1
|
Akagi Y, Watanabe H, Sakami T, Furumatsu S, Yamada S, Maki R, Okuda Y, Akashi H, Wakamatsu K, Kusano Y, Orita A. Synthesis of ( Z)-Enediynes via Stereoinvertive Nucleophilic Substitution of ( E)-Sulfonylethenes with Arylethynide, and Their Aggregation-Induced Optical Properties. J Org Chem 2024; 89:17122-17132. [PMID: 39454133 DOI: 10.1021/acs.joc.4c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
(Z)-Enediynes were successfully synthesized from a trio of terminal ethynes through consecutive three-step reactions: iodosulfonylation of ethyne with I2/PhSO2Na, followed by ethynylations of iodo and sulfonyl moieties of the resulting iodosulfonylethene via Sonogashira-Hagihara coupling and nucleophilic addition-elimination, respectively. The molecular structure of the obtained (Z)-enediyne was fully characterized by X-ray crystal structure analysis, revealing that the nucleophilic substitution of (E)-sulfonylethene with arylethynide underwent a selective stereoinversion. The (Z)-enediynes exhibited photoluminescence in both the solution and solid states (crystals and powders). Ph2N-substituted derivatives showed remarkable solvatofluorochromism, and upon replacing the solvent from toluene to acetonitrile, the emission color changed from blue to yellow.
Collapse
Affiliation(s)
- Yuta Akagi
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Hikaru Watanabe
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Toshiki Sakami
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Sou Furumatsu
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Shunsuke Yamada
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Ryosuke Maki
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Yasuhiro Okuda
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Haruo Akashi
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Kan Wakamatsu
- Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Yoshihiro Kusano
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| | - Akihiro Orita
- Department of Applied Chemistry, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan
| |
Collapse
|
2
|
Xu P, Ma C. Scalable deoxygenative alkynylation of alcohols via flow photochemistry. Commun Chem 2024; 7:276. [PMID: 39592716 PMCID: PMC11599925 DOI: 10.1038/s42004-024-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Internal alkynes are often contained in bioactive pharmaceuticals and crucial intermediates in material sciences, yet their production methods are often limited and challenging, necessitating the development of more efficient and versatile synthetic routes. Here we report a method of deoxygenative alkynylation of alcohols via flow photochemistry. Formation of N-heterocyclic carbene-alcohol adducts undergoes oxidation by a photocatalyst, generating alkyl radicals. These radicals are subsequently trapped by an alkynylation agent, yielding the desired alkyne. Compared to batch reactions, the strategy using flow photochemistry is practical and efficient to complete the reaction in relatively short time with good yields. A wide range of functional groups were tolerated. The broad application of this method for alkyne synthesis in industry settings is anticipated, supported by the potential in late-stage functionalization of biomolecules and gram-scale synthesis.
Collapse
Affiliation(s)
- Pin Xu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
3
|
Yu H, Nie JJ, Wang ZX. Palladium-catalyzed cross-coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes. Org Biomol Chem 2024; 22:8764-8772. [PMID: 39387614 DOI: 10.1039/d4ob01398k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
In the presence of Na2CO3, the combination of PdCl2(dppf), dppp and CuI catalyzes the decarbonylative coupling of arylcarboxylic acid 2-pyridyl esters with terminal alkynes to afford 1,2-disubstituted acetylenes. (Hetero)aryl, alkyl, and silylacetylenes and various electron-donating and -withdrawing group-substituted arylcarboxylic acid 2-pyridyl esters can be used in this transformation, with a range of functional groups showing compatibility.
Collapse
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jing-Jing Nie
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
4
|
Kohoutova Z, Prchalova E, Andrys R, Knittelova K, Formanova M, Hofmanova T, Psotka M, Musilek K, Derat E, Malinak D. Halogenated monopyridinium oximes are less effective in reactivation of phosphylated cholinesterases than bisquaternary oximes. Bioorg Chem 2024; 153:107904. [PMID: 39467508 DOI: 10.1016/j.bioorg.2024.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024]
Abstract
Mono-quaternary pyridinium oximes derived from K-oximes K027, K048 and K203 were designed, synthesized and evaluated for the reactivation of organophosphate-inhibited cholinesterases. The incorporation of the halogen atoms to the structure decreased the pKa value of the oxime group resulting in an increased formation of oximate necessary for reactivation. The stability and pKa values were found to be similar to analogous bis-quaternary compounds. Some mono-quaternary oximes resulted as relatively strong inhibitors of human acetylcholinesterase. Nevertheless, the reactivation ability of mono-quaternary oximes for organophosphate-inhibited cholinesterases was lower compared to their bis-quaternary analogues. These results were further confirmed by the determination of reactivation kinetics, when in some cases novel compounds showed improvement reactivation compared to the tested standards, but no improvement to bis-quaternary K-oximes. A computational study investigated reactivation process for K027, and its two analogues for VX-inhibited AChE. This study revealed slight differences between reactivation of mono-quaternary and bis-quaternary oximes. Abbreviations: 2-PAM, pralidoxime; AChE, acetylcholinesterase; ACN, acetonitrile; ATCI, acetylcholine iodide; BChE, butyrylcholinesterase; BTCI, butyrylcholine iodide; Bu3SnSnBu3, bis(tributyltin) Et2O, diethyl ether; ChEs, cholinesterases; CNS, central nervous system; DAD, diode array detector; DIBAL-H, diisobutylaluminium hydride; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; DTNB, 5,5́-dithiobis-2-nitrobenzoic acid; Et3N, triethylamine; EtOAc, ethyl acetate; EWG, electron withdrawing group; HI-6, asoxime; hrAChE, human recombinant acetylcholinesterase; hrBChE, human recombinant butyrylcholinesterase; hrChEs, human recombinant cholinesterases; HPLC, high-performance liquid chromatography; HRMS, high-resolution mass spectrometry; KD, dissociation constant; kr, first-order reactivation rate constant; kr2, second-order reactivation rate constant; LüH-6, obidoxime; MeOH, methanol; MM, molecular mechanics; MMC-4, methoxime; m.p., melting point; NCIs, non-covalent interactions; NEDPA, 4-nitrophenyl ethyl dimethylphosphoramidate; NEMP, 4-nitrophenyl ethyl methylphosphonate; NIMP, isopropyl methylphosphonate; NMR, nuclear magnetic resonance spectroscopy; OPs, organophosphates; PBS, phosphate-buffered saline; Pd(dppf)Cl2.CH2Cl2, [1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II) in complex with dichloromethane; pKa, negative decimal logarithm of the dissociation constant; POX, paraoxon; PPh3, triphenylphosphine; QM, quantum mechanics; rt, room temperature; SN2, bimolecular nucleophilic substitution; SNAc, nucleophilic acyl substitution; THF, tetrahydrofuran; TMC-4, trimedoxime; TNB, 5-thio-2-nitrobenzoic acid; UHPLC, ultra high-performance liquid chromatography; UV, ultraviolet; UV-VIS, ultraviolet-visible.
