1
|
Mahjour B, Flynn KM, Stahl SS, Cernak T. Impact of C-H Cross-Coupling Reactions in the One-Step Retrosynthesis of Drug Molecules. J Org Chem 2024; 89:15387-15392. [PMID: 39401427 DOI: 10.1021/acs.joc.4c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Pharmaceutical synthesis requires a diversity of chemical reactions. The discovery of new reactions enable novel retrosynthetic disconnections, potentially expediting access to complex molecules. This Synopsis demonstrates the use of enumerative combinatorics to find impactful underdeveloped reactions for drug synthesis. By mapping pharmaceutical target molecules onto available building blocks using just one retrosynthetic disconnection even if the requisite reaction is not yet known, we highlight the importance of site-selective C-H cross-coupling methods. This cheminformatics-driven retrosynthetic analysis identifies novel reaction methods of value to the synthesis toolbox.
Collapse
Affiliation(s)
- Babak Mahjour
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kaitlyn M Flynn
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Tim Cernak
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Pérez-Aguilar MC, Entgelmeier LM, Herrera-Luna JC, Daniliuc CG, Consuelo Jiménez M, Pérez-Ruiz R, García Mancheño O. Unlocking Photocatalytic Activity of Acridinium Salts by Anion-Binding Co-Catalysis. Chemistry 2024; 30:e202400541. [PMID: 38739757 DOI: 10.1002/chem.202400541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The in situ generation of active photoredox organic catalysts upon anion-binding co-catalysis by making use of the ionic nature of common photosensitizers is reported. Hence, the merge of anion-binding and photocatalysis permitted the modulation of the photocatalytic activity of simple acridinium halide salts, building an effective anion-binding - photoredox ion pair complex able to promote a variety of visible light driven transformations, such as anti-Markovnikov addition to olefins, Diels-Alder and the desilylative C-C bond forming reactions. Anion-binding studies, together with steady-state and time-resolved spectroscopy analysis, supported the postulated ion pair formation between the thiourea hydrogen-bond donor organocatalyst and the acridinium salt, which proved essential for unlocking the photocatalytic activity of the photosensitizer.
Collapse
Affiliation(s)
- María C Pérez-Aguilar
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Lukas-M Entgelmeier
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
- Current address: Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Olga García Mancheño
- Institute of Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
3
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
4
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
6
|
Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chem Sci 2023; 14:1715-1723. [PMID: 36819858 PMCID: PMC9930931 DOI: 10.1039/d2sc06340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.
Collapse
Affiliation(s)
- Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuanli Zhu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Xujing Shi
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Renfu Huang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Chuang Jiang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Kun Zhang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
7
|
Yamakawa K, Nakamura I, Sakamoto K, Nishimura T. Iridium-Catalyzed Enantioselective Intermolecular Hydroarylation of 1,1-Disubstituted Alkenes. J Org Chem 2023. [PMID: 36789829 DOI: 10.1021/acs.joc.2c02619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The catalytic enantioselective hydroarylation of 1,1-disubstituted alkenes proceeded by using a cationic iridium/(R)-binap complex to give the corresponding adducts in high yields with high enantioselectivity. The reaction of arenes substituted with heteroaromatic directing groups proceeded to give the addition products linear-selectively. Methallylamine derivatives were good acceptors to obtain high enantioselectivities. The adduct bearing maleimide moiety was readily transformed into the β-chiral amine derivative without loss of the enantiomeric purity.
Collapse
Affiliation(s)
- Kentaro Yamakawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Ikumi Nakamura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Kana Sakamoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| | - Takahiro Nishimura
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sumiyoshi, Osaka 558-8585, Japan
| |
Collapse
|
8
|
García Mancheño O, Waser M. Recent Developments and Trends in Asymmetric Organocatalysis. European J Org Chem 2023; 26:e202200950. [PMID: 37065706 PMCID: PMC10091998 DOI: 10.1002/ejoc.202200950] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Indexed: 11/11/2022]
Abstract
Asymmetric organocatalysis has experienced a long and spectacular way since the early reports over a century ago by von Liebig, Knoevenagel and Bredig, showing that small (chiral) organic molecules can catalyze (asymmetric) reactions. This was followed by impressive first highly enantioselective reports in the second half of the last century, until the hype initiated in 2000 by the milestone publications of MacMillan and List, which finally culminated in the 2021 Nobel Prize in Chemistry. This short Perspective aims at providing a brief introduction to the field by first looking on the historical development and the more classical methods and concepts, followed by discussing selected advanced recent examples that opened new directions and diversity within this still growing field.
