1
|
Zhang J, Sun T, Wang K, Hu R, Zhou C, Ge H, Li B. Rh(iii)-catalyzed building up of used heterocyclic cations: facile access to white-light-emitting materials. Chem Sci 2024; 15:12270-12276. [PMID: 39118641 PMCID: PMC11304525 DOI: 10.1039/d4sc02188f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
The first example of rhodium-catalyzed nondirected C-H activation/annulation reactions for the construction of fused heterocyclic cations is reported herein with excellent regioselectivity. Deuterium-labeling experiments indicated that the C(sp3)-H bond cleavage of the N-methyl group might be the rate-limiting step during the reaction process. This protocol provides an opportunity to rapidly access highly π-conjugated fused heterocyclic cations, which opens up a new avenue for efficient screening of single-molecular white-light-emitting materials, pure red-light-emitting materials, and π-conjugated radical materials. Importantly, novel white-light-emitting materials exhibited distinct anti-Kasha dual-emission and could rapidly be fabricated into robust organic and low-cost white light-emitting diodes.
Collapse
Affiliation(s)
- Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Tao Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Chunlin Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061 USA
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
2
|
Wang L, Yang S, Tang Y, Li K, Lu M, Guo H. Palladium-Catalyzed [5 + 4] Cycloaddition of 4-Vinyl-4-Butyrolactones with N-Tosyl Azadienes: Construction of Nine-Membered Ring. J Org Chem 2024; 89:5019-5028. [PMID: 38502934 DOI: 10.1021/acs.joc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this paper, we reported the palladium-catalyzed formal [5 + 4] cycloaddition reactions between 4-vinyl-4-butyrolactones (VBLs) and azadienes. Under mild reaction conditions, a wide range of benzofuran-fused 9-membered heterocyclic compounds had been provided in moderate to excellent yields with exclusive regioselectivities and excellent diastereoselectivities. The practical applicability of the synthesis was demonstrated through scale-up reaction and further transformation.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Sen Yang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Yi Tang
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Kuan Li
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Mengxi Lu
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Roy A, Biswas S, Duari S, Maity S, Mishra AK, Souza ARD, Elsharif AM, Morgon NH, Biswas S. Regioselective Transition Metal-Free Catalytic Ring Opening of 2 H-Azirines by Phenols and Naphthols; One-Pot Access to Benzo- and Naphthofurans. J Org Chem 2023; 88:15580-15588. [PMID: 37933871 DOI: 10.1021/acs.joc.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Benzofuran and naphthofuran derivatives are synthesized from readily available phenols and naphthols. Regioselective ring openings of 2H-azirine followed by in situ aromatization using a catalytic amount of Brønsted acid have established the novelty of the methodology. The involvement of a series of 2H-azirines with a variety of phenols, 1-naphthols, and 2-naphthols showed the generality of the protocol. In-depth density functional theory calculations revealed the reaction mechanism with the energies of the intermediates and transition states of a model reaction. An alternate pathway of the mechanism has also been proposed with computer modeling.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Abhishek Kumar Mishra
- Department of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Aguinaldo R de Souza
- Department of Chemistry, School of Science, São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| | - Asma M Elsharif
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nelson H Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University, Campinas 13083-970, São Paulo, Brazil
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
4
|
Hao MY, Zhang Y, Lin N, Fu R, Ji XS, Jiang B, Tu SJ, Hao WJ. Gold self-relay catalysis enabling annulative oxygenation of propargylic alcohols with O-nucleophiles. Chem Commun (Camb) 2023; 59:4032-4035. [PMID: 36924136 DOI: 10.1039/d3cc00089c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A new gold(I) self-relay catalysis reaction enabling the annulative oxygenation of propargylic alcohols with various O-nucleophiles, such as carboxylic acids, alcohols and TBHP, is reported, producing a series of functionalized benzofurans in moderate to good yields under mild conditions. This protocol benefits from the π- and σ-Lewis acid capability of gold complexes, demonstrating high molecular convergence, broad substrate flexibility, high functional group compatibility and mild conditions.
Collapse
Affiliation(s)
- Meng-Ying Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China. .,School of Pharmacy, Zhengzhou Vocational College of Medicine and Health, Zhengzhou 452385, P. R. China
| | - Yin Zhang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Na Lin
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Rong Fu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Xiao-Shuang Ji
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
5
|
Jeong T, Okanishi Y, Yotsui S, Kim IS, Yoshimitsu T. Organic redox cascade cyclization of 2-alkynylquinones by ascorbic acid in combination with a copper catalyst and its application to formal synthesis of liphagal. NEW J CHEM 2023. [DOI: 10.1039/d2nj05724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The combination of a quinone-ascorbic acid organic redox reaction and a concomitant copper catalysis in situ enables new approach to hydroxybenzofurans with structural variations.
