1
|
Salvatierra J, Silberberg NA, Minehan TG. Ring Expansion via One-Pot Conversion of Lactone Acetals to Cyclic Enones. Synthesis of (±)-1- epi-Xerantholide. Org Lett 2024; 26:8691-8695. [PMID: 39382355 DOI: 10.1021/acs.orglett.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Baeyer-Villiger oxidation of α-alkoxy ketones 1 provides lactone acetals 2, which react with the lithium salts of dimethyl(alkyl) phosphonates in the presence of LaCl3·2LiCl to provide cyclic enones 3 in good to excellent yields after treatment with dilute aqueous potassium carbonate. Thus, five-, six-, and seven-membered lactones are converted to five-, six-, and seven-membered cyclic enones. The utility of this two-step ring expansion method is demonstrated in the synthesis of (±)-1-epi-xerantholide from 5-methyl-2-cyclohexen-1-one.
Collapse
Affiliation(s)
- Jose Salvatierra
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330-8262, United States
| | - Natalie A Silberberg
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330-8262, United States
| | - Thomas G Minehan
- Department of Chemistry and Biochemistry, California State University, Northridge, 18111 Nordhoff Street, Northridge, California 91330-8262, United States
| |
Collapse
|
2
|
Baysal Ö, Abdul Ghafoor N, Silme RS, Ignatov AN, Kniazeva V. Molecular dynamics analysis of N-acetyl-D-glucosamine against specific SARS-CoV-2's pathogenicity factors. PLoS One 2021; 16:e0252571. [PMID: 34043733 PMCID: PMC8158907 DOI: 10.1371/journal.pone.0252571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
The causative agent of the pandemic identified as SARS-CoV-2 leads to a severe respiratory illness similar to SARS and MERS with fever, cough, and shortness of breath symptoms and severe cases that can often be fatal. In our study, we report our findings based on molecular docking analysis which could be the new effective way for controlling the SARS-CoV-2 virus and additionally, another manipulative possibilities involving the mimicking of immune system as occurred during the bacterial cell recognition system. For this purpose, we performed molecular docking using computational biology techniques on several SARS-CoV-2 proteins that are responsible for its pathogenicity against N-acetyl-D-glucosamine. A similar molecular dynamics analysis has been carried out on both SARS-CoV-2 and anti-Staphylococcus aureus neutralizing antibodies to establish the potential of N-acetyl-D-glucosamine which likely induces the immune response against the virus. The results of molecular dynamic analysis have confirmed that SARS-CoV-2 spike receptor-binding domain (PDB: 6M0J), RNA-binding domain of nucleocapsid phosphoprotein (PDB: 6WKP), refusion SARS-CoV-2 S ectodomain trimer (PDB: 6X79), and main protease 3clpro at room temperature (PDB: 7JVZ) could bind with N-acetyl-D-glucosamine that these proteins play an important role in SARS-CoV-2's infection and evade the immune system. Moreover, our molecular docking analysis has supported a strong protein-ligand interaction of N-acetyl-D-glucosamine with these selected proteins. Furthermore, computational analysis against the D614G mutant of the virus has shown that N-acetyl-D-glucosamine affinity and its binding potential were not affected by the mutations occurring in the virus' receptor binding domain. The analysis on the affinity of N-acetyl-D-glucosamine towards human antibodies has shown that it could potentially bind to both SARS-CoV-2 proteins and antibodies based on our predictive modelling work. Our results confirmed that N-acetyl-D-glucosamine holds the potential to inhibit several SARS-CoV-2 proteins as well as induce an immune response against the virus in the host.