Collapse
Affiliation(s)
- Zuzana Kohoutova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eliska Prchalova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Karolina Knittelova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marketa Formanova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Tereza Hofmanova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Etienne Derat
- Parisian Institute of Molecular Chemistry, Sorbonne University, 4 place Jussieu, 75005 Paris, France.
| | - David Malinak
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; University Hospital in Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
6
|
Ballaschk F, Bensberg K, Crone B, Kirsch SF, Menz H. Synthesis of the monomeric counterpart of Marinomycin A and B. Org Biomol Chem 2024; 22:5127-5133. [PMID: 38847063 DOI: 10.1039/d4ob00742e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The synthesis of polyketide natural products has been a captivating pursuit in organic chemistry, with a particular focus on selectively introducing 1,3-polyol units. Among these natural products, Marinomycins A-D have garnered substantial interest due to their exceptional structural features and potent cytotoxicity. In this paper, we present a novel approach for synthesising the monomeric counterparts of Marinomycin A and B. Our method employs a previously established iterative cycle in conjunction with a standardised polyketide building block. Through this strategy, we showcase a promising pathway towards total and partial syntheses of these intriguing natural products.
Collapse
Affiliation(s)
- Frederic Ballaschk
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| | - Kathrin Bensberg
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| | - Benedikt Crone
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- BASF SE, Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein, Germany
| | - Stefan F Kirsch
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| | - Helge Menz
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Pharmpur GmbH, Messerschmittring 33, 86343 Königsbrunn, Germany
| |
Collapse
|
7
|
Trauner F, Ghazali R, Rettig J, Thiele CM, Didier D. Stereoselective polar radical crossover for the functionalization of strained-ring systems. Commun Chem 2024; 7:139. [PMID: 38898159 PMCID: PMC11187220 DOI: 10.1038/s42004-024-01221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Radical-polar crossover of organoborates is a poweful tool that enables the creation of two C-C bonds simultaneously. Small ring systems have become essential motifs in drug discovery and medicinal chemistry. However, step-economic methods for their selective functionalization remains scarce. Here we present a one-pot strategy that merges a simple preparation of strained organoboron species with the recently popularized polar radical crossover of borate derivatives to stereoselectively access tri-substituted azetidines, cyclobutanes and five-membered carbo- and heterocycles.
Collapse
Affiliation(s)
- Florian Trauner
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany
| | - Rahma Ghazali
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Jan Rettig
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
| | - Dorian Didier
- Technische Universität Darmstadt, Clemens-Schöpf-Insitut für Organische Chemie und Biochemie, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany.
- Ludwig-Maximilians Universität, Department Chemie, Butenandtstr. 5, 81377, München, Germany.
| |
Collapse
|
8
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
9
|
Irie Y, Yokoshima S. Total Synthesis of Putative Melognine. J Am Chem Soc 2024; 146:9526-9531. [PMID: 38546412 DOI: 10.1021/jacs.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Total synthesis of melognine was accomplished. A 10-membered cyclic alkyne was prepared via an intramolecular SN2 reaction of a nosylamide. Enyne metathesis of the cyclic alkyne under an atmosphere of ethylene afforded a 1,3-diene. Intramolecular cycloaddition of a nitrone and an azomethine ylide with the 1,3-diene moiety constructed the characteristic highly fused skeleton. Further transformation, including ring-closing metathesis, resulted in the synthesis of melognine, whose NMR spectra did not match the reported data. Close inspection of the spectra of melognine in the literature suggested that the structure of melognine might be identical with that of a known alkaloid, melodinine L.
Collapse
Affiliation(s)
- Yui Irie
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
10
|
Huang Y, Huang J, Zhou Y, Fan X, Li Y. Pd@HKUST-1@Cu(II)/CMC composite bead as an efficient synergistic bimetallic catalyst for Sonogashira cross-coupling reactions. Carbohydr Polym 2024; 324:121531. [PMID: 37985060 DOI: 10.1016/j.carbpol.2023.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
We fabricated an efficient Pd@HKUST-1@Cu(II)/CMC composite bead catalyst through an innovative strategy based on the unique properties of metal-organic frameworks (MOFs) and carboxymethylcellulose (CMC). In this strategy, HKUST-1 MOFs were grown in-situ on the surface of micrometer-sized Cu-based CMC beads (Cu(II)/CMC), then Pd(II) ions were incorporated into the pores of the MOF and further be partially reduced to Pd(0) NPs, which is an active species for oxidative addition with aryl halides in Sonogashira reactions. The micron-sized Cu(II)/CMC beads were formed through inter/intramolecularly crosslinking facilitated by Cu(II) ions, which was achieved by the metathesis of Cu(II) with numerous carboxylic groups of CMC. Such Cu(II)/CMC bead offers many Cu(II) ions as interaction sites for in-situ nucleation and growth of HKUST-1 MOFs. The architecture and composition of the prepared Pd@HKUST-1@Cu(II)/CMC composite were fully verified by various techniques such as FTIR, XRD, TGA, BET, XPS, SEM, TEM, EDX, and elemental mapping analysis. This novel composite bead was applied as an efficient and reusable heterogeneous Pd/Cu bimetallic catalyst for Sonogashira reactions, decarbonylative Sonogashira reaction, and Sonogashira cyclization tandem reactions. The catalyst is readily isolated by simple filtration, and can be reused for five consecutive runs with retaining its activity and structural integrity.