Collapse
Affiliation(s)
- Taejoo Jeong
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yusuke Okanishi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sora Yotsui
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Li Y, Tung CH, Xu Z. Synthesis of Benzofuran Derivates via a Gold-Catalyzed Claisen Rearrangement Cascade. Org Lett 2022; 24:5829-5834. [PMID: 35912957 DOI: 10.1021/acs.orglett.2c02388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel method toward a facile synthesis of diverse benzofuran derivates from easily obtained quinols and alkynyl esters has been reported. A gold-catalyzed intermolecular alkoxylation/Claisen rearrangement/condensation cascade was involved. The introduction of difluorodiphenylsilane as a water-trapping reagent in the reaction leads to a higher yield.
Collapse
Affiliation(s)
- Yankun Li
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China
| | - Zhenghu Xu
- Key Lab for Colloid and Interface Chemistry of Education Ministry, Shandong University, No. 27 Shanda South Road, Jinan 250100, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Li R, Yuan D, Ping M, Zhu Y, Ni S, Li M, Wen L, Zhang LB. Electrochemically-promoted synthesis of benzo[b]thiophene-1,1-dioxides via strained quaternary spirocyclization. Chem Sci 2022; 13:9940-9946. [PMID: 36199637 PMCID: PMC9431990 DOI: 10.1039/d2sc01175a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report an approach for the synthesis of benzothiophene motifs under electrochemical conditions by the reaction of sulfonhydrazides with internal alkynes. Upon the formation of a quaternary spirocyclization intermediate by the selective ipso-addition instead of an ortho-attack, the S-migration process was rationalized to lead to the products. Computational studies revealed the selectivity and the compatibility of drug molecules showcased the potential application of the protocols. We report an approach for the synthesis of benzothiophene motifs under electrochemical conditions by the reaction of sulfonhydrazides with internal alkynes.![]()
Collapse
Affiliation(s)
- Ruitao Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Dafu Yuan
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Mengqi Ping
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Yuyi Zhu
- Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Shaofei Ni
- Department of Chemistry, Shantou University Shantou Guangdong 515063 P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lirong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology Qingdao 266042 P. R. China
| |
Collapse
|
8
|
Bashir MA, Wei J, Wang H, Zhong F, Zhai H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review aims to provide an overview of oxidative phenol and naphthalenol transformations in nature and synthetic chemistry.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
9
|
Rasool JU, Ali A, Ahmad QN. Recent advances in Cu-catalyzed transformations of internal alkynes to alkenes and heterocycles. Org Biomol Chem 2021; 19:10259-10287. [PMID: 34806741 DOI: 10.1039/d1ob01709h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous metal-catalyzed reactions involving internal alkynes and aimed towards synthetically and pharmacologically important alkenes and heterocycles have appeared in the literature. Among these, Cu-catalyzed reactions have a special place, which has prompted the investigation and development of carbon-carbon and carbon-heteroatom bond-forming reactions. These reactions possess wide scope, and during the paths of these reactions, either stable or in situ intermediates are formed via the addition of Cu as a core catalyst or synergistic catalyst. In this review, we aim to report different contributions relating to Cu-catalyzed reactions of internal alkynes for the synthesis of different valuable alkenes and heterocycles which have appeared in the literature in the last decade. We anticipate that this appraisal will deliver basic insights for the further advancement of Cu-catalyzed reactions in organic chemistry.
Collapse
Affiliation(s)
- Javeed Ur Rasool
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Asif Ali
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Sukhdev Vihar, Delhi-110025, India
| | - Qazi Naveed Ahmad
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (IIIM), Jammu-180001, India.
| |
Collapse
|
10
|
Abstract
Coumarin (2H-chromen-2-one) derivatives have important uses in medicinal and synthetic chemistry, for example, as fluorescent probes. These properties have prompted chemists to develop efficient synthetic methods to synthesize the coumarin core and/or to functionalize it. In this context, many metal-catalyzed syntheses of coumarins have been introduced; among them, copper-catalyzed reactions appear to be very promising owing to the non-toxicity and cheapness of copper complexes. In this mini-review, the results in this field are summarized. We hope to stimulate other applications of these complexes in the preparation of coumarin derivatives.
