1
|
Tan H, Ren H, Chai J, Zhai C, Li T, Zhou X, Lee J, Li X, Zhao Y. Protective effect of ginseng berry saponin conversion products on skin photodamage caused by UVB in vitro and in vivo. Food Res Int 2024; 198:115379. [PMID: 39643347 DOI: 10.1016/j.foodres.2024.115379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/29/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
Ultraviolet (UV) B irradiation is closely related to skin aging and skin damage. Here, we report the photoprotective mechanism of action of ginseng berry rare saponins (GFRS) on UVB-induced damage to human keratinocytes and mouse skin. Several UVB irradiation-induced cytotoxicity and oxidative stress responses were assessed. GFRS preconditioning significantly improved HaCaT cell survival and reduced the levels of the DNA damage markers histone H2AX and cyclobutane pyrimidine dimer. Under oxidative stress, GFRS could reduce the transformation and loss of the mitochondrial membrane potential to the monomer form; effectively clear the expression of lipid reactive oxygen species, malondialdehyde, and other peroxides, and restore total superoxide dismutase, glutathione peroxidase, and catalase levels. The occurrence of ferroptosis after UVB induction was also studied. Erastin exacerbated the induced cellular iron overload, whereas GFRS and Fer-1 reversed this response to varying degrees. Mechanistically, GFRS activated the Nrf2/HO-1/GPX4 pathway and inhibited the phenomenon of ferroptosis in cells. Our findings were confirmed using a mouse model of UV induced skin injury. GFRS not only mitigated lipid peroxides and iron overload in tissues but also prevented skin barrier damage and collagen loss. Therefore, GFRS shows potential as a novel functional product as it protects the skin from UVB light-induced damage.
Collapse
Affiliation(s)
- Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Honghong Ren
- Perfect (Guangdong) Co., Ltd., Guangdon, 528400, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Changzhen Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xinyang Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdon, 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
2
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
4
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
5
|
Cho S. Pathogenesis and prevention of skin aging. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.6.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: As global life expectancy increases, an interest in maintaining health and beauty in old age has increased. As a barrier organ, the skin is an ideal model for studying both genetically-programmed (intrinsic) and environmentallyinduced (extrinsic) aging.Current Concepts: Among the extrinsic aging factors, solar ultraviolet radiation is the most important, accounting for 80% of facial skin aging. Other nongenetic factors include air pollution, cigarette smoke, nutrition, temperature, sleep, and stress. Through complex interplay, genome, exposome and microbiome all contribute to skin aging. Intrinsic aging causes thinning of the skin and fine wrinkles, while extrinsic aging leads to thick rubbery skin texture, deep wrinkles and dyspigmentation in exposed areas. Fibroblast senescence is a fundamental mechanism of skin aging, with these cells persisting and exhibiting a senescence-associated secretory phenotype which secrets proinflammatory cytokines. Chronic low-level inflammation associated with aging, termed inflamm-aging, is exacerbated by oxidative damage caused by extrinsic factors.Discussion and Conclusion: Understanding the pathogenesis of skin aging may help in developing anti-aging strategies in general. In addition to applying sunscreen every morning and retinoic acid every night, taking antioxidant-rich foods and maintaining a healthy lifestyle are all important for preventing skin aging.
Collapse
|
6
|
Florentino PTV, Mendes D, Vitorino FNL, Martins DJ, Cunha JPC, Mortara RA, Menck CFM. DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathog 2021; 17:e1009502. [PMID: 33826673 PMCID: PMC8087042 DOI: 10.1371/journal.ppat.1009502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/30/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent of Chagas' disease. Infected cells with T. cruzi activate several responses that promote unbalance of reactive oxygen species (ROS) that may cause DNA damage that activate cellular responses including DNA repair processes. In this work, HeLa cells and AC16 human cardiomyocyte cell line were infected with T. cruzi to investigate host cell responses at genome level during parasites intracellular life cycle. In fact, alkaline sensitive sites and oxidized DNA bases were detected in the host cell genetic material particularly in early stages of infection. These DNA lesions were accompanied by phosphorylation of the histone H2Ax, inducing γH2Ax, a marker of genotoxic stress. Moreover, Poly [ADP-ribose] polymerase-1 (PARP1) and 8-oxoguanine glycosylase (OGG1) are recruited to host cell nuclei, indicating activation of the DNA repair process. In infected cells, chromatin-associated proteins are carbonylated, as a possible consequence of oxidative stress and the nuclear factor erythroid 2-related factor 2 (NRF2) is induced early after infection, suggesting that the host cell antioxidant defenses are activated. However, at late stages of infection, NRF2 is downregulated. Interestingly, host cells treated with glutathione precursor, N-acetyl cysteine, NRF2 activator (Sulforaphane), and also Benznidonazol (BNZ) reduce parasite burst significantly, and DNA damage. These data indicate that the balance of oxidative stress and DNA damage induction in host cells may play a role during the process of infection itself, and interference in these processes may hamper T. cruzi infection, revealing potential target pathways for the therapy support.
Collapse
Affiliation(s)
- Pilar T. V. Florentino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Davi Mendes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Davi J. Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julia P. C. Cunha
- Special Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
| | - Renato A. Mortara
- Department of Microbiology, Imunology & Parasitology, Escola Paulista de Medicina Federal University of São Paulo, São Paulo, Brazil
| | - Carlos F. M. Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Douki T. Wavelengths and temporal effects on the response of mammalian cells to UV radiation: Limitations of action spectra illustrated by genotoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112169. [PMID: 33713895 DOI: 10.1016/j.jphotobiol.2021.112169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 01/17/2023]
Abstract
All photobiological events depend on the wavelength of the incident radiation. In real-life situations and in the vast majority of laboratory experiments, exposure always involves sources with various emission spectra spreading over a wide wavelength range. Action spectra are often used to describe the efficiency of a process at different wavelengths and to predict the effects of a given light source by summation of the individual effects at each wavelength. However, a full understanding of the biological effects of complex sources requires more than considering these concomitant events at each specific wavelength. Indeed, photons of different energies may not have additive but synergistic or inhibitory effects on photochemical processes and cellular responses. The evolution of a photobiological response with post-irradiation time must also be considered. These two aspects may represent some limitations to the use of action spectra. The present review, focused on mammalian cells, illustrates the concept of action spectrum and discusses its drawbacks using theoretical considerations and examples taken from the literature. Emphasis is placed on genotoxicity for which wavelength effects have been extensively studied. Other effects of UV exposure are also mentioned.