Collapse
Affiliation(s)
- Yuling Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Jiayi Huang
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yuping Zhou
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Xuetao Fan
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China
| | - Yiqun Li
- Department of Chemistry, College of Chemistry and Materials Science, Panyu Campus, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
11
|
Abstract
Total synthesis of (-)-enigmazole B was achieved for the first time. Highlights of the present synthesis include an olefin cross-metathesis and hemiacetalization/intramolecular oxa-Michael addition sequence for accessing an (E)-configured enol tosylate, a Sonogashira cross-coupling to assemble all the carbon atoms of the target natural product, a remarkably chemo- and regioselective Au-catalyzed intramolecular alkyne hydroalkoxylation for the construction of the dihydropyran ring, and a Yamaguchi macrolactonization to close the 18-membered macrolactone skeleton.
Collapse
Affiliation(s)
- Yoshihiro Goda
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
12
|
Dutta U, Prakash G, Devi K, Borah K, Zhang X, Maiti D. Directing group assisted para-selective C-H alkynylation of unbiased arenes enabled by rhodium catalysis. Chem Sci 2023; 14:11381-11388. [PMID: 37886091 PMCID: PMC10599460 DOI: 10.1039/d3sc03528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regioselective C-H alkynylation of arenes via C-H activation is challenging yet a highly desirable transformation. In this regard, directing group assisted C(sp2)-H alkynylation of arenes offers a unique opportunity to ensure precise regioselectivity. While the existing methods are mainly centered around ortho-C-H alkynylation and a few for meta-C-H alkynylation, the DG-assisted para-selective C-H alkynylation is yet to be reported. Herein we disclose the first report on Rh-catalyzed para-C-H alkynylation of sterically and electronically unbiased arenes. The para-selectivity is achieved with the assistance of a cyano-based directing template and the selectivity remained unaltered irrespective of the steric and electronic influence of the substituents. The post-synthetic modification of synthesized para-alkynylated arenes is also demonstrated. The mechanistic intricacies of the developed protocol are elucidated through experimental and computational studies.
Collapse
Affiliation(s)
- Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kirti Devi
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kongkona Borah
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
13
|
Singh SK, Kumar S, Yadav MS, Gupta A, Tiwari VK. Triazole-Appended Glycohybrid/CuI-Catalyzed C-C Cross-Coupling of Aryl/Heteroaryl Halides with Alkynyl Sugars. J Org Chem 2023; 88:13440-13453. [PMID: 37747895 DOI: 10.1021/acs.joc.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
This report describes a convenient method for the Cu(I)-catalyzed Sonogashira cross-coupling reaction of aryl/heteroaryl halides and alkynyl sugars in the presence of a 1,2,3-triazole-appended glycohybrid as a biocompatible ligand. The Sonogashira cross-coupling products were exclusively formed without the Glaser-Hay homocoupling reaction in the presence of a glycosyl monotriazolyl ligand at 120 °C. However, the Glaser-Hay homocoupling products were obtained at 60-70 °C in the presence of bis-triazolyl-based macrocyclic glycohybrid ligand L8. The glycosyl triazole ligands were synthesized via the CuI/DIPEA-mediated regioselective CuAAC click reaction, and a series of glycohybrids of glucose, mannose, and galactose alkynes including glycosyl rods were developed in good yields. The developed glycohybrids have been well characterized by various spectroscopic techniques, such as nuclear magnetic resonance, high-resolution mass spectrometry, and single-crystal X-ray data of L3. The protocol works well with the heteroaryl and naphthyl halides, and the mechanistic approach leads to CuI/ligand-assisted oxidative coupling. The coupling protocol has notable features, including low catalytic loading, cost-effectiveness, biocompatible nature, and a wide substrate scope.
Collapse
Affiliation(s)
- Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005, India
| |
Collapse
|
14
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
15
|
Fernandes RA, Moharana S, Khatun GN. Recent advances in the syntheses of guaianolides. Org Biomol Chem 2023; 21:6652-6670. [PMID: 37551715 DOI: 10.1039/d3ob01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Sesquiterpene lactones, especially guaianolides representing a bigger class of natural products, have served as appealing candidates for total synthesis due to their varied bio- and pharmaceutical activities. This tutorial review delineates the creative efforts of many researchers in the total syntheses of different complex guaianolides recently published in the literature. Many of the syntheses display meticulous interplay between new methods and the ingenuity of strategies achieved through well-planned routes. In some cases, the Chiron approach has come in quite handy, wherein the structural features and stereochemistry of select molecules could map well with naturally available starting materials. A few catalytic methods like diastereoselective aldol reaction, enediyne or dienyne metathesis, or photochemical methods have been efficiently used. This compilation also aims to enhance the diversity space based on these natural products and further interest in the sustainable total synthesis of this class of compounds and related molecules.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Gulenur Nesha Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
16
|
Islam K, Bhunia BK, Mandal G, Nag B, Jaiswal C, Mandal BB, Kumar A. Room-Temperature, Copper-Free, and Amine-Free Sonogashira Reaction in a Green Solvent: Synthesis of Tetraalkynylated Anthracenes and In Vitro Assessment of Their Cytotoxic Potentials. ACS OMEGA 2023; 8:16907-16926. [PMID: 37214732 PMCID: PMC10193572 DOI: 10.1021/acsomega.3c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
The multifold Sonogashira coupling of a class of aryl halides with arylacetylene in the presence of an equivalent of Cs2CO3 has been accomplished using a combination of Pd(CH3CN)2Cl2 (0.5 mol %) and cataCXium A (1 mol %) under copper-free and amine-free conditions in a readily available green solvent at room temperature. The protocol was used to transform several aryl halides and alkynes to the corresponding coupled products in good to excellent yields. The rate-determining step is likely to involve the oxidative addition of Ar-X. The green protocol provides access to various valuable polycyclic aromatic hydrocarbons (PAHs) with exciting photophysical properties. Among them, six tetraalkynylated anthracenes have been tested for their anticancer properties on the human triple-negative breast cancer (TNBC) cell line MDA-MB-231 and human dermal fibroblasts (HDFs). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to find out the IC50 concentration and lethal dose. The compounds being intrinsically fluorescent, their cellular localization was checked by live cell fluorescence imaging. 4',6-Diamidino-2-phenylindole (DAPI) and propidium iodide (PI) staining was performed to check apoptosis and necrosis, respectively. All of these studies have shown that anthracene and its derivatives can induce cell death via DNA damage and apoptosis.