Collapse
|
11
|
Chalotra N, Shah IH, Raheem S, Rizvi MA, Shah BA. Visible-Light-Promoted Oxidative Annulation of Naphthols and Alkynes: Synthesis of Functionalized Naphthofurans. J Org Chem 2021; 86:16770-16784. [PMID: 34726928 DOI: 10.1021/acs.joc.1c01992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A visible-light-mediated site-selective oxidative annulation of naphthols with alkynes for the synthesis of functionalized naphthofurans has been developed. The reaction relies on the in situ formation of an electron donor acceptor pair between phenylacetylene and thiophenol as the light-absorbing system to obviate the requirement of an added photocatalyst. The protocol facilitates the transformation of 1-naphthol and 2-naphthol as well as 1,4-naphthoquinone into a wide variety of highly functionalized naphthofurans.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Iftkhar Hussain Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
12
|
Al-Zoubi RM, Al-Jammal WK, Ferguson MJ, Murphy GK. Domino C-C/C-O bond formation: palladium-catalyzed regioselective synthesis of 7-iodobenzo[ b]furans using 1,2,3-triiodobenzenes and benzylketones. RSC Adv 2021; 11:30069-30077. [PMID: 35493993 PMCID: PMC9040925 DOI: 10.1039/d1ra05730h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
A facile and efficient synthesis of 7-iodobenzo[b]furan derivatives via a highly regioselective tandem α-arylation/intramolecular O-arylation of 5-substituted-1,2,3-triiodobenzenes and benzylketones is described. Remarkably, the α-arylation coupling reactions initiate exclusively at the least sterically-hindered position of the triiodoarene, which results in a highly chemoselective transformation. The highest yields were observed in reactions between electron-poor 1,2,3-triiodoarenes and electron-rich benzylketones, yet the optimized reaction conditions were found to be tolerant to a wide range of different functional groups. This unprecedent synthesis of 7-iodobenzo[b]furans from 1,2,3-triiodobenzenes is scalable, general in scope, and provides easy access to valuable precursors for other chemical transformations.
Collapse
Affiliation(s)
- Raed M Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Walid K Al-Jammal
- Department of Chemistry, Jordan University of Science and Technology P.O. Box 3030 Irbid 22110 Jordan +962-2-7201071 +962-2-7201000 ext. 23651
| | - Michael J Ferguson
- Department of Chemistry, Gunning-Lemieux Chemistry Centre, University of Alberta Edmonton Alberta T6G2G2 Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo Waterloo Ontario N2L3G1 Canada
| |
Collapse
|
13
|
Singh S, Nerella S, Pabbaraja S, Mehta G. Stitching Ynones with Nitromethanes: Domino Synthesis of Functionally Enriched Benzofurans and Benzothiophenes. J Org Chem 2021; 86:12093-12106. [PMID: 34414759 DOI: 10.1021/acs.joc.1c01104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A convenient one-pot benzannulation of regioisomeric 2- or 3-substituted furan and thiophene ynones with a range of nitromethanes has been discovered to directly access densely and diversely functionalized benzofurans and benzothiophenes. In this protocol, the nitro group in nitromethanes functions as recursive carbanion activator to setup tandem Michael addition-6π-electrocyclization, and its eventual sacrificial elimination facilitates aromatization and overall benzannulation. This benzannulation was also explored with furan/thiophene based o-halo ynones wherein a Michael addition-SNAr process operates and nitromethanes leave their imprint to deliver nitro substituted benzo-furans and -thiophenes.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India.,School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sharanya Nerella
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
14
|
Youn SW, Cho CG. Transition-metal-catalyzed ortho-selective C-H functionalization reactions of free phenols. Org Biomol Chem 2021; 19:5028-5047. [PMID: 34027964 DOI: 10.1039/d1ob00506e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phenols are important readily available chemical feedstocks and versatile synthetic building blocks for diverse synthetic transformations. Their motifs are prevalent in a diverse array of natural products, pharmaceuticals, functional materials, and privileged chiral ligands. Consequently, the development of facile and direct site-selective C-H bond functionalization of free phenols is of great importance and considerable interest to both industry and academic research. Over the past decades, transition-metal-catalyzed C-H bond functionalization has become as a powerful synthetic tool in organic synthesis. In this review, we provide a brief overview of recent progress in the transition-metal-catalyzed direct ortho-selective C-H functionalization of free phenols.
Collapse
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Cheon-Gyu Cho
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
15
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au-Ag Bimetallic Catalysis: 3-Alkynyl Benzofurans from Phenols via Tandem C-H Alkynylation/Oxy-Alkynylation. Angew Chem Int Ed Engl 2021; 60:10637-10642. [PMID: 33617065 PMCID: PMC8252013 DOI: 10.1002/anie.202016595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/17/2023]
Abstract
The development of new methodologies enabling a facile access to valuable heterocyclic frameworks still is an important subject of research. In this context, we describe a dual catalytic cycle merging C-H alkynylation of phenols and oxy-alkynylation of the newly introduced triple bond by using a unique redox property and the carbophilic π acidity of gold. Mechanistic studies support the participation of a bimetallic gold-silver species. The one-pot protocol offers a direct, simple, and regio-specific approach to 3-alkynyl benzofurans from readily available phenols. A broad range of substrates, including heterocycles, is transferred with excellent functional group tolerance. Thus, this methodology can be used for the late-stage incorporation of benzofurans.
