1
|
Gao L, Meiring JCM, Heise C, Rai A, Müller‐Deku A, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Photoswitchable Epothilone-Based Microtubule Stabilisers Allow GFP-Imaging-Compatible, Optical Control over the Microtubule Cytoskeleton. Angew Chem Int Ed Engl 2022; 61:e202114614. [PMID: 34902214 PMCID: PMC9305116 DOI: 10.1002/anie.202114614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Optical methods to modulate microtubule dynamics show promise for reaching the micron- and millisecond-scale resolution needed to decrypt the roles of the cytoskeleton in biology. However, optical microtubule stabilisers are under-developed. We introduce "STEpos" as GFP-orthogonal, light-responsive epothilone-based microtubule stabilisers. They use a novel styrylthiazole photoswitch in a design to modulate hydrogen-bonding and steric effects that control epothilone potency. STEpos photocontrol microtubule dynamics and cell division with micron- and second-scale spatiotemporal precision. They substantially improve potency, solubility, and ease-of-use compared to previous optical microtubule stabilisers, and the structure-photoswitching-activity relationship insights in this work will guide future optimisations. The STEpo reagents can contribute greatly to high-precision research in cytoskeleton biophysics, cargo transport, cell motility, cell division, development, and neuroscience.
Collapse
Affiliation(s)
- Li Gao
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 7Munich81377Germany
| | - Joyce C. M. Meiring
- Cell Biology, Neurobiology and BiophysicsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtNetherlands
| | - Constanze Heise
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 7Munich81377Germany
| | - Ankit Rai
- Cell Biology, Neurobiology and BiophysicsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtNetherlands
| | - Adrian Müller‐Deku
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 7Munich81377Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and BiophysicsDepartment of BiologyUtrecht UniversityPadualaan 83584 CHUtrechtNetherlands
| | - Julia Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 7Munich81377Germany
| | - Oliver Thorn‐Seshold
- Department of PharmacyLudwig-Maximilians University of MunichButenandtstrasse 7Munich81377Germany
| |
Collapse
|
2
|
Gao L, Meiring JCM, Heise C, Rai A, Müller‐Deku A, Akhmanova A, Thorn‐Seshold J, Thorn‐Seshold O. Photoswitchable Epothilone‐Based Microtubule Stabilisers Allow GFP‐Imaging‐Compatible, Optical Control over the Microtubule Cytoskeleton**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li Gao
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 Munich 81377 Germany
| | - Joyce C. M. Meiring
- Cell Biology, Neurobiology and Biophysics Department of Biology Utrecht University Padualaan 8 3584 CH Utrecht Netherlands
| | - Constanze Heise
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 Munich 81377 Germany
| | - Ankit Rai
- Cell Biology, Neurobiology and Biophysics Department of Biology Utrecht University Padualaan 8 3584 CH Utrecht Netherlands
| | - Adrian Müller‐Deku
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 Munich 81377 Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics Department of Biology Utrecht University Padualaan 8 3584 CH Utrecht Netherlands
| | - Julia Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 Munich 81377 Germany
| | - Oliver Thorn‐Seshold
- Department of Pharmacy Ludwig-Maximilians University of Munich Butenandtstrasse 7 Munich 81377 Germany
| |
Collapse
|
3
|
Gao L, Meiring JCM, Kraus Y, Wranik M, Weinert T, Pritzl SD, Bingham R, Ntouliou E, Jansen KI, Olieric N, Standfuss J, Kapitein LC, Lohmüller T, Ahlfeld J, Akhmanova A, Steinmetz MO, Thorn-Seshold O. A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chem Biol 2021; 28:228-241.e6. [PMID: 33275880 DOI: 10.1016/j.chembiol.2020.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Optically controlled chemical reagents, termed "photopharmaceuticals," are powerful tools for precise spatiotemporal control of proteins particularly when genetic methods, such as knockouts or optogenetics are not viable options. However, current photopharmaceutical scaffolds, such as azobenzenes are intolerant of GFP/YFP imaging and are metabolically labile, posing severe limitations for biological use. We rationally designed a photoswitchable "SBT" scaffold to overcome these problems, then derivatized it to create exceptionally metabolically robust and fully GFP/YFP-orthogonal "SBTub" photopharmaceutical tubulin inhibitors. Lead compound SBTub3 allows temporally reversible, cell-precise, and even subcellularly precise photomodulation of microtubule dynamics, organization, and microtubule-dependent processes. By overcoming the previous limitations of microtubule photopharmaceuticals, SBTubs offer powerful applications in cell biology, and their robustness and druglikeness are favorable for intracellular biological control in in vivo applications. We furthermore expect that the robustness and imaging orthogonality of the SBT scaffold will inspire other derivatizations directed at extending the photocontrol of a range of other biological targets.