Collapse
Affiliation(s)
- Khadimul Islam
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Bibhas K. Bhunia
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gargi Mandal
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Bedabara Nag
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B. Mandal
- Biomaterials
and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti
and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati 781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti
and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Sushmita, Patel M, Thakur D, Verma AK. Copper iodide nanoparticles (CuI NPs): an efficient catalyst for the synthesis of alkynyl esters. Org Biomol Chem 2023; 21:2301-2306. [PMID: 36853264 DOI: 10.1039/d3ob00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
An environmentally benign protocol for the synthesis of alkynyl esters, by the cross-coupling of diazoacetate with various substituted alkynes under neat reaction conditions, has been described. Copper iodide nanoparticles (CuI NPs) were found to promote the Sonogashira-type coupling to afford the corresponding alkynyl esters in good yields. The CuI nanoparticles were characterized by PXRD, FESEM, EDAX, and Raman techniques. The developed methodology has several advantages such as a broad substrate scope, less reaction time, atom economy, avoidance of an additive/base/solvent, and enhanced values of green chemistry. The catalyst was recycled up to threefold without the loss of its catalytic activity.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India. .,Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi-110078, India
| | - Monika Patel
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Deepika Thakur
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
18
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
19
|
Wilson KA, Picinich LA, Siamaki AR. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Adv 2023; 13:7818-7827. [PMID: 36909771 PMCID: PMC9996231 DOI: 10.1039/d3ra00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
We have developed an efficient method to generate highly active nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pd nanoparticles with small particle size of 5-10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h-1. The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Katherine A Wilson
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Lacey A Picinich
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Ali R Siamaki
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| |
Collapse
|
20
|
Chen Y, Li S, Xu L, Ma D. Cu/Oxalic Diamide-Catalyzed Coupling of Terminal Alkynes with Aryl Halides. J Org Chem 2023. [PMID: 36779409 DOI: 10.1021/acs.joc.2c02882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
N1-(2,6-Dimethylphenyl)-N2-(pyridin-2-ylmethyl)oxalamide (DMPPO) was revealed to be a more effective ligand for copper-catalyzed coupling reaction of (hetero)aryl halides with 1-alkynes than previously reported ones. Only 3 mol % CuCl and DMPPO are required to make the coupling complete at 100 °C (for bromides) and 80 °C (for iodides). Both (hetero)aryl and alkyl substituted 1-alkynes worked well under these conditions, leading to the formation of internal alkynes in great diversity.
Collapse
Affiliation(s)
- Ying Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Sailuo Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Lanting Xu
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
21
|
Zeng X, Wang C, Yan W, Rong J, Song Y, Xiao Z, Cai A, Liang SH, Liu W. Aryl Radical Enabled, Copper-Catalyzed Sonogashira-Type Cross-Coupling of Alkynes with Alkyl Iodides. ACS Catal 2023; 13:2761-2770. [PMID: 37800120 PMCID: PMC10552849 DOI: 10.1021/acscatal.2c05901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the success of Sonogashira coupling for the synthesis of arylalkynes and conjugated enynes, the engagement of unactivated alkyl halides in such reactions remains historically challenging. We report herein a strategy that merges Cu-catalyzed alkyne transfer with the aryl radical activation of carbon-halide bonds to enable a general approach for the coupling of alkyl iodides with terminal alkynes. This unprecedented Sonogashira-type cross-coupling reaction tolerates a broad range of functional groups and has been applied to the late-stage cross-coupling of densely functionalized pharmaceutical agents as well as the synthesis of positron emission tomography tracers.
Collapse
Affiliation(s)
- Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Chao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
22
|
Bumagin NA. Magnetically Reusable Polymetallic Pd-Catalyst for Sonogashira Reaction in Ionic Liquid. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
23
|
Novel Highly Efficient Green and Reusable Cu(II)/Chitosan-Based Catalysts for the Sonogashira, Buchwald, Aldol, and Dipolar Cycloaddition Reactions. Catalysts 2023. [DOI: 10.3390/catal13010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this study, new Cu(II)/chitosan-based systems were designed via (i) the treatment of chitosan with sodium sulfate (1a) or sodium acetate (1b); (ii) the coating of 1a or 2a with a sodium hyaluronate layer (2a and 2b, correspondingly); (iii) the treatment of a cholesterol–chitosan conjugate with sodium sulfate (3a) or sodium acetate (3b); and (iv) the succination of 1a and 1b to afford 4a and 4b or the succination of 2a and 2b to yield 5a and 5b. The catalytic properties of the elaborated systems in various organic transformations were evaluated. The use of copper sulfate as the source of Cu2+ ions results in the formation of nanoparticles, while the use of copper acetate leads to the generation of conventional coarse-grained powder. Cholesterol-containing systems have proven to be highly efficient catalysts for the cross-coupling reactions of different types (e.g., Sonogashira, Buchwald–Hartwig, and Chan–Lam types); succinated systems coated with a layer of hyaluronic acid are promising catalysts for the aldol reaction; systems containing inorganic copper(II) salt nanoparticles are capable of catalyzing the nitrile-oxide-to-nitrile 1,3-dipolar cycloaddition. The elaborated catalytic systems efficiently catalyze the aforementioned reactions in the greenest solvent available, i.e., water, and the processes could be conducted in air. The studied catalytic reactions proceed selectively, and the isolation of the product does not require column chromatography. The product is separated from the catalyst by simple filtration or centrifugation.