Collapse
Affiliation(s)
- Long Hu
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Martin C. Dietl
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Chunyu Han
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Matthias Rudolph
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm NeuenheimerFeld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz University (KAU)21589JeddahSaudi Arabia
| |
Collapse
|
16
|
Hu L, Dietl MC, Han C, Rudolph M, Rominger F, Hashmi ASK. Au‐Ag‐Bimetallkatalyse: 3‐Alkinylbenzofurane aus Phenolen durch Tandem‐C‐H‐Alkinylierung/Oxyalkinylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Long Hu
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Martin C. Dietl
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Chunyu Han
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Matthias Rudolph
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im NeuenheimerFeld 270 69120 Heidelberg Deutschland
- Chemistry Department Faculty of Science King Abdulaziz University (KAU) 21589 Jeddah Saudi Arabien
| |
Collapse
|
17
|
Ranjbari MA, Tavakol H. Catalyst-Free Synthesis of Benzofuran Derivatives from Cascade Reactions between Nitroepoxides and Salicylaldehydes. J Org Chem 2021; 86:4756-4762. [PMID: 33656875 DOI: 10.1021/acs.joc.1c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different benzofuran derivatives are synthesized via a catalyst-free reaction between nitroepoxides and salicylaldehydes. In the employed methodology, K2CO3 and DMF have been used at 110 °C, and the reactions were completed after 12 h in 33-84% yields. The highest yields were obtained using 3-nitrosalicylaldehyde. Finally, a plausible mechanism was proposed for the reaction, and some evidence was provided for this mechanism such as the detection of released acetate anion (using FTIR) and isolation and structure determination of the critical intermediate.
Collapse
Affiliation(s)
- Mohammad A Ranjbari
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hossein Tavakol
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
18
|
Lin J, Hu L, Chen C, Feng H, Yu Y, Yang Y, Zhou B. Rhodium-Catalyzed Twofold Unsymmetrical C-H Alkenylation-Annulation/Thiolation Reaction To Access Thiobenzofurans. Org Lett 2021; 23:1194-1198. [PMID: 33523667 DOI: 10.1021/acs.orglett.0c04134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A Rh(III)-catalyzed twofold unsymmetrical C-H alkenylation-annulation/thiolation reaction has been developed, enabling the straightforward and efficient synthesis of various thiobenzofurans in one step. This robust protocol proceeds with a broad substrate scope and good functional group tolerance under relatively mild reaction conditions.
Collapse
Affiliation(s)
- Jian Lin
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyu Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Chao Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Huijin Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Yaxi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bing Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
19
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Ouyang L, Lin Z, Li S, Chen B, Liu J, Shi WJ, Zheng L. Synthesis of functionalized diarylbenzofurans via Ru-catalyzed C–H activation and cyclization under air: rapid access to the polycyclic scaffold of diptoindonesin G. Org Chem Front 2021. [DOI: 10.1039/d1qo01242h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method was developed for rapid assembly of 2,3-diarylbenzofuran-4-carboxylic acids from m-hydroxybenzoic acids and alkynes via Ru-catalyzed C–H alkenylation and cyclization, which was successfully applied for total synthesis of diptoindonesin G.
Collapse
Affiliation(s)
- Lufeng Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhigeng Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shiqi Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Baoyin Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jidan Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wen-Jing Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|
21
|
Sravanthi K, Khan FA. Brønsted acid-induced synthesis of methyl benzofurans via Grob type fragmentation of norbornyl derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Yadav S, Dash C. One-pot Tandem Heck alkynylation/cyclization reactions catalyzed by Bis(Pyrrolyl)pyridine based palladium pincer complexes. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Duc DX. Recent Achievement in the Synthesis of Benzo[b]furans. Curr Org Synth 2020; 17:498-517. [PMID: 32586253 DOI: 10.2174/1570179417666200625212639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzo[b]furan derivatives are oxygen-containing heterocyclic compounds consisting of fused benzene and furan rings and are present in a large number of natural and non-natural compounds. This class of compounds has a wide spectrum of biological activities, such as antiarrhythmic, anticancer, inflammatory, antioxidant, antimicrobial, and antiviral. Furthermore, benzo[b]furan derivatives have also been applied in various areas, such as organic electroluminescence device materials and organic dyes, photosensitizing material, organic synthesis as building blocks or intermediates. Because of a broad range of applicability, the synthesis of benzo[b]furan derivative has drawn great attention of chemists and many studies on the synthesis of this class of compounds have been reported recently. This review will give an overview of benzo[b]furan preparation based on studies dating back to the year 2012. OBJECTIVE In this review, recent development in the synthesis of benzo[b]furans are discussed. There has been increasingly new methodologies for the construction of benzo[b]furans skeleton to improve efficiency or develop environmentally friendly procedures. In some studies, reaction mechanisms were also outlined. CONCLUSION Many methods for the synthesis of benzo[b]furans have been reported recently. Most of them involve cyclization or cycloisomerization processes. Unquestionably, more imaginative strategies for the construction of benzo[b]furan skeleton will be established in the near future. Application of known methods to natural products or drug synthesis, on industrial scale for the synthesis of economically or medicinally important benzo[ b]furans will probably be paid attention to.