Collapse
Affiliation(s)
- Olga García Mancheño
- Organic Chemistry InstituteUniversity of MünsterCorrensstrasse 3648149MünsterGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
9
|
Liu L. Hydride-Abstraction-Initiated Catalytic Stereoselective Intermolecular Bond-Forming Processes. Acc Chem Res 2022; 55:3537-3550. [PMID: 36384272 DOI: 10.1021/acs.accounts.2c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stereoselective intermolecular bond-forming reactions through the direct manipulation of ubiquitous yet inert C(sp3)-H bonds represent an important and long-standing goal in chemistry. In particular, developing such a stereoselective bimolecular transformation involving carbocation intermediates generated via site-selective hydride abstraction or formal hydride abstraction by organic oxidants would avoid the preinstallation of directing groups and is therefore attractive. Hydride-abstraction-initiated bimolecular transformations have received considerable attention, but existing examples lack stereoselective studies. Prevalent stereoselective studies typically suffer from the narrow substrate scope of specific and highly reactive N-aryl amines and diarylmethanes together with limited synthetic utility. This Account describes our recent advances in the development and synthetic application of hydride-abstraction-initiated stereoselective intermolecular C-C and C-H bond-forming processes with significantly expanded scopes involving structurally diverse N-acyl amines and ethers together with nitriles, esters, and perfluoroalkyl moieties.We first explored hydride-abstraction-initiated stereoselective intermolecular C-C bond-forming processes. Utilizing triarylmethyl cations or oxoammonium ions as hydride abstractors, we accomplished the diastereoselective oxidative C-H functionalization of structurally diverse N-acyl amines and ethers with a range of organoboranes and C-H components, efficiently installing a series of alkyl, alkenyl, aryl, and alkynyl species into the α-position of heteroatoms with good levels of diastereocontrol. Subsequently, we developed an "acetal pool" strategy as the toolbox to regulate the stability of cationic intermediates and the compatibility of organic oxidants with a delicate asymmetric catalysis system. Utilizing this strategy, we achieved the catalytic enantioselective oxidative C-H alkenylation, arylation, alkynylation, and alkylation of diverse N-acyl heterocycles with a range of boronates and C-H components. Simultaneously, we extended this strategy to the asymmetric oxidative C-H alkylation of ethers. Notably, the method allows solvents that are used daily, such as tetrahydrofuran, tetrahydropyran, and diethyl ether, to be facilely transformed to high-value-added optically pure bioactive molecules. We further expanded the scope of this challenging area from the C(sp3)-H bond adjacent to electron-donating heteroatoms to valuable electron-withdrawing functional groups including nitriles, esters, and perfluoroalkyl moieties for the stereoselective construction of single and vicinal quaternary carbon stereocenters, respectively.We studied hydride-abstraction-initiated catalytic asymmetric intermolecular C-H bond-forming processes, known as redox deracemization. Utilizing the acetal pool strategy, we reported the first redox deracemization of cyclic benzylic ethers. Later, we disclosed an aerobic one-pot deracemization of diverse α-amino acid derivatives with excellent functional group compatibility. We further achieved the deracemization of the tertiary stereogenic center adjacent to electron-withdrawing groups including perfluoroalkyl, cyano, and ester moieties, which are otherwise difficult to construct.
Collapse
Affiliation(s)
- Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan250100, China
| |
Collapse
|
10
|
Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Dimitrova D, McMahon C, Kennedy AR, Parkinson JA, Leach SG, Boulton LT, Pascoe DD, Murphy JA. A study of the reactivity of cyclic aminomethylammonium mannich salts. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Schirmer TE, König B. Ion-Pairing Catalysis in Stereoselective, Light-Induced Transformations. J Am Chem Soc 2022; 144:19207-19218. [PMID: 36240496 DOI: 10.1021/jacs.2c04759] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the rapid development of photoredox catalysis, numerous concepts for asymmetric induction were successfully and broadly adapted from polar two-electron transformations to radical chemistry. While this applies to organocatalysis or transition metal chemistry, asymmetric ion-pairing catalysis remains a niche application within light-driven reactions today. This perspective gives an overview of recent examples, strategies, and their application in stereoselective transformations at the interface of ion-pairing and photo(redox) catalysis.
Collapse
Affiliation(s)
- Tobias E Schirmer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
14
|
Rana P, Kaushik B, Solanki K, Saini KM, Sharma RK. Development of heterogeneous photocatalysts via the covalent grafting of metal complexes on various solid supports. Chem Commun (Camb) 2022; 58:11354-11377. [PMID: 36148784 DOI: 10.1039/d2cc03568e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, remarkable progress has been achieved in the development of photocatalysts owing to their high activity, selectivity, and tunable light absorption in the visible light range. Recently, heterogeneous photocatalytic systems have emerged as potential candidates due to their beneficial attributes (e.g., high surface area, ease of functionalization and facile separation). Herein, we provide a concise overview of the rational design of heterogeneous photocatalysts by grafting photoactive complexes on heterogeneous support matrices via covalent grafting and their detailed characterization techniques, which have been followed by the landmark examples of their applications. Also, major challenges and opportunities in the forthcoming progress of these appealing areas are emphasised.