Collapse
Affiliation(s)
- Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France.
| |
Collapse
|
8
|
Prado VC, Marcondes Sari MH, Borin BC, do Carmo Pinheiro R, Cruz L, Schuch A, Nogueira CW, Zeni G. Development of a nanotechnological-based hydrogel containing a novel benzofuroazepine compound in association with vitamin E: An in vitro biological safety and photoprotective hydrogel. Colloids Surf B Biointerfaces 2021; 199:111555. [PMID: 33434881 DOI: 10.1016/j.colsurfb.2020.111555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/13/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
This study aimed to evaluate the potential DNA photoprotection of nano-based hydrogels containing a novel benzofuroazepine molecule. Photoprotective property of three benzofuroazepine derivative compounds was assessed by determining a UV light absorptive profile. Nanocapsule suspensions (Eudragit® RS 100 as polymeric wall and medium-chain triglyceride or vitamin E as oil core) containing the benzofuroazepine compound that had the best UV spectral absorption were developed and physicochemically characterized. Photostability assay, bioadhesive property as well as preliminary toxicity parameters (HET-CAM and Artemia salina lethality assays) for free or nanoencapsulated forms were assessed. Among the molecules, the UV absorbance spectrum of free MBBA showed a broad and high intensity absorbance at UVB and UVA ranges. MBBA-nanocapsule suspensions had nanometric and homogeneous size distribution, bioadhesiveness property, and increased the UV light scattering in comparison to the free compound. Besides, all formulations triggered no irritative responses and the nanoencapsulation mitigated the toxic effect to Artemia salina observed to free MBBA. Following, hydrogels were prepared by thickening nanocapsule suspensions with gellan gum and their DNA photoprotection properties were determined by the exposure of DNA samples to the UVB and UVA radiation. Hydrogels showed acid pH values, compound content close to the theoretical value (3 mg/g), particle size in nanometric range, and spreadability profile suitable for cutaneous application. All MBBA hydrogels were effective against photoproducts formation induced by UVB and UVA radiation. In conclusion, these data show the identification of a compound with promising UV absorptive potential and the preparation of a final nano-based hydrogel for cutaneous application.
Collapse
Affiliation(s)
- Vinicius Costa Prado
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Bruna Cogo Borin
- Laboratório de Fotobiologia, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Letícia Cruz
- Laboratório de Tecnologia Farmacêutica, Centro de Ciências da Saúde, Departamento de Farmácia Industrial, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - André Schuch
- Laboratório de Fotobiologia, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
9
|
Mao T, He X, Liu G, Wei Y, Gou Y, Zhou X, Tao L. Fluorescent polymers via post-polymerization modification of Biginelli-type polymers for cellular protection against UV damage. Polym Chem 2021. [DOI: 10.1039/d0py00503g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biocompatible fluorescent polymers with UV-protective capability have been developed by the combination of the Biginelli reaction and the postpolymerization modification method.
Collapse
Affiliation(s)
- Tengfei Mao
- State Key Laboratory of NBC Protection for Civilian
- Beijing
- P. R. China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Guoqiang Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yanzi Gou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
- Changsha
- P. R. China
| | - Xingui Zhou
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory
- National University of Defense Technology
- Changsha
- P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
10
|
Khmaladze I, Leonardi M, Fabre S, Messaraa C, Mavon A. The Skin Interactome: A Holistic "Genome-Microbiome-Exposome" Approach to Understand and Modulate Skin Health and Aging. Clin Cosmet Investig Dermatol 2021; 13:1021-1040. [PMID: 33380819 PMCID: PMC7769076 DOI: 10.2147/ccid.s239367] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022]
Abstract
Higher demands on skin care cosmetic products for strong performance drive intense research to understand the mechanisms of skin aging and design strategies to improve overall skin health. Today we know that our needs and influencers of skin health and skin aging change throughout our life journey due to both extrinsic factors, such as environmental factors and lifestyle factors, as well as our intrinsic factors. Furthermore, we need to consider our microflora, a collection of micro-organisms such as bacteria, viruses, and fungi, which is a living ecosystem in our gut and on our skin, that can have a major impact on our health. Here, we are viewing a holistic approach to understand the collective effect of the key influencers of skin health and skin aging both reviewing how each of them impact the skin, but more importantly to identify molecular conjunction pathways of these different factors in order to get a better understanding of the integrated “genome-microbiome-exposome” effect. For this purpose and in order to translate molecularly the impact of the key influencers of skin health and skin aging, we built a digital model based on system biology using different bioinformatics tools. This model is considering both the positive and negative impact of our genome (genes, age/gender), exposome: external (sun, pollution, climate) and lifestyle factors (sleep, stress, exercise, nutrition, skin care routine), as well as the role of our skin microbiome, and allowed us in a first application to evaluate the effect of the genome in the synthesis of collagen in the skin and the determination of a suitable target for boosting pro-collagen synthesis. In conclusion, we have, through our digital holistic approach, defined the skin interactome concept, as an advanced tool to better understand the molecular genesis of skin aging and further develop a strategy to balance the influence of the exposome and microbiome to protect, prevent, and delay the appearance of skin aging signs and preserve good skin health condition. In addition, this model will aid in identifying and optimizing skin treatment options based on external triggers, as well as helping to design optimal treatments modulating the intrinsic pathways.
Collapse
Affiliation(s)
- Ia Khmaladze
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Michele Leonardi
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Susanne Fabre
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| | - Cyril Messaraa
- Research and Development, Oriflame Cosmetics Ltd, Bray, Ireland
| | - Alain Mavon
- Skin Research Institute, Oriflame Cosmetics AB, Stockholm, Sweden
| |
Collapse
|
11
|
de Oliveira Alves N, Martins Pereira G, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, de Souza Xavier Costa N, Ribeiro Júnior G, Satoru Kajitani G, Cestari Moreno N, Fotoran W, Iannicelli Torres J, de Andrade JB, Matera Veras M, Artaxo P, Menck CFM, de Castro Vasconcellos P, Saldiva P. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. ENVIRONMENT INTERNATIONAL 2020; 145:106150. [PMID: 33039876 DOI: 10.1016/j.envint.2020.106150] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1β, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.
Collapse
Affiliation(s)
| | | | - Marlise Di Domenico
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Costanzo
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Benevenuto
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley Fotoran
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mariana Matera Veras
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Paiva JP, Diniz RR, Leitão AC, Cabral LM, Fortunato RS, Santos BAMC, de Pádula M. Insights and controversies on sunscreen safety. Crit Rev Toxicol 2020; 50:707-723. [PMID: 33064037 DOI: 10.1080/10408444.2020.1826899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.