Collapse
Affiliation(s)
- Dau Xuan Duc
- Department of Chemistry, Vinh University, Vinh City, Vietnam
| |
Collapse
|
24
|
Aggarwal S, Srinivas D, Sreenivasulu C, Satyanarayana G. Nickel catalyzed intramolecular oxidative coupling: synthesis of 3-aryl benzofurans. RSC Adv 2020; 10:22264-22272. [PMID: 35516592 PMCID: PMC9054549 DOI: 10.1039/d0ra03071f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Recent research has been focused on the transition metal-catalyzed reactions. Herein we have developed nickel-catalyzed synthesis of 3-aryl benzofurans from ortho-alkenyl phenols via intramolecular dehydrogenative coupling. Notably, simple O2 gas served as an oxidant, without using any sacrificial hydrogen acceptor. The strategy enabled the synthesis of 3-aryl benzofurans in good to excellent yields.
Collapse
Affiliation(s)
- Sakshi Aggarwal
- Department of Chemistry, Indian Institute of Technology Kandi, Sangareddy Hyderabad 502 285 Telangana India +91 40 2301 6003/32 +91 40 2301 6033
| | - Dasari Srinivas
- Department of Chemistry, Indian Institute of Technology Kandi, Sangareddy Hyderabad 502 285 Telangana India +91 40 2301 6003/32 +91 40 2301 6033
| | - Chinnabattigalla Sreenivasulu
- Department of Chemistry, Indian Institute of Technology Kandi, Sangareddy Hyderabad 502 285 Telangana India +91 40 2301 6003/32 +91 40 2301 6033
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Kandi, Sangareddy Hyderabad 502 285 Telangana India +91 40 2301 6003/32 +91 40 2301 6033
| |
Collapse
|
25
|
Sun P, Yang J, Peng J, Mo B, Chen X, Li X, Chen C. Palladium(II)-Catalyzed Oxidative Annulation of 2-Hydroxynaphthalene-1,4-diones and Internal Alkynes via C-H Functionalization. J Org Chem 2020; 85:6761-6769. [PMID: 32293177 DOI: 10.1021/acs.joc.9b03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An efficient Pd(II)-catalyzed oxidative annulation of 2-hydroxynaphthalene-1,4-diones and internal alkynes has been developed with high step efficiency. A broad range of functional groups are compatible with this reaction, thus providing a new entry to diverse naphtho[2,3-b]furan-4,9-dione derivatives in good to high yields.
Collapse
Affiliation(s)
- Peng Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.,Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiaojiao Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jinsong Peng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Baichuan Mo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.,Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xin Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.,Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China
| | - Xiang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.,Material Science and Engineering College, Northeast Forestry University, Harbin 150040, P. R. China
| |
Collapse
|
26
|
Abstract
:
The benzofuranyl motif present in compounds exhibits various medicinal properties and
non-drug applications. These derivatives are naturally occurring compounds or synthetic materials,
which cover a broad spectrum of pharmacological activities like anti-inflammatory, anti-diabetic, anti-
depressant, anti-HIV, anti-microbial, anti-proliferative, anti-convulsant, cytotoxic, analgesic, etc.
Few of the commercially interesting compounds from this class are, ailanthoidol (anti-inflammatory),
amiodarone, dronedarone, celivarone (anti-arrhythmic), bufuralol (muscular airways relaxant), morphine,
5-(2-aminopropyl)benzofuran; 5-APB, 6-(2-aminopropyl)benzofuran; 6-APB (CNS), rifampicin
(antibiotic), etc., whereas, some of the non-drug applications are in perfumery industry (bergapten)
and as tannin activators in sunscreen preparations (psoralen, 8-methoxypsoralen, and angelicin).
Considering these interesting biological activities and commercial utilities, a review on the synthetic
aspects of this privileged scaffold was attempted. For the benefit of natural product-based drug discovery,
available sources of these derivatives, extraction process and reported biological activities
have also been outlined in this review.