Collapse
|
24
|
Shimakawa T, Nakamura S, Asai H, Hagiwara K, Inoue M. Total Synthesis of Puberuline C. J Am Chem Soc 2023; 145:600-609. [PMID: 36538394 DOI: 10.1021/jacs.2c11259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Puberuline C (1) is an architecturally complex C19-diterpenoid alkaloid with a unique ring fusion pattern. The 6/7/5/6/6/6-membered rings (ABCDEF-rings) contain one tertiary amine and six oxygen functionalities, and possess 12 contiguously aligned stereocenters, three of which are quaternary. These structural features of 1 make its chemical construction exceptionally challenging. Here, we disclose the first total synthesis of 1. The synthesis was accomplished from 2-cyclohexenone (9) by integrating radical cascade and Mukaiyama aldol reactions as the key transformations. A double Mannich reaction fused the A- and E-rings, and Sonogashira coupling attached the C-ring, efficiently leading to ACE-rings with the requisite 19 carbons of 1. The chemically stable tertiary chloride of the ACE-ring structure was then transformed to the corresponding bridgehead radical, which participated in the simultaneous cyclization of the B- and F-rings via a highly organized radical cascade process. This unusual step installed five contiguous stereocenters, including two quaternary carbons, without damaging the preexisting multiple polar functionalities. Subsequently, the intramolecular Mukaiyama aldol reaction between silyl enol ether and acetal was realized by applying a combination of SnCl4 and ZnCl2, forging the last remaining D-ring of the hexacycle. Finally, 3 was elaborated into 1 through regio- and stereoselective functionalizations of the BCD-rings. Our novel radical-based strategy achieved the total synthesis of 1 in 32 total steps from simple 9, demonstrating the power of the radical cascade reaction to streamline the assembly of highly complex molecules.
Collapse
Affiliation(s)
- Tsukasa Shimakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shu Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hibiki Asai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
25
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
26
|
The Alkyne Zipper Reaction: A Useful Tool in Synthetic Chemistry. REACTIONS 2022. [DOI: 10.3390/reactions4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The alkyne zipper reaction is an internal-to-terminal alkyne isomerization reaction with many interesting applications in synthetic chemistry, as it constitutes an efficient means of achieving acetylene functionalization. A review of its applications in synthesis processes is presented in this paper, with a brief overview of the mechanistic features of the alkyne zipper reaction, as well as a brief overview of its future potential.
Collapse
|
27
|
Messaoudi C, Jismy B, Jacquemin J, Allouchi H, M'Rabet H, Abarbri M. Stepwise synthesis of 2,6-difunctionalized ethyl pyrazolo[1,5- a]pyrimidine-3-carboxylate via site-selective cross-coupling reactions: experimental and computational studies. Org Biomol Chem 2022; 20:9684-9697. [PMID: 36416338 DOI: 10.1039/d2ob01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A variety of novel disubstituted 2-(alknyl, aryl and arylamine)-6-alkynylpyrazolo[1,5-a]pyrimidine derivatives was prepared via sequential site-selective cross-coupling reactions from 2,6-dibromopyrazolo[1,5-a]pyrimidine 3. The regio-controlled Sonogashira-type coupling of 3 with a wide range of terminal alkynes proceeded smoothly with excellent selectivity in favor of the C6-position through careful adjustment of the coupling conditions, followed by the subsequent introduction of alkynyl, aryl or arylamine groups at the C2-position via the Sonogashira, Suzuki-Miyaura and Buchwald-Hartwig coupling reactions, respectively. These promising results allow for further use and diversification of the chemically and biologically interesting pyrazolo[1,5-a]pyrimidine scaffold. In addition, computational studies were conducted to provide explanations for the origin of regioselectivity.
Collapse
Affiliation(s)
- Chaima Messaoudi
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France. .,Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| | - Johan Jacquemin
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hassan Allouchi
- Faculté de Pharmacie, Université de Tours, EA 7502 SIMBA, 31 Avenue Monge, 37200 Tours, France
| | - Hédi M'Rabet
- Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
28
|
Novel palladium tagged ferrite nanoparticle supported ionic liquid phase catalyst for the efficient copper-free Sonogashira coupling. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Kotovshchikov YN, Binyakovsky AA, Latyshev GV, Lukashev NV, Beletskaya IP. Copper-catalyzed deacetonative Sonogashira coupling. Org Biomol Chem 2022; 20:7650-7657. [PMID: 36134515 DOI: 10.1039/d2ob01267g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Pd- and phosphine-free protocol for assembling internal alkynes from tertiary propargyl alcohols and (het)aryl halides has been developed. The proposed tandem approach includes the base-promoted retro-Favorskii fragmentation followed by Cu-catalyzed C(sp)-C(sp2) cross-coupling. The use of inexpensive reagents (e.g. a catalyst, additives, a base, and a solvent) and good functional group tolerance make the procedure practical and cost-effective. The synthetic utility of the method was demonstrated by a smooth alkynylation of vinyl iodides derived from natural steroidal hormones.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Artem A Binyakovsky
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
30
|
Faust Akl D, Poier D, D'Angelo SC, Araújo TP, Tulus V, Safonova OV, Mitchell S, Marti R, Guillén-Gosálbez G, Pérez-Ramírez J. Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:6879-6888. [PMID: 36276229 PMCID: PMC9487187 DOI: 10.1039/d2gc01853e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
The Pd-Cu catalysed Sonogashira coupling of terminal alkynes and aryl halides is a cornerstone synthetic strategy for C-C bond formation. Homogeneous organometallic systems conventionally applied are typically not reusable and require efficient downstream Pd removal steps for product purification, making it challenging to fully recover the precious metal. A holistic cradle-to-gate life cycle assessment (LCA) unveils that process footprint can be improved up to two orders of magnitude from repeated catalyst reuse. New classes of heterogeneous catalysts based on isolated metal atoms (single-atom catalysts, SACs) demonstrate promising potential to synergise the benefits of solid and molecular catalysts for efficient Pd utilisation. Here we show that using Pd atoms anchored on nitrogen-doped carbon permits full recovery of the metal and reuse of the catalyst over multiple cycles. A hybrid process using the Pd-SAC with a homogeneous CuI cocatalyst is more effective than a fully heterogeneous analogue based on a bimetallic Pd-Cu SAC, which deactivates severely due to copper leaching. In some scenarios, the LCA-based metrics demonstrate the footprint of the hybrid homogeneous-heterogeneous catalytic process is leaner than the purely homogeneous counterpart already upon single reuse. Combining LCA with experimental evaluation will be a useful guide to the implementation of solid, reusable catalysts for sustainable organic transformations.