Collapse
Affiliation(s)
- Juliana P Paiva
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Laboratório de Fisiologia e Sinalização Redox, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca A M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia Industrial e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Carlos JAEG, Lima K, Coelho-Silva JL, de Melo Alves-Paiva R, Moreno NC, Vicari HP, de Souza Santos FP, Hamerschlak N, Costa-Lotufo LV, Traina F, Machado-Neto JA. Reversine exerts cytotoxic effects through multiple cell death mechanisms in acute lymphoblastic leukemia. Cell Oncol (Dordr) 2020; 43:1191-1201. [PMID: 32857324 DOI: 10.1007/s13402-020-00551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Acute lymphoblastic leukemia (ALL) is an aggressive hematological cancer with limited therapeutic options for adult patients. Aurora kinases have drawn attention as potential targets in hematological neoplasms due to their high expression and biological functions. Aurora kinase A (AURKA) and AURKB are essential for a successful mitosis, acting in spindle mitotic organization and cytokinesis. Reversine is a synthetic purine analog that acts as a multi-kinase inhibitor with anti-neoplastic activity by targeting AURKA and AURKB. METHODS ALL patient gene expression data were retrieved from the Amazonia! DATABASE For functional assays, Jurkat (T-ALL) and Namalwa (B-ALL) cells were exposed to increasing concentrations of reversine and submitted to various cellular and molecular assays. RESULTS We found that AURKB expression was higher in ALL patient samples compared to normal lymphocytes (p < 0.0001). The ALL cell lines tested displayed aberrant AURKA and AURKB expression. In Jurkat and Namalwa cells, reversine reduced cell viability in a dose- and time-dependent manner (p < 0.05). Reversine also significantly reduced the viability of primary ALL cells. Reversine induced apoptosis and autophagy, and reduced cell proliferation in both cell lines (p < 0.05). Mitotic catastrophe markers, including cell cycle arrest at G2/M, increased cell size and DNA damage, were observed upon reversine exposure. Short- and long-term treatment with reversine inhibited autonomous clonogenicity (p < 0.05). At the molecular level, reversine reduced AURKB activity, induced SQSTM1/p62 consumption, and increased LC3BII and γ-H2AX levels. In Namalwa cells, reversine modulated 25 out of 84 autophagy-related genes, including BCL2, BAD, ULK1, ATG10, IRGM and MAP1LC3B, which indicates that reversine acts by initiating and sustaining autophagy signals in ALL cells. CONCLUSIONS From our data we conclude that reversine reduces the viability of ALL cells by triggering multiple cell death mechanisms, including apoptosis, mitotic catastrophe, and autophagy. Our findings highlight reversine as a potential anticancer agent for ALL.
Collapse
Affiliation(s)
- Jorge Antonio Elias Godoy Carlos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | | | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hugo Passos Vicari
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | | | - Nelson Hamerschlak
- Einstein's Teaching and Research Institute, Albert Einstein Hospital, São Paulo, SP, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, SP, Brazil
| | - João Agostinho Machado-Neto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP 05508-900, Brazil.
| |
Collapse
|
14
|
Are FDA-Approved Sunscreen Components Effective in Preventing Solar UV-Induced Skin Cancer? Cells 2020; 9:cells9071674. [PMID: 32664608 PMCID: PMC7407267 DOI: 10.3390/cells9071674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Solar ultraviolet (SUV) exposure is a major risk factor in the etiology of cutaneous squamous cell carcinoma (cSCC). People commonly use sunscreens to prevent SUV-induced skin damage and cancer. Nonetheless, the prevalence of cSCC continues to increase every year, suggesting that commercially available sunscreens might not be used appropriately or are not completely effective. In the current study, a solar simulated light (SSL)-induced cSCC mouse model was used to investigate the efficacy of eight commonly used FDA-approved sunscreen components against skin carcinogenesis. First, we tested FDA-approved sunscreen components for their ability to block UVA or UVB irradiation by using VITRO-SKIN (a model that mimics human skin properties), and then the efficacy of FDA-approved sunscreen components was investigated in an SSL-induced cSCC mouse model. Our results identified which FDA-approved sunscreen components or combinations are effective in preventing cSCC development. Not surprisingly, the results indicated that sunscreen combinations that block both UVA and UVB significantly suppressed the formation of cutaneous papillomas and cSCC development and decreased the activation of oncoproteins and the expression of COX-2, keratin 17, and EGFR in SSL-exposed SKH-1 (Crl:SKH1-Hrhr) hairless mouse skin. Notably, several sunscreen components that were individually purported to block both UVA and UVB were ineffective alone. At least one component had toxic effects that led to a high mortality rate in mice exposed to SSL. Our findings provide new insights into the development of the best sunscreen to prevent chronic SUV-induced cSCC development.
Collapse
|
15
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, Panzarini E, Rajkovic J, Tsouh Fokou PV, Azzini E, Peluso I, Prakash Mishra A, Nigam M, El Rayess Y, Beyrouthy ME, Polito L, Iriti M, Martins N, Martorell M, Docea AO, Setzer WN, Calina D, Cho WC, Sharifi-Rad J. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol 2020; 11:694. [PMID: 32714204 PMCID: PMC7347016 DOI: 10.3389/fphys.2020.00694 10.3389/fphys.2020.00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 06/13/2023] Open
Abstract
Oxidative stress plays an essential role in the pathogenesis of chronic diseases such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. Long term exposure to increased levels of pro-oxidant factors can cause structural defects at a mitochondrial DNA level, as well as functional alteration of several enzymes and cellular structures leading to aberrations in gene expression. The modern lifestyle associated with processed food, exposure to a wide range of chemicals and lack of exercise plays an important role in oxidative stress induction. However, the use of medicinal plants with antioxidant properties has been exploited for their ability to treat or prevent several human pathologies in which oxidative stress seems to be one of the causes. In this review we discuss the diseases in which oxidative stress is one of the triggers and the plant-derived antioxidant compounds with their mechanisms of antioxidant defenses that can help in the prevention of these diseases. Finally, both the beneficial and detrimental effects of antioxidant molecules that are used to reduce oxidative stress in several human conditions are discussed.
Collapse
Affiliation(s)
- Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nanjangud V. Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences, Milan State University, Milan, Italy
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | | | - Elena Azzini
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Ilaria Peluso
- CREA – Research Centre for Food and Nutrition, Rome, Italy
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H.N.B. Garhwal (A Central) University, Srinagar, India
| | - Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, India
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Letizia Polito
- General Pathology Section, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, Bologna, Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, Milan, Italy
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William N. Setzer
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, AL, United States
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Douki T. Oxidative Stress and Genotoxicity in Melanoma Induction: Impact on Repair Rather Than Formation of DNA Damage? Photochem Photobiol 2020; 96:962-972. [PMID: 32367509 DOI: 10.1111/php.13278] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
Keratinocytes and melanocytes, two cutaneous cell types located within the epidermis, are the origin of most skin cancers, namely carcinomas and melanomas. These two types of tumors differ in many ways. First, carcinomas are almost 10 times more frequent than melanomas. In addition, the affected cellular pathways, the mutated genes and the metastatic properties of the tumors are not the same. This review addresses another specificity of melanomas: the role of photo-oxidative stress. UVA efficiently produces reactive oxygen species in melanocytes, which results in more frequent oxidatively generated DNA lesions than in other cell types. The question of the respective contribution of UVB-induced pyrimidine dimers and UVA-mediated oxidatively generated lesions to mutagenesis in melanoma remains open. Recent results based on next-generation sequencing techniques strongly suggest that the mutational signature associated with pyrimidine dimers is overwhelming in melanomas like in skin carcinomas. UVA-induced oxidative stress may yet be indirectly linked to the genotoxic pathways involved in melanoma through its ability to hamper DNA repair activities.
