - Sultan Pathan
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| | - Ganesh Kamble
- Department of Chemistry, Osaka University, ISIR 8-1 Mihogaoka, Ibaraki,
Osaka 567-0047, Japan
| | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles
University, Udaipur, Rajasthan, India
| |
Collapse
|
29
|
Sun W, Zou J, Xu X, Wang J, Liu M, Liu X. Photo‐Catalyzed Redox‐Neutral 1,2‐Dialkylation of Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Hui Sun
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jian‐Yu Zou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Jing Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin‐Lin Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Mei‐Ling Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
30
|
Facile metal-free visible-light-mediated chlorotrifluoromethylation of terminal alkenes. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Guo F, Wang H, Ye X, Tan CH. Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fenfen Guo
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Hong Wang
- Zhejiang University of Technology College of Pharmaceutical Science CHINA
| | - Xinyi Ye
- Zhejiang University of Technology College of Pharmaceutical Science 18 Chaowang Road 310014 Hangzhou CHINA
| | - Choon-Hong Tan
- Nanyang Technological University School of Physical and Mathematical Sciences SINGAPORE
| |
Collapse
|
32
|
Mane KD, Rupanawar BD, Suryavanshi GM. Visible Light Promoted, Photocatalyst Free C(sp2)–H Bond Functionalization of Indolizines via EDA Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kishor D. Mane
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR CEPD Pune INDIA
| | | | - Gurunath Mallappa Suryavanshi
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Chemical Engineering and Process Developement Dr. Homi Bhabha Road411008India 411008 Pune INDIA
| |
Collapse
|
33
|
Suktanarak P, Leeladee P, Tuntulani T. Oxidative ligand cleavage in a copper(
II
) complex containing aniline moiety induced by copper(
II
) perchlorate in acetonitrile. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pattira Suktanarak
- Faculty of Sport and Health Sciences Thailand National Sports University Lampang Campus Lampang Thailand
| | - Pannee Leeladee
- Department of Chemistry Faculty of Science, Chulalongkorn University Bangkok Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry Faculty of Science, Chulalongkorn University Bangkok Thailand
| |
Collapse
|
34
|
Das A. LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210916164132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In recent years, photocatalytic technology has shown great potential as a low-cost, environmentally
friendly, and sustainable technology. Compared to other light sources in photochemical reaction,
LEDs have advantages in terms of efficiency, power, compatibility, and environmentally friendly
nature. This review highlights the most recent advances in LED-induced photochemical reactions. The
effect of white and blue LEDs in reactions such as oxidation, reduction, cycloaddition, isomerization,
and sensitization is discussed in detail. No other reviews have been published on the importance of
white and blue LED sources in the photocatalysis of organic compounds. Considering all the facts, this
review is highly significant and timely.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin
Fahd University, Al Khobar, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Yang D, Yan Q, Zhu E, Lv J, He WM. Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
KUMAR GOBIND, BHARGAVA GAURAV, KUMAR YOGESH, KUMAR RUPESH. Eosin Y photocatalyzed access to Biginelli reaction using primary alcohols via domino multicomponent cascade: an approach towards sustainable synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02039-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kuhlmann JH, Uygur M, García Mancheño O. Protodesilylation of Arylsilanes by Visible-Light Photocatalysis. Org Lett 2022; 24:1689-1694. [PMID: 35196013 DOI: 10.1021/acs.orglett.2c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first visible-light-mediated photocatalytic, metal- and base-free protodesilylation of arylsilanes is presented. The C(sp2)-Si bond cleavage process is catalyzed by a 5 mol % loading of a commercially available acridinium salt upon blue-light irradiation. Two simple approaches have been identified employing either aerobic or hydrogen atom transfer cocatalytic conditions, which enable the efficient and selective desilylation of a broad variety of simple and complex arylsilanes under mild conditions.
Collapse
Affiliation(s)
- Jan H Kuhlmann
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Mustafa Uygur
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, Westfälische Wilhelms University Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
38
|
Nakane K, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Nakamura H, Ishikawa M, Sato S. BODIPY Catalyzes Proximity‐Dependent Histidine Labelling. ChemCatChem 2022. [DOI: 10.1002/cctc.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keita Nakane
- Tohoku University: Tohoku Daigaku Graduate School of Life Science JAPAN
| | - Tatsuya Niwa
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Cell Biology Center, Institute of Innovative research JAPAN
| | - Michihiko Tsushima
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science, Institute of Innovative Research JAPAN
| | - Shusuke Tomoshige
- Tohoku University: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Hideki Taguchi
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Cell Biology Center, Institute of Innovative Research JAPAN
| | - Hiroyuki Nakamura
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science, Institute of Innovative Research JAPAN
| | - Minoru Ishikawa
- Tohoku University: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Shinichi Sato
- Tohoku University: Tohoku Daigaku Frontier Research Institute for Interdisciplinary Sciences 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 Miyagi JAPAN
| |
Collapse
|
39
|
Triandafillidi I, Nikitas NF, Gkizis PL, Spiliopoulou N, Kokotos CG. Hexafluoroisopropanol-Promoted or Brønsted Acid-Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. CHEMSUSCHEM 2022; 15:e202102441. [PMID: 34978379 DOI: 10.1002/cssc.202102441] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although the use of light stimulating organic transformations has been known for more than a century, there is an increasing research interest on expanding the established knowledge. While [2+2] cycloadditions are promoted photochemically, literature precedent on the reaction between alkynes and maleimides is limited and only a handful of examples exist, focusing mainly on N-aliphatic maleimides. Herein, the differences in reactivity between N-alkyl and N-aryl maleimides were identified, and the use of hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA) as viable solutions was proposed in order to achieve high yields. In the case of N-alkyl maleimides, both HFIP-mediated or TFA-promoted reactions were established using LED 370 nm irradiation, without the use of an external photocatalyst. In the case of N-aryl maleimides, thioxanthone (THX) was employed as the energy transfer photocatalyst along with LED 427 nm irradiation and HFIP. Mechanistic studies were performed, supporting the pivotal role of HFIP or TFA, in acquiring good to high yields in both classes of maleimides.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
40
|
Dutta A, Goswami M, Rabha J, Das S, Jha DK, Nongkhlaw R. Fe
3
O
4
@RB@LDH: Efficient and Recyclable Photocatalyst Visible‐Light Mediated Synthesis of Pyran and Pyrrolidinone Derivatives and Their Anti‐Microbial Activities. ChemistrySelect 2022. [DOI: 10.1002/slct.202104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Arup Dutta
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| | - Munmee Goswami
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| | - Jintu Rabha
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Sukanya Das
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Dhruva K. Jha
- Department of Botany Gauhati University Guwahati 781014 Assam India
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
41
|
Vauthey E. Elucidating the Mechanism of Bimolecular Photoinduced Electron Transfer Reactions. J Phys Chem B 2022; 126:778-788. [DOI: 10.1021/acs.jpcb.1c10050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eric Vauthey
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
42
|
Mora-Rodríguez SE, Camacho-Ramírez A, Cervantes-González J, Vázquez MA, Cervantes-Jauregui JA, Feliciano A, Guerra-Contreras A, Lagunas-Rivera S. Organic dyes supported on silicon-based materials: synthesis and applications as photocatalysts. Org Chem Front 2022. [DOI: 10.1039/d1qo01751a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The most important advance in photocatalysis in the last decade has been the synthesis and application of organic compounds to promote this process.