Collapse
Affiliation(s)
- D Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - D Poier
- Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland Fribourg Boulevard de Pérolles 80 1700 Fribourg Switzerland
| | - S C D'Angelo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - T P Araújo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - V Tulus
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - O V Safonova
- Paul-Scherrer Institute Forschungsstrasse 111 5232 Villigen PSI Switzerland
| | - S Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - R Marti
- Institute of Chemical Technology, University of Applied Sciences and Arts of Western Switzerland Fribourg Boulevard de Pérolles 80 1700 Fribourg Switzerland
| | - G Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - J Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
31
|
Liu Z, Li B, Li Z, Zhang H. Pillar[n]arene-Mimicking/Assisted/Participated Carbon Nanotube Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6119. [PMID: 36079500 PMCID: PMC9458132 DOI: 10.3390/ma15176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The recent progress in pillar[n]arene-assisted/participated carbon nanotube hybrid materials were initially summarized and discussed. The molecular structure of pillar[n]arene could serve different roles in the fabrication of attractive carbon nanotube-based materials. Firstly, pillar[n]arene has the ability to provide the structural basis for enlarging the cylindrical pillar-like architecture by forming one-dimensional, rigid, tubular, oligomeric/polymeric structures with aromatic moieties as the linker, or forming spatially "closed", channel-like, flexible structures by perfunctionalizing with peptides and with intramolecular hydrogen bonding. Interestingly, such pillar[n]arene-based carbon nanotube-resembling structures were used as porous materials for the adsorption and separation of gas and toxic pollutants, as well as for artificial water channels and membranes. In addition to the art of organic synthesis, self-assembly based on pillar[n]arene, such as self-assembled amphiphilic molecules, is also used to promote and control the dispersion behavior of carbon nanotubes in solution. Furthermore, functionalized pillar[n]arene derivatives integrated carbon nanotubes to prepare advanced hybrid materials through supramolecular interactions, which could also incorporate various compositions such as Ag and Au nanoparticles for catalysis and sensing.
Collapse
Affiliation(s)
- Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China
| | - Bing Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhizheng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
32
|
Yan S. Metal–Organic Framework Derived Cobalt Oxide Supported Bimetallic Pd/Cu Nanoparticles for Efficient Catalysis of the Sonogashira Reaction under Aerobic Conditions. Synlett 2022. [DOI: 10.1055/s-0042-1751364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractA bimetallic Pd/Cu catalyst supported on a metal-organic-framework-derived cobalt oxide was prepared and characterized by SEM, EDS, XRD, XPS, and ICP-OES analyses. The catalyst promoted the Sonogashira reaction of aryl iodides with terminal alkynes at a low loading of the palladium (0.032 mol%) and copper species (0.012 mol%) to give the corresponding disubstituted alkynes in moderate to good yields. When the catalyst was recovered by using an external magnetic field, its catalytic activity decreased slightly in a second cycle.
Collapse
|
33
|
Horbaczewskyj CS, Fairlamb IJS. Pd-Catalyzed Cross-Couplings: On the Importance of the Catalyst Quantity Descriptors, mol % and ppm. Org Process Res Dev 2022; 26:2240-2269. [PMID: 36032362 PMCID: PMC9396667 DOI: 10.1021/acs.oprd.2c00051] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 12/26/2022]
Abstract
![]()
This Review examines parts per million (ppm) palladium
concentrations
in catalytic cross-coupling reactions and their relationship with
mole percentage (mol %). Most studies in catalytic cross-coupling
chemistry have historically focused on the concentration ratio between
(pre)catalyst and the limiting reagent (substrate), expressed as mol
%. Several recent papers have outlined the use of “ppm level”
palladium as an alternative means of describing catalytic cross-coupling
reaction systems. This led us to delve deeper into the literature
to assess whether “ppm level” palladium is a practically
useful descriptor of catalyst quantities in palladium-catalyzed cross-coupling
reactions. Indeed, we conjectured that many reactions could, unknowingly,
have employed low “ppm levels” of palladium (pre)catalyst,
and generally, what would the spread of ppm palladium look like across
a selection of studies reported across the vast array of the cross-coupling
chemistry literature. In a few selected examples, we have examined
other metal catalyst systems for comparison with palladium.
Collapse
Affiliation(s)
| | - Ian J. S. Fairlamb
- University of York, Heslington, York, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|
34
|
Wang QD, Zhang SX, Zhang ZW, Wang Y, Ma M, Chu XQ, Shen ZL. Palladium-Catalyzed Sonogashira Coupling of a Heterocyclic Phosphonium Salt with a Terminal Alkyne. Org Lett 2022; 24:4919-4924. [PMID: 35771670 DOI: 10.1021/acs.orglett.2c01800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient Sonogashira coupling of a heterocyclic phosphonium salt with a terminal alkyne via C-P bond cleavage was developed. The reactions proceeded smoothly in the presence of palladium catalyst, copper(I) iodide, and N,N-diisopropylethylamine (DIPEA) in N-methyl-2-pyrrolidone (NMP) at 100 °C for 12 h, producing the corresponding alkynyl-substituted pyridine, quinoline, pyrazine, and quinoxaline in moderate to good yields with wide substrate scope and broad functional group tolerance. In addition, gram-scale synthesis could also be achieved, and the reaction could be applied to the functionalization of alkyne-containing complex molecules derived from sugars and pharmaceutical and naturally occurring products (e.g., estrone, d-galactopyranose, menthol, and ibuprofen).