Collapse
Affiliation(s)
- Thierry Douki
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| |
Collapse
|
18
|
Moreno NC, de Souza TA, Garcia CCM, Ruiz NQ, Corradi C, Castro LP, Munford V, Ienne S, Alexandrov LB, Menck CFM. Whole-exome sequencing reveals the impact of UVA light mutagenesis in xeroderma pigmentosum variant human cells. Nucleic Acids Res 2020; 48:1941-1953. [PMID: 31853541 PMCID: PMC7038989 DOI: 10.1093/nar/gkz1182] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
UVA-induced mutagenesis was investigated in human pol eta-deficient (XP-V) cells through whole-exome sequencing. In UVA-irradiated cells, the increase in the mutation frequency in deficient cells included a remarkable contribution of C>T transitions, mainly at potential pyrimidine dimer sites. A strong contribution of C>A transversions, potentially due to oxidized bases, was also observed in non-irradiated XP-V cells, indicating that basal mutagenesis caused by oxidative stress may be related to internal tumours in XP-V patients. The low levels of mutations involving T induced by UVA indicate that pol eta is not responsible for correctly replicating T-containing pyrimidine dimers, a phenomenon known as the ‘A-rule’. Moreover, the mutation signature profile of UVA-irradiated XP-V cells is highly similar to the human skin cancer profile, revealing how studies involving cells deficient in DNA damage processing may be useful to understand the mechanisms of environmentally induced carcinogenesis.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Tiago Antonio de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Nathalia Quintero Ruiz
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ligia Pereira Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Susan Ienne
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
19
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Dini C, Nagay BE, Cordeiro JM, da Cruz NC, Rangel EC, Ricomini-Filho AP, de Avila ED, Barão VAR. UV-photofunctionalization of a biomimetic coating for dental implants application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110657. [PMID: 32204085 DOI: 10.1016/j.msec.2020.110657] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022]
Abstract
Photofunctionalization mediated by ultraviolet (UV) rays changes the physico-chemical characteristics of titanium (Ti) and improves the biological activity of dental implants. However, the role of UV-mediated photofunctionalization of biofunctional Ti surfaces on the antimicrobial and photocatalytic activity remains unknown and was investigated in this study. Commercially pure titanium (cpTi) discs were divided into four groups: (1) machined samples without UV light application [cpTi UV-]; (2) plasma electrolytic oxidation (PEO) treated samples without UV light application [PEO UV-]; (3) machined samples with UV light application [cpTi UV+]; and (4) PEO-treated samples with UV light application [PEO UV+]. The surfaces were characterized according to their morphology, roughness, crystalline phase, chemical composition and wettability. The photocatalytic activity and proteins adsorption were measured. For the microbiological assay, Streptococcus sanguinis was grown on the disc surfaces for 1 h and 6 h, and the colony forming units and bacterial organization were evaluated. In addition, to confirm the non-cytotoxic effect of PEO UV +, human gingival fibroblast (HGF) cells were cultured in a monolayer onto each material surface and the cells viability and proliferation evaluated by a fluorescent cell staining method. PEO treatment increased the Ti surface roughness and wettability (p < 0.05). Photofunctionalization reduced the hydrocarbon concentration and enhanced human blood plasma proteins and albumin adsorption mainly for the PEO-treated surface (p < 0.05). PEO UV+ also maintained higher wettability values for a longer period and provided microbial reduction at 1 h of bacterial adhesion (p = 0.012 vs. PEO UV-). Photofunctionalization did not increase the photocatalytic activity of Ti (p > 0.05). Confocal microscopy analyses demonstrated that PEO UV+ had no cell damage effect on HGF cells growth even after 24 h of incubation. The photofunctionalization of a biofunctional PEO coating seems to be a promising alternative for dental implants as it increases blood plasma proteins adsorption, reduces initial bacterial adhesion and presents no cytotoxicity effect.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Antônio P Ricomini-Filho
- Department of Physiological Science, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), R. Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
21
|
Souza C, Mônico DA, Tedesco AC. Implications of dichlorofluorescein photoinstability for detection of UVA-induced oxidative stress in fibroblasts and keratinocyte cells. Photochem Photobiol Sci 2020; 19:40-48. [DOI: 10.1039/c9pp00415g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pre-incubation with 10 μM DCFDA for 30 min in PBS was sufficient to generate a sensitive and reproducible standard curve for detection of UVA-induced ROS in HaCaT and HPF cells, with no effects on cell viability or morphology.
Collapse
Affiliation(s)
- Carla Souza
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Danielli Azevedo Mônico
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Antonio Claudio Tedesco
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| |
Collapse
|
22
|
Formulation induces direct DNA UVA photooxidation. Part I. Role of the formulating cationic surfactant. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model. J Nutr Biochem 2019; 65:93-100. [DOI: 10.1016/j.jnutbio.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
24
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
25
|
Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, Sarasin A, Menck CFM. The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radic Biol Med 2019; 131:432-442. [PMID: 30553972 DOI: 10.1016/j.freeradbiomed.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Abstract
The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood. The goal of this work was to characterize UVA-induced DNA damage and the consequences to XP-V cells, compared to complemented cells. DNA damage were induced in both cells by UVA, but lesion removal was particularly affected in XP-V cells, possibly due to the oxidation of DNA repair proteins, as indicated by the increase of carbonylated proteins. Moreover, UVA irradiation promoted replication fork stalling and cell cycle arrest in the S-phase for XP-V cells. Interestingly, when cells were treated with the antioxidant N-acetylcysteine, all these deleterious effects were consistently reverted, revealing the role of oxidative stress in these processes. Together, these results strongly indicate the crucial role of oxidative stress in UVA-induced cytotoxicity and are of interest for the protection of XP-V patients.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Alessandra Luiza Pelegrini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, University Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
26
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
27
|
Moreno NC, Garcia CCM, Rocha CRR, Munford V, Menck CFM. ATR/Chk1 Pathway is Activated by Oxidative Stress in Response to UVA Light in Human Xeroderma Pigmentosum Variant Cells. Photochem Photobiol 2018; 95:345-354. [PMID: 30362123 DOI: 10.1111/php.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
The crucial role of DNA polymerase eta in protecting against sunlight-induced tumors is evidenced in Xeroderma Pigmentosum Variant (XP-V) patients, who carry mutations in this protein and present increased frequency of skin cancer. XP-V cellular phenotypes may be aggravated if proteins of DNA damage response (DDR) pathway are blocked, as widely demonstrated by experiments with UVC light and caffeine. However, little is known about the participation of DDR in XP-V cells exposed to UVA light, the wavelengths patients are mostly exposed. Here, we demonstrate the participation of ATR kinase in protecting XP-V cells after receiving low UVA doses using a specific inhibitor, with a remarkable increase in sensitivity and γH2AX signaling. Corroborating ATR participation in UVA-DDR, a significant increase in Chk1 protein phosphorylation, as well as S-phase cell cycle arrest, is also observed. Moreover, the participation of oxidative stress is supported by the antioxidant action of N-acetylcysteine (NAC), which significantly protects XP-V cells from UVA light, even in the presence of the ATR inhibitor. These findings indicate that the ATR/Chk1 pathway is activated to control UVA-induced oxidatively generated DNA damage and emphasizes the role of ATR kinase as a mediator of genomic stability in pol eta defective cells.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
28
|
Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D. UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018; 16:E336. [PMID: 30223486 PMCID: PMC6165330 DOI: 10.3390/md16090336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota-particularly in euphotic and dysphotic zones-depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R. Nonetheless, Antarctic species seem to possess analogous UV photoprotection and repair mechanisms as those found in organisms from other latitudes. The lack of data on species-specific responses towards increased UV-B still limits the understanding about the ecological impact and the tolerance levels related to ozone depletion in this region. The photobiology of Antarctic biota is largely unknown, in spite of representing a highly promising reservoir in the discovery of novel cosmeceutical products. This review compiles the most relevant information on photoprotection and UV-repair processes described in organisms from the Southern Ocean, in the context of this unique marine polar environment.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Giovanna Romano
- Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italia.