Collapse
Affiliation(s)
- Andiappan Lavanya
- Department of Training and Development, Orchid Pharma Ltd., 138-149, SIDCO Industrial Estate, Alathur, Chennai- 603 110, Tamil Nadu, India
| | - Kilambi Narasimhan
- Department of Training and Development, Orchid Pharma Ltd., 138-149, SIDCO Industrial Estate, Alathur, Chennai- 603 110, Tamil Nadu, India
| | - Vediappen Padmini
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
27
|
Jia C, Wang S, Lv X, Li G, Zhong L, Zou L, Cui X. Ruthenium-Catalyzed meta
-CAr
-H Bond Difluoroalkylation of 2-Phenoxypyridines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunqi Jia
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs; School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P.R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering; Henan Province Key Laboratory of New Optoelectronic Functional Materials; Anyang Normal University; 455000 Anyang P. R. China
| | - Xulu Lv
- College of Chemistry and Chemical Engineering; Henan Province Key Laboratory of New Optoelectronic Functional Materials; Anyang Normal University; 455000 Anyang P. R. China
| | - Gang Li
- College of Chemistry and Chemical Engineering; Henan Province Key Laboratory of New Optoelectronic Functional Materials; Anyang Normal University; 455000 Anyang P. R. China
| | - Lei Zhong
- College of Chemistry and Chemical Engineering; Henan Province Key Laboratory of New Optoelectronic Functional Materials; Anyang Normal University; 455000 Anyang P. R. China
| | - Lei Zou
- College of Chemistry and Chemical Engineering; Henan Province Key Laboratory of New Optoelectronic Functional Materials; Anyang Normal University; 455000 Anyang P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education; Key Laboratory of Fujian Molecular Medicine; Key Laboratory of Xiamen Marine and Gene Drugs; School of Biomedical Sciences; Huaqiao University; 361021 Xiamen P.R. China
| |
Collapse
|
28
|
Reddy RJ, Kumar JJ, Kumari AH, Krishna GR. Pd‐Catalyzed Annulation of β‐Iodovinyl Sulfones with 2‐Halophenols: A General Route for the Synthesis of 3‐Sulfonyl Benzofuran Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of ScienceOsmania University Hyderabad 500 007 India
| | | |
Collapse
|
29
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong ProvinceSchool of Chemistry and Chemical EngineeringSouth China University of Technology 510640 Guangzhou China
- State Key Laboratory of Elemento-Organic ChemistryNankai University 300071 Tianjing China
- Singfar Laboratories 510670 Guangzhou China
| |
Collapse
|
30
|
Wang Y, Tian B, Ding M, Shi Z. Electrochemical Cross-Dehydrogenative Coupling between Phenols and β-Dicarbonyl Compounds: Facile Construction of Benzofurans. Chemistry 2020; 26:4297-4303. [PMID: 31900957 DOI: 10.1002/chem.201904750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 11/10/2022]
Abstract
Preparative electrochemical synthesis is an ideal method for establishing green, sustainable processes. The major benefits of an electro-organic strategy over that of conventional chemical synthesis are the avoidance of reagent waste and mild reaction conditions. Here, an intermolecular cross-dehydrogenative coupling between phenols and β-dicarbonyl compounds has been developed to build various benzofurans under undivided electrolytic conditions. Neither transition metals nor external chemical oxidants are required to facilitate the dehydrogenation and dehydration processes. The key factor in success was the use of nBu4 NBF4 as the electrolyte and hexafluoroisopropanol as the solvent, which play key roles in the cyclocondensation step. This electrolysis is scalable and can be used as a key step in drug synthesis. On the basis of several experimental results, the mechanism, particularly of the remarkable anodic oxidation and cyclization process, was illustrated.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Bailin Tian
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Mengning Ding
- Key Lab of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
31
|
Ma Z, Zhou M, Ma L, Zhang M. Synthesis of benzofurans from the cyclodehydration of α-phenoxy ketones mediated by Eaton’s reagent. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820907244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cyclodehydration of α-phenoxy ketones promoted by Eaton’s reagent (phosphorus pentoxide–methanesulfonic acid) is used to prepare 3-substituted or 2,3-disubstituted benzofurans with moderate to excellent yields under mild conditions. The method provides a facile access to benzofurans from readily available starting materials such as phenols and α-bromo ketones. The reaction is highly efficient, which is attributed to the good reactivity and fluidity of Eaton’s reagent. The reaction can be applied to prepare naphthofurans, furanocoumarins, benzothiophenes, and benzopyrans.
Collapse
Affiliation(s)
- Zhanwei Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Min Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Lin Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, P.R. China
| |
Collapse
|
32
|
Zhang L, Cao T, Jiang H, Zhu S. Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. Angew Chem Int Ed Engl 2020; 59:4670-4677. [PMID: 31961991 DOI: 10.1002/anie.201915212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/18/2020] [Indexed: 12/26/2022]
Abstract
An unprecedented deconstructive reorganization strategy for the de novo synthesis of hydroxylated benzofurans from kojic acid- or maltol-derived alkynes is reported. In this reaction, both the benzene and furan rings were simultaneously constructed, whereas the pyrone moiety of the kojic acid or maltol was deconstructed and then reorganized into the benzene ring as a six-carbon component. Through this strategy, at least one free hydroxyl group was introduced into the benzene ring in a substitution-pattern tunable fashion without protection-deprotection and redox adjustment. With this method, a large number of hydroxylated benzofuran derivatives with different substitution-patterns have been prepared efficiently. This methodology has also been shown as the key step in a collective total synthesis of hydroxylated benzofuran-containing natural products (11 examples).