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Si-Xuan Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhuo-Wen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Wang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
35
|
Yang X, Lu D, Guan W, Yin SF, Kambe N, Qiu R. Synthesis of (Deoxy)difluoromethylated Phosphines by Reaction of R 2P(O)H with TMSCF 3 and Their Application in Cu(I) Clusters in Sonogashira Coupling. J Org Chem 2022; 87:7720-7733. [PMID: 35620903 DOI: 10.1021/acs.joc.2c00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
R2PCF2H ligands and their R2P(O)CF2H precursors were synthesized from R2P(O)H with TMSCF3 by simply modulating the H2O concentration via deoxydifluoromethylation and difluoromethylation. The air sensitive R2PCF2H phosphines can be stabilized in Cu(I) clusters as ligands. Within these Cu(I) clusters, the Sonogashira cross-coupling reaction can proceed fast and efficiently using terminal alkynes and aryl iodides within 15 min at room temperature under air to give a variety of diaryl(alkyl)acetylenes in good yields (49 examples, yields of ≤99%). Six of the internal alkynes present in drug precursors can be obtained using this protocol in good yields. The mechanism is proposed on the basis of control experiments.
Collapse
Affiliation(s)
- Xiaogang Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenjian Guan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
36
|
Sasmal S, Prakash G, Dutta U, Laskar R, Lahiri GK, Maiti D. Directing group assisted rhodium catalyzed meta-C-H alkynylation of arenes. Chem Sci 2022; 13:5616-5621. [PMID: 35694332 PMCID: PMC9116288 DOI: 10.1039/d2sc00982j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Site-selective C-H alkynylation of arenes to produce aryl alkynes is a highly desirable transformation due to the prevalence of aryl alkynes in various natural products, drug molecules and in materials. To ensure site-selective C-H functionalization, directing group (DG) assisted C-H activation has been evolved as a useful synthetic tool. In contrast to DG-assisted ortho-C-H activation, distal meta-C-H activation is highly challenging and has attracted significant attention in recent years. However, developments are majorly focused on Pd-based catalytic systems. In order to diversify the scope of distal meta-C-H functionalization, herein we disclosed the first Rh(i) catalyzed meta-C-H alkynylation protocol through the inverse Sonogashira coupling reaction. The protocol is compatible with various substrate classes which include phenylacetic acids, hydrocinnamic acids, 2-phenyl benzoic acids, 2-phenyl phenols, benzyl sulfonates and ether-based scaffolds. The post-synthetic modification of meta-alkynylated arenes is also demonstrated through DG-removal as well as functional group interconversion.
Collapse
Affiliation(s)
- Sheuli Sasmal
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Ranjini Laskar
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | | | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
37
|
Jing T, Liu N, Xu C, Bu QQ. Zinc Chloride‐Promoted Coupling Reaction Between Calcium Carbide and Aryl Chloride. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tianna Jing
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering CHINA
| | - Ning Liu
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan CHINA
| | - Caixia Xu
- Shihezi University School of Chemistry and Chemical Engineering School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan CHINA
| | - Qing qing Bu
- Shihezi University School of Chemistry and Chemical Engineering North Fourth Road 832003 Shihezi CHINA
| |
Collapse
|
38
|
Miao H, Wang ZX. Ruthenium‐Catalyzed Oxidative Cross Coupling of Alkenes with Triisopropylsilylacetylene. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Miao
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| | - Zhong-Xia Wang
- University of Science & Technology of China Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
39
|
Liu YW, Li LJ, Xu H, Dai HX. Palladium-Catalyzed Alkynylation of Enones with Alkynylsilanes via C-C Bond Activation. J Org Chem 2022; 87:6807-6811. [PMID: 35507767 DOI: 10.1021/acs.joc.2c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the synthesis of 1,3-enynes via palladium-catalyzed cross-coupling between enone derivatives and alkynylsilanes. The employment of an appropriate pyridine-oxazoline ligand is the key to the C-C cleavage and the high E/Z stereoselectivity. This protocol features broad substrate scope and wide functional-group tolerance, affording the desired products in moderate-to-good yields. Late-stage diversification of natural product β-ionone further demonstrated the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Yu-Wen Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
40
|
Abel-Snape X, Wycich G, Lautens M. Synthesis of Indenes and Benzofulvenes via a Palladium-Catalyzed Three-Component Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xavier Abel-Snape
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gina Wycich
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Wang X, Sun L, Wang M, Maestri G, Malacria M, Liu X, Wang Y, Wu L. C‐I Selective Sonogashira and Heck Coupling Reactions Catalyzed by Aromatic Triangular Tri‐palladium. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoshuang Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Lei Sun
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Miaomiao Wang
- Liaocheng University department of chemistry and chemical engineering CHINA
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma deparment of chemistry, life sciences and environmental sustainability ITALY
| | - Max Malacria
- CNRS: Centre National de la Recherche Scientifique ICSN FRANCE
| | - Xiang Liu
- China Three Gorges University college of materials and chemical engineering CHINA
| | - Yanlan Wang
- Liaocheng University Department of chemistry and chemical engineering 1,Hunan Road, Liaocheng City, Shandong Province, China 252059 Liaocheng CHINA
| | - Lingang Wu
- Liaocheng University department of chemistry and chemical engineering CHINA
| |
Collapse
|
42
|
Trauner F, Reiners F, Apaloo-Messan KE, Nißl B, Shahbaz M, Jiang D, Aicher J, Didier D. Strain-release arylations for the bis-functionalization of azetidines. Chem Commun (Camb) 2022; 58:2564-2567. [PMID: 35107096 DOI: 10.1039/d1cc07053c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The addition of nucleophilic organometallic species onto in situ generated azabicyclobutanes enables the selective formation of 3-arylated azetidine intermediates through strain-release. Single pot strategies were further developed for the N-arylation of resulting azetidines, employing either SNAr reactions or Buchwald-Hartwig couplings.
Collapse
Affiliation(s)
- Florian Trauner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Felix Reiners
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | | | - Benedikt Nißl
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Muhammad Shahbaz
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Dongfang Jiang
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Julian Aicher
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Dorian Didier
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
43
|
Deng K, Jia W, Ángeles Fernández‐Ibáñez M. Selective Para-C-H Alkynylation of Aniline Derivatives by Pd/S,O-Ligand Catalysis. Chemistry 2022; 28:e202104107. [PMID: 34902180 PMCID: PMC9306564 DOI: 10.1002/chem.202104107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a nondirected para-selective C-H alkynylation of aniline derivatives by a Pd/S,O-ligand-based catalyst. The reaction proceeds under mild conditions and is compatible with a variety of substituted anilines. The scalability and further derivatizations of the alkynylated products have been also demonstrated.