| | - Cinzia Verde
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Daniela Giordano
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
29
|
Hahn MB, Meyer S, Schröter MA, Kunte HJ, Solomun T, Sturm H. DNA protection by ectoine from ionizing radiation: molecular mechanisms. Phys Chem Chem Phys 2018; 19:25717-25722. [PMID: 28913528 DOI: 10.1039/c7cp02860a] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ectoine, a compatible solute and osmolyte, is known to be an effective protectant of biomolecules and whole cells against heating, freezing and extreme salinity. Protection of cells (human keratinocytes) by ectoine against ultraviolet radiation has also been reported by various authors, although the underlying mechanism is not yet understood. We present the first electron irradiation of DNA in a fully aqueous environment in the presence of ectoine and at high salt concentrations. The results demonstrate effective protection of DNA by ectoine against the induction of single-strand breaks by ionizing radiation. The effect is explained by an increase in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the use of ectoine as an ˙OH-radical scavenger. This was demonstrated by Raman spectroscopy and electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Marc Benjamin Hahn
- Free University Berlin, Department of Physics, D-14195 Berlin, Germany. and Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Susann Meyer
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and University of Potsdam, Institute of Biochemistry and Biology, D-14476 Potsdam, Germany
| | | | - Hans-Jörg Kunte
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Tihomir Solomun
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany.
| | - Heinz Sturm
- Bundesanstalt für Materialforschung und Prüfung, D-12205 Berlin, Germany. and Technical University Berlin, D-10587 Berlin, Germany
| |
Collapse
|
30
|
Josse G, Douki T, Le Digabel J, Gravier E, Questel E. The use of suction blisters to measure sunscreen protection against UVR-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 179:1-6. [PMID: 29289926 DOI: 10.1016/j.jphotobiol.2017.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
The formation of DNA photoproducts caused by solar UVR exposure needs to be investigated in-vivo and in particular in order to assess sunscreens' level of protection against solar genotoxicity. The study's purposes were: i) to evaluate if the roof of suction blisters is an appropriate sampling method for measuring photoproducts, and ii) to measure in-vivo sunscreen protection against cyclobutane pyrimidine dimers. Skin areas on the interior forearms of eight healthy volunteers were exposed in-vivo to 2 MED of simulated solar radiation (SSR) and to 15 MED on a sunscreen protected area. After irradiation, six suction blisters were induced and the blister roofs were collected. Analysis of SSR-induced CPDs was performed by two independent methods: a chromatography coupled to mass spectroscopy (HPLC-MS/MS) approach and a 3D-imaging of CPD immunostaining by multiphoton microscopy on floating epidermal sheets. HPLC-MS/MS analyses showed that SSR-unexposed skin presented no CPD dimers, whereas 2 MED SSR-exposed skin showed a significant number of TT-CPD. The sunscreen covered skin exposed to 15 MED appeared highly protected from DNA damage, as the amount of CPD-dimers remained below the detection limit. The multiphoton-immunostaining analysis consistently showed that no CPD staining was observed on the non-SSR-exposed skin. A significant increase of CPD staining intensity and number of CPD-positive cells were observed on the 2 MED SSR-exposed skin. Sunscreen protected skin presented a very low staining intensity and the number of CPD-positive cells remained very close to non-SSR-exposed skin. This study showed that suction blister samples are very appropriate for measuring CPD dimers in-vivo, and that sunscreens provide high protection against UVR-induced DNA damage.
Collapse
Affiliation(s)
- Gwendal Josse
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, F-31000 Toulouse, France.
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES/CIBEST, F-38000 Grenoble, France
| | - Jimmy Le Digabel
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, F-31000 Toulouse, France
| | - Eleonore Gravier
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, F-31000 Toulouse, France
| | - Emmanuel Questel
- Centre de Recherche sur la Peau, Pierre Fabre Dermo-Cosmétique, F-31000 Toulouse, France
| |
Collapse
|
31
|
Campos KKD, Araújo GR, Martins TL, Bandeira ACB, Costa GDP, Talvani A, Garcia CCM, Oliveira LAM, Costa DC, Bezerra FS. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
de Oliveira Alves N, Vessoni AT, Quinet A, Fortunato RS, Kajitani GS, Peixoto MS, Hacon SDS, Artaxo P, Saldiva P, Menck CFM, Batistuzzo de Medeiros SR. Biomass burning in the Amazon region causes DNA damage and cell death in human lung cells. Sci Rep 2017; 7:10937. [PMID: 28883446 PMCID: PMC5589902 DOI: 10.1038/s41598-017-11024-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023] Open
Abstract
Most of the studies on air pollution focus on emissions from fossil fuel burning in urban centers. However, approximately half of the world's population is exposed to air pollution caused by biomass burning emissions. In the Brazilian Amazon population, over 10 million people are directly exposed to high levels of pollutants resulting from deforestation and agricultural fires. This work is the first study to present an integrated view of the effects of inhalable particles present in emissions of biomass burning. Exposing human lung cells to particulate matter smaller than 10 µm (PM10), significantly increased the level of reactive oxygen species (ROS), inflammatory cytokines, autophagy, and DNA damage. Continued PM10 exposure activated apoptosis and necrosis. Interestingly, retene, a polycyclic aromatic hydrocarbon present in PM10, is a potential compound for the effects of PM10, causing DNA damage and cell death. The PM10 concentrations observed during Amazon biomass burning were sufficient to induce severe adverse effects in human lung cells. Our study provides new data that will help elucidate the mechanism of PM10-mediated lung cancer development. In addition, the results of this study support the establishment of new guidelines for human health protection in regions strongly impacted by biomass burning.