Collapse
Affiliation(s)
- Ömür Baysal
- Faculty of Science, Department of Molecular Biology and Genetics, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Menteşe-Muğla, Turkey
- * E-mail:
| | - Naeem Abdul Ghafoor
- Faculty of Science, Department of Molecular Biology and Genetics, Molecular Microbiology Unit, Muğla Sıtkı Koçman University, Menteşe-Muğla, Turkey
| | - Ragıp Soner Silme
- Center for Research and Practice in Biotechnology and Genetic Engineering, Istanbul University, Istanbul, Turkey
| | - Alexander N. Ignatov
- Federal State Autonomous Educational Institution, People’s Friendship University of Russia, Moscow, Russia
| | - Volha Kniazeva
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
3
|
Su X, Dohle W, Mills SJ, Watt JM, Rossi AM, Taylor CW, Potter BVL. Inositol Adenophostin: Convergent Synthesis of a Potent Agonist of d- myo-Inositol 1,4,5-Trisphosphate Receptors. ACS OMEGA 2020; 5:28793-28811. [PMID: 33195933 PMCID: PMC7659177 DOI: 10.1021/acsomega.0c04145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
d-myo-Inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ channels activated by the intracellular messenger inositol 1,4,5-trisphosphate (IP3, 1). The glyconucleotide adenophostin A (AdA, 2) is a potent agonist of IP3Rs. A recent synthesis of d-chiro-inositol adenophostin (InsAdA, 5) employed suitably protected chiral building blocks and replaced the d-glucose core by d-chiro-inositol. An alternative approach to fully chiral material is now reported using intrinsic sugar chirality to avoid early isomer resolution, involving the coupling of a protected and activated racemic myo-inositol derivative to a d-ribose derivative. Diastereoisomer separation was achieved after trans-isopropylidene group removal and the absolute ribose-inositol conjugate stereochemistry assigned with reference to the earlier synthesis. Optimization of stannylene-mediated regiospecific benzylation was explored using the model 1,2-O-isopropylidene-3,6-di-O-benzyl-myo-inositol and conditions successfully transferred to one conjugate diastereoisomer with 3:1 selectivity. However, only roughly 1:1 regiospecificity was achieved on the required diastereoisomer. The conjugate regioisomers of benzyl derivatives 39 and 40 were successfully separated and 39 was transformed subsequently to InsAdA after amination, pan-phosphorylation, and deprotection. InsAdA from this synthetic route bound with greater affinity than AdA to IP3R1 and was more potent in releasing Ca2+ from intracellular stores through IP3Rs. It is the most potent full agonist of IP3R1 known and .equipotent with material from the fully chiral synthetic route.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Wolfgang Dohle
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Stephen J. Mills
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Joanna M. Watt
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
- Wolfson
Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Ana M. Rossi
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Colin W. Taylor
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Barry V. L. Potter
- Medicinal
Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
4
|
Simelane SB, Ikhile MI, Ndinteh DT, Mbianda XY. Synthesis and biological evaluation of 2-substituted vinylgembisphosphonates against Plasmodium falciparum and Trypanosoma brucei. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1728757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Monisola I. Ikhile
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, South Africa
| | - Derek T. Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, South Africa
| | - Xavier Y. Mbianda
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
5
|
Limbani B, Bera S, Mondal D. Synthetic Advancement of Neuraminidase Inhibitor “Tamiflu”. ChemistrySelect 2020. [DOI: 10.1002/slct.202000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bhagirath Limbani
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| |
Collapse
|
6
|
Shie JJ, Fang JM. Development of effective anti-influenza drugs: congeners and conjugates - a review. J Biomed Sci 2019; 26:84. [PMID: 31640786 PMCID: PMC6806523 DOI: 10.1186/s12929-019-0567-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Influenza is a long-standing health problem. For treatment of seasonal flu and possible pandemic infections, there is a need to develop new anti-influenza drugs that have good bioavailability against a broad spectrum of influenza viruses, including the resistant strains. Relenza™ (zanamivir), Tamiflu™ (the phosphate salt of oseltamivir), Inavir™ (laninamivir octanoate) and Rapivab™ (peramivir) are four anti-influenza drugs targeting the viral neuraminidases (NAs). However, some problems of these drugs should be resolved, such as oral availability, drug resistance and the induced cytokine storm. Two possible strategies have been applied to tackle these problems by devising congeners and conjugates. In this review, congeners are the related compounds having comparable chemical structures and biological functions, whereas conjugate refers to a compound having two bioactive entities joined by a covalent bond. The rational design of NA inhibitors is based on the mechanism of the enzymatic hydrolysis of the sialic acid (Neu5Ac)-terminated glycoprotein. To improve binding affinity and lipophilicity of the existing NA inhibitors, several methods are utilized, including conversion of carboxylic acid to ester prodrug, conversion of guanidine to acylguanidine, substitution of carboxylic acid with bioisostere, and modification of glycerol side chain. Alternatively, conjugating NA inhibitors with other therapeutic entity provides a synergistic anti-influenza activity; for example, to kill the existing viruses and suppress the cytokines caused by cross-species infection.