Collapse
Affiliation(s)
- Li Gao
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Yvonne Kraus
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Maximilian Wranik
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Rebekkah Bingham
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Evangelia Ntouliou
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Klara I Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Jörg Standfuss
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Theobald Lohmüller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians University of Munich, Munich 80539, Germany
| | - Julia Ahlfeld
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584, Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen 5232, Switzerland; Biozentrum, University of Basel, Basel 4056, Switzerland
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich 81377, Germany.
| |
Collapse
|
4
|
Joshi R, Meitei OR, Kumar H, Jadhao M, Ghosh SK. Design, Synthesis, and Proticity Inclined Conformational Modulation in a Highly Fluorescent Bichromophoric Naphthalimide Derivative: Hint Directed from RICT Perspective. J Phys Chem A 2016; 120:1000-11. [PMID: 26816264 DOI: 10.1021/acs.jpca.5b10669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The present study embodies design, in silico DNA interaction, synthesis of benzothiazole containing naphthalimide derivative, 2-(6-chlorobenzo[d]thiazol-2-yl)-1H-benzo[de] isoquinoline-1,3(2H)-dione (CBIQD) along with its systematic photophysics, solvatochromic behavior, and solvation dynamics using an experimental and theoretical spectroscopic approach. Steady-state dual emission and biexponential fluorescence decay reveals the formation of two different excited species. Ground- and excited-state optimized geometry and the potential-energy curve obtained from DFT and TD-DFT calculation ascertained the existence of nonplanar and planar conformation. When the solvent polarity is changed from nonpolar to protic polar, the feebly emissive emission band highly intensifies probably due to the reversal of n, π*-π, π* emissive state along with consequent modulation of their energy gap that is induced by H-bonding. Excluding nonpolar solvents, in all other solvents, the Stokes shift correlates linearly with orientation polarizability, whereas in water, the story remains intriguing. With photoexcitation, intermolecular H-bonding stimulates the pyramidalization tendency of imide "N" with subsequent conformational change of GS nonplanar geometry to a coplanar one through acceptor rehybridization generating a rehybridized intramolecular charge transfer (RICT) state that caused a dramatic fluorescence upsurge. This allosteric modulation is promoted by excited-state H-bonding dynamics especially in strong H-bond donor water. A close interplay between preferential solvation and the proximity effect is evident in the emission behavior in a benzene (Bn)-ethanol (EtOH) binary mixture. Molecular docking analysis delineates considerable noncovalent sandwiched π-π stacking interactions of CBIQD with the pyrimidine rings as well as with imidazole rings of dG 6 and dG 2 base pairs of B-DNA double helix, which probably suffices the design strategy adopted. Overall, a strategic design to synthesize a highly fluorescent and potential bioactive agent is executed to revolutionize the fluorophore field due its enormous progressive importance in biochemical applications.
Collapse
Affiliation(s)
- Ritika Joshi
- Department of Chemistry, Visvesvaraya National Institute of Technology , Nagpur, Maharashtra 440010, India
| | - Oinam Romesh Meitei
- Department of Chemistry, Visvesvaraya National Institute of Technology , Nagpur, Maharashtra 440010, India
| | - Himank Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology , Nagpur, Maharashtra 440010, India
| | - Manojkumar Jadhao
- Department of Chemistry, Visvesvaraya National Institute of Technology , Nagpur, Maharashtra 440010, India
| | - Sujit Kumar Ghosh
- Department of Chemistry, Visvesvaraya National Institute of Technology , Nagpur, Maharashtra 440010, India
| |
Collapse
|
5
|
Xue Y, Dou Y, An L, Zheng Y, Zhang L, Liu Y. Electronic structure and spectral properties of aurones as visible range fluorescent probes: a DFT/TDDFT study. RSC Adv 2016. [DOI: 10.1039/c5ra25733f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A DFT and TDDFT study was performed to understand the electronic and optical properties of aurone and its amine-substituted derivatives as potential fluorescent probes.
Collapse
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yunyan Dou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Lin An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Youguang Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
- School of Pharmacy
- Xuzhou Medical College
- Xuzhou
- China
| |
Collapse
|
6
|
El-Hendawy MM, Fayed TA, Awad MK, English NJ, Etaiw SEH, Zaki AB. Photophysics, photochemistry and thermal stability of diarylethene-containing benzothiazolium species. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2014.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Senadi GC, Hu W, Boominathan SSK, Wang J. Nickel‐ or Palladium‐Catalyzed Stereoselective Synthesis of Tetrasubstituted Olefinic Indolines‐Fused Triazoles: Extension to the Spiroindoline Core. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Gopal Chandru Senadi
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Wan‐Ping Hu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | | - Jeh‐Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| |
Collapse
|