Collapse
Affiliation(s)
| | - Alexandre Teixeira Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, USA
| | - Rodrigo Soares Fortunato
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Paulo Artaxo
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
33
|
Yagura T, Schuch AP, Garcia CCM, Rocha CRR, Moreno NC, Angeli JPF, Mendes D, Severino D, Bianchini Sanchez A, Di Mascio P, de Medeiros MHG, Menck CFM. Direct participation of DNA in the formation of singlet oxygen and base damage under UVA irradiation. Free Radic Biol Med 2017; 108:86-93. [PMID: 28323132 DOI: 10.1016/j.freeradbiomed.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/24/2022]
Abstract
UVA light is hardly absorbed by the DNA molecule, but recent works point to a direct mechanism of DNA lesion by these wavelengths. UVA light also excite endogenous chromophores, which causes DNA damage through ROS. In this study, DNA samples were irradiated with UVA light in different conditions to investigate possible mechanisms involved in the induction of DNA damage. The different types of DNA lesions formed after irradiation were determined through the use of endonucleases, which recognize and cleave sites containing oxidized bases and cyclobutane pyrimidine dimers (CPDs), as well as through antibody recognition. The formation of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG) was also studied in more detail using electrochemical detection. The results show that high NaCl concentration and concentrated DNA are capable of reducing the induction of CPDs. Moreover, concerning damage caused by oxidative stress, the presence of sodium azide and metal chelators reduce their induction, while deuterated water increases the amounts of oxidized bases, confirming the involvement of singlet oxygen in the generation of these lesions. Curiously, however, high concentrations of DNA also enhanced the formation of oxidized bases, in a reaction that paralleled the increase in the formation of singlet oxygen in the solution. This was interpreted as being due to an intrinsic photosensitization mechanism, depending directly on the DNA molecule to absorb UVA and generate singlet oxygen. Therefore, the DNA molecule itself may act as a chromophore for UVA light, locally producing a damaging agent, which may lead to even greater concerns about the deleterious impact of sunlight.
Collapse
Affiliation(s)
- Teiti Yagura
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - André Passaglia Schuch
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil; Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil
| | - Camila Carrião Machado Garcia
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil; Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil
| | - Clarissa Ribeiro Reily Rocha
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - José Pedro Friedmann Angeli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Davi Mendes
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Divinomar Severino
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Angelica Bianchini Sanchez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
35
|
Balparda K, Maldonado MJ. Corneal collagen cross-linking. A review of its clinical applications. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2017; 92:166-174. [PMID: 27914659 DOI: 10.1016/j.oftal.2016.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To perform a literature review of the current clinical applications of corneal collagen cross-linking. METHODS An exhaustive literature search was made, including the main biomedical databases, and encompassing all years since the introduction of cross-linking in ophthalmology practice. RESULTS Corneal collagen cross-linking using UVA irradiation and riboflavin is a surgical technique that is currently being optimised, and is supported by a good amount of pre-clinical and clinical studies. These papers found show the beneficial effect of the surgery on preventing the progression of corneal ectasia, especially keratoconus, but also on pellucid marginal degeneration and keratectasia after refractive surgery. The effect of cross-linking on avoiding the occurrence of iatrogenic keratectasia when combined with a photo-ablative procedure is less clear to date. Additionally, it appears that cross-linking may have a considerable beneficial effect on controlling corneal infection caused by fungi, bacteria and amoebae. However, its effect on viral keratitis can be detrimental. The benefit on bullous keratopathy seems to be rather transient. CONCLUSIONS Corneal collagen cross-linking may be used with relative safety and efficacy in patients with progressive keratoconus. Its use could also be considered in patients with other corneal ectasias or with corneal infections of non-viral origin. Currently, there is still a need for more studies as regards its effect on preventing iatrogenic keratectasia.
Collapse
Affiliation(s)
- K Balparda
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid (UVa), Valladolid, España
| | - M J Maldonado
- Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid (UVa), Valladolid, España.
| |
Collapse
|
36
|
Leung KS, Chan HF, Leung HH, Galano JM, Oger C, Durand T, Lee JCY. Short-time UVA exposure to human keratinocytes instigated polyunsaturated fatty acid without inducing lipid peroxidation. Free Radic Res 2017; 51:269-280. [DOI: 10.1080/10715762.2017.1300885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Hok Fung Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
37
|
Lakatos P, Hegedűs C, Salazar Ayestarán N, Juarranz Á, Kövér KE, Szabó É, Virág L. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. Mutat Res 2016; 790:31-40. [PMID: 27427773 DOI: 10.1016/j.mrfmmm.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/28/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022]
Abstract
A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nerea Salazar Ayestarán
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|
38
|
Huang Y, Wang X, Niu X, Wang X, Jiang R, Xu T, Liu Y, Liang L, Ou X, Xing X, Li W, Hu C. EZH2 suppresses the nucleotide excision repair in nasopharyngeal carcinoma by silencing XPA gene. Mol Carcinog 2016; 56:447-463. [DOI: 10.1002/mc.22507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/05/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Yuxiang Huang
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Xuanyi Wang
- Institute of Traditional Chinese Medicine and Western Medicine; School of Medicine; Yangzhou University; Yangzhou China
| | - Xiaoshuang Niu
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Xiaoshen Wang
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Rui Jiang
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Tingting Xu
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Yong Liu
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Liping Liang
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Xiaomin Ou
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Xing Xing
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Weiwei Li
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| | - Chaosu Hu
- Department of Radiation Oncology; Fudan University Shanghai Cancer Center; Shanghai China
| |
Collapse
|
39
|
Hopkins SL, Siewert B, Askes SHC, Veldhuizen P, Zwier R, Heger M, Bonnet S. An in vitro cell irradiation protocol for testing photopharmaceuticals and the effect of blue, green, and red light on human cancer cell lines. Photochem Photobiol Sci 2016; 15:644-53. [PMID: 27098927 PMCID: PMC5044800 DOI: 10.1039/c5pp00424a] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/30/2016] [Indexed: 12/21/2022]
Abstract
Traditionally, ultraviolet light (100-400 nm) is considered an exogenous carcinogen while visible light (400-780 nm) is deemed harmless. In this work, a LED irradiation system for in vitro photocytotoxicity testing is described. The LED irradiation system was developed for testing photopharmaceutical drugs, but was used here to determine the basal level response of human cancer cell lines to visible light of different wavelengths, without any photo(chemo)therapeutic. The effects of blue (455 nm, 10.5 mW cm(-2)), green (520 nm, 20.9 mW cm(-2)), and red light (630 nm, 34.4 mW cm(-2)) irradiation was measured for A375 (human malignant melanoma), A431 (human epidermoid carcinoma), A549 (human lung carcinoma), MCF7 (human mammary gland adenocarcinoma), MDA-MB-231 (human mammary gland adenocarcinoma), and U-87 MG (human glioblastoma-grade IV) cell lines. In response to a blue light dose of 19 J cm(-2), three cell lines exhibited a minimal (20%, MDA-MB-231) to moderate (30%, A549 and 60%, A375) reduction in cell viability, compared to dark controls. The other cell lines were not affected. Effective blue light doses that produce a therapeutic response in 50% of the cell population (ED50) compared to dark conditions were found to be 10.9 and 30.5 J cm(-2) for A375 and A549 cells, respectively. No adverse effects were observed in any of the six cell lines irradiated with a 19 J cm(-2) dose of 520 nm (green) or 630 nm (red) light. The results demonstrate that blue light irradiation can have an effect on the viability of certain human cancer cell types and controls should be used in photopharmaceutical testing, which uses high-energy (blue or violet) visible light activation.