Collapse
Affiliation(s)
- Ke‐Zuan Deng
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
44
|
Kiani A, Alinezhad H, Ghasemi S. Pd-modified TMU-3 metal-organic framework through a simple ion-exchange method as an efficient and reusable catalyst for Sonogashira coupling reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Synthesis of Alkyne-Substituted Dihydropyrrolones as Bacterial Quorum-Sensing Inhibitors of Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:antibiotics11020151. [PMID: 35203755 PMCID: PMC8868272 DOI: 10.3390/antibiotics11020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022] Open
Abstract
The Quorum-sensing system in Pseudomonas aeruginosa is responsible for the pathogenicity and the production of virulence factors and biofilm formation. Dihydropyrrolones were previously found to act as inhibitors of QS-dependent bacterial phenotypes. In this study, a range of dihydropyrrolone (DHP) analogues was synthesized via the lactone-lactam conversion of lactone intermediates followed by the formation of novel acetylene analogues of dihydropyrrolones from brominated dihydropyrrolones via Sonogashira coupling reactions in moderate to high yields. Upon biological testing, the most potent compounds, 39–40 and 44, showed higher bacterial quorum-sensing inhibitory (QSI) activity against P. aeruginosa reporter strain at 62.5 µM. Structure–activity relationship studies revealed that di-alkynyl substituent at the exocyclic position of DHPs possessed higher QSI activities than those of mono-alkynyl DHPs. Moreover, a hexyl-substituent at C3 of DHPs was beneficial to QSI activity while a phenyl substituent at C4 of DHPs was detrimental to QSI activity of analogues.
Collapse
|
46
|
Wang M, So CM. Inverting Conventional Chemoselectivity in the Sonogashira Coupling Reaction of Polyhalogenated Aryl Triflates with TMS-Arylalkynes. Org Lett 2022; 24:681-685. [PMID: 34978819 DOI: 10.1021/acs.orglett.1c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A newly developed phosphine ligand with a C2-cyclohexyl group on the indole ring was successfully applied in a chemoselective Sonogashira coupling reaction with excellent chemoselectivity, affording an inversion of the conventional chemoselectivity order of C-Br > C-Cl > C-OTf. This study also provided an efficient approach to the synthesis of polycyclic aromatic hydrocarbons (PAHs) and the natural product analogue trimethyl-selaginellin L by merging of chemoselective Sonogashira and Suzuki-Miyaura coupling reactions.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, People's Republic of China
| |
Collapse
|
47
|
Gao Y, Feng C, Seo T, Kubota K, Ito H. Efficient access to materials-oriented aromatic alkynes via the mechanochemical Sonogashira coupling of solid aryl halides with large polycyclic conjugated systems. Chem Sci 2022; 13:430-438. [PMID: 35126975 PMCID: PMC8729817 DOI: 10.1039/d1sc05257h] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/07/2021] [Indexed: 01/23/2023] Open
Abstract
Sonogashira coupling represents an indispensable tool for the preparation of organic materials that contain C(sp)-C(sp2) bonds. Improving the efficiency and generality of this methodology has long been an important research subject in materials science. Here, we show that a high-temperature ball-milling technique enables the highly efficient palladium-catalyzed Sonogashira coupling of solid aryl halides that bear large polyaromatic structures including sparingly soluble substrates and unactivated aryl chlorides. In fact, this new protocol provides various materials-oriented polyaromatic alkynes in excellent yield within short reaction times in the absence of bulk reaction solvents. Notably, we synthesized a new luminescent material via the mechanochemical Sonogashira coupling of poorly soluble Vat Red 1 in a much higher yield compared to those obtained using solution-based conditions. The utility of this method was further demonstrated by the rapid synthesis of a fluorescent metal-organic framework (MOF) precursor via two sequential mechanochemical Sonogashira cross-coupling reactions. The present study illustrates the great potential of Sonogashira coupling using ball milling for the preparation of materials-oriented alkynes and for the discovery of novel functional materials.
Collapse
Affiliation(s)
- Yunpeng Gao
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Chi Feng
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Tamae Seo
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Koji Kubota
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
48
|
Zhang L, Wei C, Wu J, Liu D, Yao Y, Chen Z, Liu J, Yao CJ, Li D, Yang R, Xia Z. Photoinduced inverse Sonogashira coupling reaction. Chem Sci 2022; 13:7475-7481. [PMID: 35872819 PMCID: PMC9241966 DOI: 10.1039/d2sc01933g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 12/17/2022] Open
Abstract
A transition-metal and photocatalyst-free, photoinduced inverse Sonogashira coupling reaction was developed. Under visible-light irradiation, the excited state iodoalkyne acted as an “alkynyl radical synthetic equivalent”.
Collapse
Affiliation(s)
- Lizhu Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Cunbo Wei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiawen Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yinchao Yao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianxun Liu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Jiang Yao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Dinghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rongjie Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhonghua Xia
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
49
|
Kiani A, Alinezhad H, Ghasemi S. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Sahu SK, Choudhury P, Behera PK, Bisoyi T, Sahu RR, Bisoyi A, Gorantla KR, Mallik BS, Mohapatra M, Rout L. An oxygen-bridged bimetallic [Cu–O–Se] catalyst for Sonogashira cross-coupling. NEW J CHEM 2022. [DOI: 10.1039/d1nj04485k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen bridged bimetallic CuSeO3·2H2O catalyst is used for Sonogashira cross-coupling under ligand free condition. Catalyst is free from palladium up to 0.2 ppm.
Collapse
Affiliation(s)
| | | | | | - Tanmayee Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Abinash Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Bhabani S. Mallik
- Department of Chemistry, IIT Hydrabad, Sangareddy, Medak-502285, Telangana, India
| | - Manoj Mohapatra
- Homi Bhaba National Institute, Anushakti Nagar, Bhaba Atomic Research Centre, Bombay-400085, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Odisha-760007, India
| |
Collapse
|