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjing, China.,Singfar Laboratories, 510670, Guangzhou, China
| |
Collapse
|
33
|
Wang C, Han Y, Li M, Zhou X, Kong L, Li Y. Palladium-Catalyzed Allenylation/6π-Electrocyclization and 1,3-Hydrogen Migration: an Access to Naphtho[1,2-b
]furans. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chengyu Wang
- School of Chemistry and Chemical Engineering; Linyi University; The middle of Shuangling Road 276000 Linyi Shandong China
| | - Yu Han
- School of Chemistry and Chemical Engineering; Linyi University; The middle of Shuangling Road 276000 Linyi Shandong China
| | - Mengyuan Li
- School of Chemistry and Chemical Engineering; Linyi University; The middle of Shuangling Road 276000 Linyi Shandong China
| | - Xuemei Zhou
- School of Chemistry and Chemical Engineering; Linyi University; The middle of Shuangling Road 276000 Linyi Shandong China
| | - Lingkai Kong
- School of Chemistry and Chemical Engineering; Linyi University; The middle of Shuangling Road 276000 Linyi Shandong China
| | - Yanzhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; School of Chemistry and Molecular Engineering; East China Normal University; 500 Dong-chuan Road 200241 Shanghai China
| |
Collapse
|
34
|
Singh G, Kumar S, Chowdhury A, Vijaya Anand R. Base-Mediated One-pot Synthesis of Oxygen-Based Heterocycles from 2-Hydroxyphenyl-Substituted para-Quinone Methides. J Org Chem 2019; 84:15978-15989. [DOI: 10.1021/acs.joc.9b02455] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Suresh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Arjun Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| |
Collapse
|
35
|
Iqbal N, Iqbal N, Maiti D, Cho EJ. Access to Multifunctionalized Benzofurans by Aryl Nickelation of Alkynes: Efficient Synthesis of the Anti‐Arrhythmic Drug Amiodarone. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Naila Iqbal
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
36
|
Iqbal N, Iqbal N, Maiti D, Cho EJ. Access to Multifunctionalized Benzofurans by Aryl Nickelation of Alkynes: Efficient Synthesis of the Anti‐Arrhythmic Drug Amiodarone. Angew Chem Int Ed Engl 2019; 58:15808-15812. [DOI: 10.1002/anie.201909015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Naeem Iqbal
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Naila Iqbal
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai 400076 India
| | - Eun Jin Cho
- Department of Chemistry Chung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| |
Collapse
|
37
|
Jiang J, Liu H, Cao L, Zhao C, Liu Y, Ackermann L, Ke Z. Metallalkenyl, Metallacyclopropene, or Metallallylcarbenoid? Ru-Catalyzed Annulation between Benzoic Acid and Alkyne. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Honghu Liu
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Lili Cao
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
38
|
Murai M, Yamamoto M, Takai K. Rhenium-Catalyzed Regioselective ortho-Alkenylation and [3 + 2 + 1] Cycloaddition of Phenols with Internal Alkynes. Org Lett 2019; 21:3441-3445. [PMID: 30998367 DOI: 10.1021/acs.orglett.9b01214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An operationally simple and direct rhenium-catalyzed ortho-alkenylation ( C-alkenylation) of unprotected phenols with alkynes was developed. The protocol provided ortho-alkenylphenols exclusively, and formation of para- or multiply alkenylated phenols and hydrophenoxylation ( O-alkenylation) products were not observed. The [3 + 2 + 1] cycloaddition of phenols and two alkynes via ortho-alkenylation was also demonstrated, in which the alkynes functioned as both two- and one-carbon units. These reactions proceeded with readily available starting materials under neutral conditions without additional ligands.
Collapse
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka, Kita-ku , Okayama 700-8530 , Japan
| | - Masaki Yamamoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka, Kita-ku , Okayama 700-8530 , Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushimanaka, Kita-ku , Okayama 700-8530 , Japan
| |
Collapse
|
39
|
Building molecular complexity through transition-metal-catalyzed oxidative annulations/cyclizations: Harnessing the utility of phenols, naphthols and 1,3-dicarbonyl compounds. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Janardhanan JC, James K, Puthuvakkal A, Bhaskaran RP, Suresh CH, Praveen VK, Manoj N, Babu BP. Synthesis of hybrid polycycles containing fused hydroxy benzofuran and 1H-indazoles via a domino cyclization reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj01991j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A trifluoroacetic acid mediated [3+2] annulation reaction between 5-hydroxy-1H-indazoles – generated in situ – and p-benzoquinones has been reported.