Collapse
Affiliation(s)
- S. L. Hopkins
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - B. Siewert
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - S. H. C. Askes
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| | - P. Veldhuizen
- Leiden Institute of Physics , Leiden University , Niels Bohrweg 2 , 2333CA Leiden , The Netherlands
| | - R. Zwier
- Leiden Institute of Physics , Leiden University , Niels Bohrweg 2 , 2333CA Leiden , The Netherlands
| | - Michal Heger
- Department of Experimental Surgery , Academic Medical Center , University of Amsterdam , Meibergdreef 9 , 1105 AZ Amsterdam , The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2300RA Leiden , The Netherlands .
| |
Collapse
|
40
|
Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, Menck CFM. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res 2016; 44:5717-31. [PMID: 27095204 PMCID: PMC4937316 DOI: 10.1093/nar/gkw280] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/06/2016] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase.
Collapse
Affiliation(s)
- Annabel Quinet
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Davi Jardim Martins
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | | | - Denis Biard
- CEA, IMETI, SEPIA, Team Cellular Engineering and Human Syndromes, F-92265 Fontenay-aux-Roses, France
| | - Alain Sarasin
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Anne Stary
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | |
Collapse
|
41
|
Murray HC, Maltby VE, Smith DW, Bowden NA. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp Hematol Oncol 2016; 5:6. [PMID: 26913219 PMCID: PMC4765239 DOI: 10.1186/s40164-016-0035-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/13/2016] [Indexed: 11/29/2022] Open
Abstract
Background The causative link between UV exposure and melanoma development is well known, however the mechanistic relationship remains incompletely characterised. UVA and UVB components of sunlight are implicated in melanomagenesis; however the majority of studies have focused on the effects of UVB and UVC light. Interestingly, melanoma tumour sequencing has revealed an overrepresentation of mutations signature of unrepaired UV-induced DNA damage. Repair of UVA-induced DNA damage is thought to occur primarily through the Nucleotide Excision Repair (NER) pathway, which recognises and repairs damage either coupled to transcription (Transcription Coupled Repair; TCR), or through global genome scanning (Global Genome Repair; GGR). Current literature suggests NER is deficient in melanoma, however the cause of this remains unknown; and whether reduced NER activity in response to UVA may be involved in melanoma development remains uncharacterised. In this study we aimed to determine if melanoma cells exhibit reduced levels of NER activity in response to UVA. Methods Melanocyte and melanoma cell lines were UVA-irradiated, and DNA damage levels assessed by immunodetection of Cyclobutane Pyrimidine Dimer (CPD) and (6-4) Photoproduct [(6-4)PP] lesions. Expression of NER pathway components and p53 following UVA treatment was quantified by qPCR and western blot. Results UVA did not induce detectable induction of (6-4)PP lesions, consistent with previous studies. Repair of CPDs induced by UVA was initiated at 4 h and complete within 48 h in normal melanocytes, whereas repair initiation was delayed to 24 h and >40 % of lesions remained in melanoma cell lines at 48 h. This was coupled with a delayed and reduced induction of GGR component XPC in melanoma cells, independent of p53. Conclusion These findings support that NER activity is reduced in melanoma cells due to deficient GGR. Further investigation into the role of NER in UVA-induced melanomagenesis is warranted and may have implications for melanoma treatment.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Vicki E Maltby
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| | - Nikola A Bowden
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Hunter Medical Research Institute, University Dr, Callaghan, NSW 2308 Australia
| |
Collapse
|
42
|
Anosov AK, Gorbach MM. Release of Pro-Aggregation Substances from Rabbit Leukocytes Exposed to UV Light: Role of Photo-Induced Apoptosis. Bull Exp Biol Med 2015; 160:205-7. [PMID: 26639462 DOI: 10.1007/s10517-015-3129-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/26/2022]
Abstract
Accumulation of pro-aggregation substances in the incubation medium of isolated UV-irradiated rabbit leukocytes showed stronger correlation with photo-induced apoptotic death of leukocytes (r=0.92) than with their photo-induced necrotic death (r=0.70). It can be suggested that pro-aggregation substances release form leukocytes exposed to irradiation during preparation of these cells to apoptosis after UV irradiation.
Collapse
Affiliation(s)
- A K Anosov
- Department of General and Medical Biophysics, Medical and Biological faculty, N. I. Pirogov Russian National Research Medical University, Moscow, Russia.
| | - M M Gorbach
- Department of General and Medical Biophysics, Medical and Biological faculty, N. I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
43
|
Schuch AP, Lipinski VM, Santos MB, Santos CP, Jardim SS, Cechin SZ, Loreto ELS. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles. J Exp Biol 2015; 218:3059-67. [DOI: 10.1242/jeb.126672] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ABSTRACT
The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles’ ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight.