Collapse
Affiliation(s)
- Salma E. Mora-Rodríguez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Abygail Camacho-Ramírez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Javier Cervantes-González
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Miguel A. Vázquez
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Jorge A. Cervantes-Jauregui
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Alberto Feliciano
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Antonio Guerra-Contreras
- Departamento de Química, DCNyE, Universidad de Guanajuato Institution, Noria Alta s/n, 36050, Guanajuato, Gto., Mexico
| | - Selene Lagunas-Rivera
- Cátedra-CONACyT, Departamento de Química, Universidad de Guanajuato, DCNyE, Noria Alta s/n, Guanajuato, Gto., 36050, Mexico
| |
Collapse
|
43
|
Zhou X, Zhang A, Zhang Q, Liu Q, Xuan J. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Saikia BS, Borpatra PJ, Rahman I, Deb ML, Baruah PK. Visible-light-promoted sulfenylation of 6-aminouracils under catalyst-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted reactions have proven to be a decent strategy for the synthesis of complex molecules.
Collapse
Affiliation(s)
- B. Shriya Saikia
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Paran J. Borpatra
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Iftakur Rahman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Mohit L. Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati-781014, Assam, India
| |
Collapse
|
45
|
Synthetic approaches for BF2-containing adducts of outstanding biological potential. A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Manna S, Kakumachi S, Das KK, Tsuchiya Y, Adachi C, Panda S. Mechanistic Dichotomy in Solvent Dependent Access to E vs Z-allylic Amines via Decarboxylative Vinylation of Amino Acids. Chem Sci 2022; 13:9678-9684. [PMID: 36091905 PMCID: PMC9400591 DOI: 10.1039/d2sc02090d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
The solvent plays an important role in the photophysical properties of donor–acceptor based photocatalysts. The solvent-dependent access to E vs. Z-allylic amines was achieved via decarboxylative vinylation of amino acids with vinyl sulfones. Detailed experimental studies have been conducted to understand the role of the solvent in the reactivity and stereoselectivity of the vinylation reactions. A solvent-dependent access to E vs. Z-allylic amines was achieved via decarboxylative vinylation of amino acids. Detailed experimental studies have been conducted to understand the role of the solvent in the reactivity and stereoselectivity of the vinylation reactions.![]()
Collapse
Affiliation(s)
- Samir Manna
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Shunta Kakumachi
- Department of Chemistry and Biochemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Department of Chemistry and Biochemistry, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
47
|
Shaikh SKJ, KAMBLE RAVINDRA, Bayannavar PK, Kariduraganavar MY. Benzils: A Review on their Synthesis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - RAVINDRA KAMBLE
- Karnatak University, Dharwad-580003 CHEMISTRY DEPARTMENT OF CHEMISTRYKARNATAK UNIVERSITYPAVATE NAGAR 580003 DHARWAD INDIA
| | | | | |
Collapse
|
48
|
Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Visible‐Light‐Induced Oxidative α‐Alkylation of Glycine Derivatives with Ethers under Metal‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Hao Zhang
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
49
|
Struwe J, Korvorapun K, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature. Chemistry 2021; 27:16237-16241. [PMID: 34435716 PMCID: PMC9293244 DOI: 10.1002/chem.202103077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The ruthenium-catalyzed synthesis of diarylmethane compounds was realized under exceedingly mild photoredox conditions without the use of exogenous photocatalysts. The versatility and robustness of the ruthenium-catalyzed C-H benzylation was reflected by an ample scope, including multifold C-H functionalizations, as well as transformable pyrazoles, imidates and sensitive nucleosides. Mechanistic studies were indicative of a photoactive cyclometalated ruthenium complex, which also enabled versatile C-H allylations.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
50
|
Mantry L, Maayuri R, Kumar V, Gandeepan P. Photoredox catalysis in nickel-catalyzed C-H functionalization. Beilstein J Org Chem 2021; 17:2209-2259. [PMID: 34621388 PMCID: PMC8451005 DOI: 10.3762/bjoc.17.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Vikash Kumar
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|