Collapse
Affiliation(s)
- Jith C. Janardhanan
- Department of Applied Chemistry
- Cochin University of Science and Technology (CUSAT)
- Cochin 682022
- India
| | - Kiran James
- Department of Applied Chemistry
- Cochin University of Science and Technology (CUSAT)
- Cochin 682022
- India
| | - Anisha Puthuvakkal
- Chemical Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram 695019
- India
| | - Rasmi P. Bhaskaran
- Department of Chemistry
- National Institute of Technology Karnataka (NITK)
- Surathkal 575025
- India
| | - Cherumuttathu H. Suresh
- Chemical Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram 695019
- India
| | - Vakayil K. Praveen
- Chemical Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram 695019
- India
| | - Narayanapillai Manoj
- Department of Applied Chemistry
- Cochin University of Science and Technology (CUSAT)
- Cochin 682022
- India
| | - Beneesh P. Babu
- Department of Chemistry
- National Institute of Technology Karnataka (NITK)
- Surathkal 575025
- India
| |
Collapse
|
41
|
Ma W, Huang J, Huang X, Meng S, Yang Z, Li C, Wang Y, Qi T, Li B. Direct construction of 2,3-unsubstituted benzofurans and benzothiophenes via a metal-free catalyzed intramolecular Friedel–Crafts reaction. Org Chem Front 2019. [DOI: 10.1039/c8qo01204k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly effective and straightforward method for the construction of 2,3-unsubstituted benzofurans and benzothiophenes has been developed.
Collapse
Affiliation(s)
- Weimin Ma
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Jiawei Huang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Xianyu Huang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Shulin Meng
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Zhengwei Yang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Chao Li
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Yue Wang
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Ting Qi
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| | - Baolin Li
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- P. R. China
| |
Collapse
|
42
|
Affiliation(s)
- Zheng Huang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
43
|
Hong X, Ma F, Zha D, Li H. Silver‐Catalyzed Stereoselective
trans
Addition of 4‐Hydroxycoumarins to Haloalkynes and Late‐Stage Nitration. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianfang Hong
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Fang Ma
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Dandan Zha
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| | - Hongji Li
- Department of ChemsitryHuaibei Normal University Huaibei AnHui 235000 P.R. China
| |
Collapse
|
44
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1450] [Impact Index Per Article: 241.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
45
|
Yang K, Pulis AP, Perry GJP, Procter DJ. Transition-Metal-Free Synthesis of C3-Arylated Benzofurans from Benzothiophenes and Phenols. Org Lett 2018; 20:7498-7503. [DOI: 10.1021/acs.orglett.8b03267] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kevin Yang
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Alexander P. Pulis
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Gregory J. P. Perry
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David J. Procter
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
46
|
Copper-catalyzed radical/radical cross-coupling of ketoxime carboxylates with 4-hydroxycoumarins: A novel synthesis of furo[3,2-c]-coumarins. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Maji A, Reddi Y, Sunoj RB, Maiti D. Mechanistic Insights on Orthogonal Selectivity in Heterocycle Synthesis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Arun Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Department of Chemistry, University of Illinois at Urbana−Champaign, Illinois 61801, United States
| | - Yernaidu Reddi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
48
|
Singh G, Goswami P, Sharma S, Anand RV. A One-Pot Approach to 2,3-Diarylbenzo[b]furans through N-Heterocyclic Carbene-Catalyzed 1,6-Conjugate Addition Followed by Acid Mediated Dehydrative Annulation. J Org Chem 2018; 83:10546-10554. [DOI: 10.1021/acs.joc.8b01358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Prithwish Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Sonam Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| |
Collapse
|
49
|
Duarah G, Kaishap PP, Sarma B, Gogoi S. Ruthenium(II)-Catalyzed Dearomatized C-H Activation and Annulation Reaction of Vinylnaphthols with Alkynes: Access to Spiro-Pentacyclic Naphthalenones. Chemistry 2018; 24:10196-10200. [PMID: 29723429 DOI: 10.1002/chem.201801537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 01/24/2023]
Abstract
The ruthenium(II)-catalyzed annulation of vinylnaphthols and alkynes is described. The reaction proceeds through C-H activation, dearomatization, and alkyne insertion. This reaction affords spiro-pentacyclic naphthalenones that have biological significance in good yields.
Collapse
Affiliation(s)
- Gauri Duarah
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Partha P Kaishap
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, 784028, India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
50
|
Yang LC, Tan ZY, Rong ZQ, Liu R, Wang YN, Zhao Y. Palladium-Titanium Relay Catalysis Enables Switch from Alkoxide-π-Allyl to Dienolate Reactivity for Spiro-Heterocycle Synthesis. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li-Cheng Yang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zher Yin Tan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Zi-Qiang Rong
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Ruoyang Liu
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Ya-Nong Wang
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Yu Zhao
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|