Collapse
Affiliation(s)
- André P. Schuch
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
- Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS 97110-970, Brazil
| | - Victor M. Lipinski
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Mauricio B. Santos
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Caroline P. Santos
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sinara S. Jardim
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Sonia Z. Cechin
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Elgion L. S. Loreto
- Postgraduate Program in Animal Biodiversity, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
44
|
Passaglia Schuch A, Dos Santos MB, Mendes Lipinski V, Vaz Peres L, Dos Santos CP, Zanini Cechin S, Jorge Schuch N, Kirsh Pinheiro D, da Silva Loreto EL. Identification of influential events concerning the Antarctic ozone hole over southern Brazil and the biological effects induced by UVB and UVA radiation in an endemic treefrog species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:190-198. [PMID: 25957080 DOI: 10.1016/j.ecoenv.2015.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The increased incidence of solar ultraviolet radiation (UV) due to ozone depletion has been affecting both terrestrial and aquatic ecosystems and it may help to explain the enigmatic decline of amphibian populations in specific localities. In this work, influential events concerning the Antarctic ozone hole were identified in a dataset containing 35 years of ozone measurements over southern Brazil. The effects of environmental doses of UVB and UVA radiation were addressed on the morphology and development of Hypsiboas pulchellus tadpole (Anura: Hylidae), as well as on the induction of malformation after the conclusion of metamorphosis. These analyzes were complemented by the detection of micronucleus formation in blood cells. 72 ozone depletion events were identified from 1979 to 2013. Surprisingly, their yearly frequency increased three-fold during the last 17 years. The results clearly show that H. pulchellus tadpole are much more sensitive to UVB than UVA light, which reduces their survival and developmental rates. Additionally, the rates of micronucleus formation by UVB were considerably higher compared to UVA even after the activation of photolyases enzymes by a further photoreactivation treatment. Consequently, a higher occurrence of malformation was observed in UVB-irradiated individuals. These results demonstrate the severe genotoxic impact of UVB radiation on this treefrog species and its importance for further studies aimed to assess the impact of the increased levels of solar UVB radiation on declining species of the Hylidae family.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | | | | - Lucas Vaz Peres
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | | | | - Nelson Jorge Schuch
- Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | - Damaris Kirsh Pinheiro
- Federal University of Santa Maria, RS, Brazil; Southern Regional Space Research Center, CRS/INPE-MCTI, Santa Maria, RS, Brazil
| | | |
Collapse
|
45
|
Gomes LR, Vessoni AT, Menck CFM. Three-dimensional microenvironment confers enhanced sensitivity to doxorubicin by reducing p53-dependent induction of autophagy. Oncogene 2015; 34:5329-40. [PMID: 25619836 DOI: 10.1038/onc.2014.461] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
Preclinical studies of anticancer drugs are typically performed using cancer cell lines maintained in two-dimensional (2D) cultures, ignoring the influences of the extracellular matrix (ECM) and three-dimensional (3D) microenvironment. In this study, we evaluated the microenvironmental control of human breast cancer cells responses to doxorubicin (DOXO) using the 3D laminin-rich ECM (3D lrECM) cell culture model. Under 3D culture conditions, MCF-7 cells displayed drastic morphological alterations, a decrease in proliferation and elevated sensitivity to DOXO. Interestingly, the chemotherapy-mediated activation of autophagy was compromised in the 3D matrix, suggesting an association between the increased cytotoxicity of DOXO and hindered autophagy induction. Indeed, while chloroquine or ATG5 knockdown potentiated DOXO-induced cell death under the 2D culture conditions, the autophagy inducer rapamycin improved the resistance of 3D-cultured cells to this drug. Moreover, in the monolayer-cultured cells, DOXO treatment led to increases in p53 and DRAM-1 expression, which is a p53-dependent activator of autophagy that functions in response to DNA damage. Conversely, p53 and DRAM-1 expression was impaired in 3D-cultured cells. The knockdown of p53 by shRNA blocked DRAM-1 activation, impaired autophagy induction and sensitized only those cells maintained under 2D conditions to DOXO. In addition, 2D-cultured MDA-MB-231 cells (a p53-mutated breast cancer cell line) not only showed increased sensitivity to DOXO compared with MCF-7 cells but also failed to induce DRAM-1 expression or autophagy. Similar to p53 silencing, DRAM-1 knockdown potentiated DOXO cytotoxicity only in 2D-cultured cells. These results suggest that the 3D tissue microenvironment controls tumor cell sensitivity to DOXO treatment by preventing p53-DRAM-autophagy axis activation.
Collapse
Affiliation(s)
- L R Gomes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - A T Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
46
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
47
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
48
|
Gichuhi S, Ohnuma SI, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res 2014; 129:172-82. [PMID: 25447808 PMCID: PMC4726664 DOI: 10.1016/j.exer.2014.10.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022]
Abstract
The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva.
Collapse
Affiliation(s)
- Stephen Gichuhi
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Department of Ophthalmology, University of Nairobi, P.O Box 19676-00202, Nairobi, Kenya.
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Mandeep S Sagoo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK; St. Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK.
| | - Matthew J Burton
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK.
| |
Collapse
|
49
|
Anderson D, Najafzadeh M, Gopalan R, Ghaderi N, Scally AJ, Britland ST, Jacobs BK, Reynolds PD, Davies J, Wright AL, Al-Ghazal S, Sharpe D, Denyer MC. Sensitivity and specificity of the empirical lymphocyte genome sensitivity (LGS) assay: implications for improving cancer diagnostics. FASEB J 2014; 28:4563-70. [PMID: 25063845 DOI: 10.1096/fj.14-254748] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lymphocyte responses from 208 individuals: 20 with melanoma, 34 with colon cancer, and 4 with lung cancer (58), 18 with suspected melanoma, 28 with polyposis, and 10 with COPD (56), and 94 healthy volunteers were examined. The natural logarithm of the Olive tail moment (OTM) was plotted for exposure to UVA through 5 different agar depths (100 cell measurements/depth) and analyzed using a repeated measures regression model. Responses of patients with cancer plateaued after treatment with different UVA intensities, but returned toward control values for healthy volunteers. For precancerous conditions and suspected cancers, intermediate responses occurred. ROC analysis of mean log OTMs, for cancers plus precancerous/suspect conditions vs. controls, cancer vs. precancerous/suspect conditions plus controls, and cancer vs. controls, gave areas under the curve of 0.87, 0.89, and 0.93, respectively (P<0.001). Optimization allowed test sensitivity or specificity to approach 100% with acceptable complementary measures. This modified comet assay could represent a stand-alone test or an adjunct to other investigative procedures for detecting cancer.
Collapse
Affiliation(s)
| | | | | | | | - Andrew J Scally
- School of Health Studies, University of Bradford, Bradford, UK
| | - Stephen T Britland
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK; and
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The discovery of DNA repair defects in human syndromes, initially in xeroderma pigmentosum (XP) but later in many others, led to striking observations on the association of molecular defects and patients' clinical phenotypes. For example, patients with syndromes resulting from defective nucleotide excision repair (NER) or translesion synthesis (TLS) present high levels of skin cancer in areas exposed to sunlight. However, some defects in NER also lead to more severe symptoms, such as developmental and neurological impairment and signs of premature aging. Skin cancer in XP patients is clearly associated with increased mutagenesis and genomic instability, reflecting the defective repair of DNA lesions. By analogy, more severe symptoms observed in NER-defective patients have also been associated with defective repair, likely involving cell death after transcription blockage of damaged templates. Endogenously induced DNA lesions, particularly through oxidative stress, have been identified as responsible for these severe pathologies. However, this association is not that clear and alternative explanations have been proposed. Despite high levels of exposure to intense sunlight, patients from tropical countries receive little attention or care, which likely also reflects the lack of understanding of how DNA damage causes cancer and premature aging.
Collapse
Affiliation(s)
- Carlos FM Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP,
Brazil
| | - Veridiana Munford
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP,
Brazil
| |
Collapse
|