Collapse
Affiliation(s)
- Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan. .,The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Bortolamiol E, Chiminazzo A, Sperni L, Borsato G, Fabris F, Scarso A. Functional bisphosphonate synthesis for the development of new anti-resorption bone drug candidates. NEW J CHEM 2019. [DOI: 10.1039/c9nj02504a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widening the bisphosphonate toolbox: new bisphosphonate scaffolds enable new functionalizations.
Collapse
Affiliation(s)
- Enrica Bortolamiol
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Andrea Chiminazzo
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Laura Sperni
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Giuseppe Borsato
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi
- Università Ca’ Foscari di Venezia
- Mestre
- Italy
| |
Collapse
|
8
|
Li H, Shen SJ, Zhu CL, Xu H. Enantioselective Synthesis of Oseltamivir Phosphate (Tamiflu) via the Iron-Catalyzed Stereoselective Olefin Diazidation. J Am Chem Soc 2018; 140:10619-10626. [PMID: 30040881 DOI: 10.1021/jacs.8b06900] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a gram-scale, enantioselective synthesis of Tamiflu, in which the key trans-diamino moiety has been efficiently installed via an iron-catalyzed stereoselective olefin diazidation. This significantly improved, iron-catalyzed method is uniquely effective for highly functionalized yet electronically deactivated substrates that have been previously problematic. Preliminary catalyst structure-reactivity-stereoselectivity relationship studies revealed that both the iron catalyst and the complex substrate cooperatively modulate the stereoselectivity for diazidation. Safety assessment using both differential scanning calorimetry (DSC) and the drop weight test (DWT) has also demonstrated the feasibility of carrying out this iron-catalyzed olefin diazidation for large-scale Tamiflu synthesis.
Collapse
Affiliation(s)
- Hongze Li
- Department of Chemistry , Georgia State University , 100 Piedmont Avenue SE , Atlanta , Georgia 30303 , United States
| | - Shou-Jie Shen
- Department of Chemistry , Georgia State University , 100 Piedmont Avenue SE , Atlanta , Georgia 30303 , United States
| | - Cheng-Liang Zhu
- Department of Chemistry , Georgia State University , 100 Piedmont Avenue SE , Atlanta , Georgia 30303 , United States
| | - Hao Xu
- Department of Chemistry , Georgia State University , 100 Piedmont Avenue SE , Atlanta , Georgia 30303 , United States
| |
Collapse
|
9
|
Orr D, Yousefi N, Minehan TG. Ring Expansion, Ring Contraction, and Annulation Reactions of Allylic Phosphonates under Oxidative Cleavage Conditions. Org Lett 2018; 20:2839-2843. [PMID: 29701477 DOI: 10.1021/acs.orglett.8b00791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oxidative cleavage of cycloalkenylalkylphosphonates 1 followed by treatment with base gives rise to homologated cycloalkenones 2 in good to excellent yields. Subjecting cycloalk-2-enylphosphonates 3 to identical conditions provides the one-carbon ring-contracted compounds 4 in excellent yields. Oxidative cleavage of γ,δ-unsaturated ketophosphonates 6 followed by treatment with base affords 2-cyclopenten-1-ones 7 in good overall yields. This method may offer a practical alternative to existing methods for effecting one-carbon ring expansion, ring contraction, and annulation reactions.
Collapse
Affiliation(s)
- Dupre Orr
- Department of Chemistry and Biochemistry , California State University , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| | - Nikolas Yousefi
- Department of Chemistry and Biochemistry , California State University , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| | - Thomas G Minehan
- Department of Chemistry and Biochemistry , California State University , 18111 Nordhoff Street , Northridge , California 91330-8262 , United States
| |
Collapse
|
10
|
Abstract
The first steps of oseltamivir synthesis from quinic acid involve acetalization and ester formation. These reactions are catalyzed by either acids or bases, which may be accomplished by heterogeneous catalysts. Sulfonic solids are efficient acid catalysts for acetalization and esterification reactions. Supported tetraalkylammonium hydroxide or 1,5,7-triazabicyclo[4.4.0]dec-5-ene are also efficient base catalysts for lactone alcoholysis and in this work, these catalysts have been applied in two alternative synthetic routes that lead to oseltamivir. The classical route consists of an acetalization, followed by a lactonization, and then a lactone alcoholysis. This achieves a 66% isolated yield. The alternative route consists of esterification followed by acetalization and is only efficient when an acetone acetal is used.
Collapse
|
11
|
Abstract
An alternative and expedient route for the synthesis of the influenza antiviral drugs oseltamivir and tamiphosphor is described.
Collapse
Affiliation(s)
- Saúl Silva
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- EAN
- 2780-157 Oeiras
- Portugal
| | - Christopher D. Maycock
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- EAN
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
12
|
Laborda P, Wang SY, Voglmeir J. Influenza Neuraminidase Inhibitors: Synthetic Approaches, Derivatives and Biological Activity. Molecules 2016; 21:E1513. [PMID: 27845731 PMCID: PMC6274581 DOI: 10.3390/molecules21111513] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022] Open
Abstract
Despite being a common viral disease, influenza has very negative consequences, causing the death of around half a million people each year. A neuraminidase located on the surface of the virus plays an important role in viral reproduction by contributing to the release of viruses from infected host cells. The treatment of influenza is mainly based on the administration of neuraminidase inhibitors. The neuraminidase inhibitors zanamivir, laninamivir, oseltamivir and peramivir have been commercialized and have been demonstrated to be potent influenza viral neuraminidase inhibitors against most influenza strains. In order to create more potent neuraminidase inhibitors and fight against the surge in resistance resulting from naturally-occurring mutations, these anti-influenza drugs have been used as templates for the development of new neuraminidase inhibitors through structure-activity relationship studies. Here, we review the synthetic routes to these commercial drugs, the modifications which have been performed on these structures and the effects of these modifications on their inhibitory activity.
Collapse
Affiliation(s)
- Pedro Laborda
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Su-Yan Wang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
13
|
Affiliation(s)
- Yujiro Hayashi
- Department
of Chemistry,
Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin Ogasawara
- Department
of Chemistry,
Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
14
|
A short synthetic pathway via three-component coupling reaction to tamiphosphor possessing anti-influenza activity. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.11.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sanapala SR, Kulkarni SS. One-pot synthesis of bicyclic sugar oxazolidinone from d-glucosamine. RSC Adv 2015. [DOI: 10.1039/c5ra02270c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Herein we report a one-pot and efficient method for the synthesis of a 1,2-cis fused furanoside bicyclic oxazolidinone derivative of d-glucosamine via pyranose to furanose conversion and concomitant cyclization involving the N-Troc group.
Collapse
|
16
|
Furutachi M, Kumagai N, Watanabe T, Shibasaki M. Chromatography-free synthesis of Corey's intermediate for Tamiflu. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Chavan SP, Chavan PN, Gonnade RG. Stereospecific synthetic approach towards Tamiflu using the Ramberg–Backlund reaction from cysteine hydrochloride. RSC Adv 2014. [DOI: 10.1039/c4ra10391b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stereospecific formal synthesis of Tamiflu from l-cysteine hydrochloride as the chiral source is described. The notable feature of the present strategy is the Ramberg–Backlund reaction and Sharpless–Reich protocol as the key chemical transformations to access the cyclohexene skeleton of Tamiflu.
Collapse
Affiliation(s)
| | | | - Rajesh G. Gonnade
- Center for Material Characterization CSIR – National Chemical Laboratory
- Pune-411008, India
| |
Collapse
|
18
|
Shie JJ, Fang JM. Phosphonate Congeners of Oseltamivir and Zanamivir as Effective Anti-influenza Drugs: Design, Synthesis and Biological Activity. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|