Collapse
Affiliation(s)
- Pooja Rana
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Bhawna Kaushik
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kanika Solanki
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| | - Kapil Mohan Saini
- Kalindi College, University of Delhi, New Delhi, Delhi 110008, India
| | - R K Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
15
|
Entgelmeier LM, García Mancheño O. Activation Modes in Asymmetric Anion-Binding Catalysis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1846-6139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the past two decades, enantioselective anion-binding catalysis has emerged as a powerful strategy for the induction of chirality in organic transformations. The stereoselectivity is achieved in a range of different reactions by using non-covalent interactions between a chiral catalyst and an ionic substrate or intermediate, and subsequent formation of a chiral contact ion-pair upon anion-binding. This strategy offers vast possibilities in catalysis and the constant development of new reactions has led to various substrate activation approaches. This review provides an overview on the different activation modes in asymmetric anion-binding catalysis by looking at representative examples and recent advances made in this field.
Collapse
|
16
|
Shu X, Zhong D, Lin Y, Qin X, Huo H. Modular Access to Chiral α-(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling. J Am Chem Soc 2022; 144:8797-8806. [PMID: 35503417 DOI: 10.1021/jacs.2c02795] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chiral α-aryl N-heterocycles are commonly found in natural products, pharmaceutical agents, and chiral catalysts but remain challenging to access via asymmetric catalysis. Herein, we report a general and modular approach for the direct enantioselective α-arylation of saturated azacycles and acyclic N-alkyl benzamides via nickel/photoredox dual catalysis. This process exploits the hydrogen atom transfer ability of photoeliminated chlorine radicals to convert azacycles to the corresponding α-amino alkyl radicals that then are coupled with ubiquitous and inexpensive (hetero)aryl chlorides. These coupling reactions require no oxidants or organometallic reagents, feature feedstock starting materials, a broad substrate scope, and high enantioselectivities, and are applicable to late-stage diversification of medicinally relevant complex molecules. Mechanistic studies suggest that the nickel catalyst uncommonly plays multiple roles, accomplishing chlorine radical generation, α-amino radical capture, cross-coupling, and asymmetric induction.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanmei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Kersting L, Kuhn L, Anokhin M, Schuster F, Häberli C, Sambyal S, Sampath Kumar HM, Keiser J, Alabugin I, Tsogoeva SB. Visible Light‐driven Metal‐free C–H Functionalization: Access to New Bioactive Tetrahydroisoquinoline‐Butenolide Hybrids via Domino Amine Oxidation/Vinylogous Mannich Reaction. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lena Kersting
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Leah Kuhn
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Maksim Anokhin
- Friedrich-Alexander University Erlangen-Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Florian Schuster
- Friedrich Alexander University Erlangen Nuremberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemistry and Pharmacy GERMANY
| | - Cécile Häberli
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWITZERLAND
| | - Shainy Sambyal
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Divison INDIA
| | - Halmuthur M. Sampath Kumar
- IICT CSIR: Indian Institute of Chemical Technology Organic Synthesis and Process Chemistry Division INDIA
| | - Jennifer Keiser
- University of Basel: Universitat Basel Swiss Tropical and Public Health Institute SWAZILAND
| | - Igor Alabugin
- Florida State University Department of Chemistry and Biochemistry UNITED STATES
| | - Svetlana B. Tsogoeva
- Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg Department Chemie und Pharmazie Henkestrasse 42 91054 Erlangen GERMANY
| |
Collapse
|
18
|
Long CJ, He YH, Guan Z. Asymmetric oxidative Mannich reactions promoted by photocatalysis and electrochemistry. Org Biomol Chem 2022; 20:2544-2561. [PMID: 35266948 DOI: 10.1039/d2ob00054g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The asymmetric Mannich reaction is an essential method in contemporary organic chemistry. As a representative of clean and green synthesis methods, photochemical and electrochemical oxidation strategies have re-emerged in recent years, providing new ideas for asymmetric Mannich reactions. Numerous chiral β-amino carbonyl compounds have been accessed in satisfactory yields with excellent enantioselectivity via such novel asymmetric oxidative Mannich reactions. This minireview highlights plentiful advances in asymmetric oxidative Mannich reactions that rely on photoredox or anodic-oxidation and covers the literature from 2014 to date. Furthermore, the future development of this field is envisaged.
Collapse
Affiliation(s)
- Chao-Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
19
|
Zhang JL, Ma R, Zhao HH, Xu PF. Enantioselective construction of spiro-tetrahydroquinoline scaffolds through asymmetric catalytic cascade reactions. Chem Commun (Camb) 2022; 58:3493-3496. [PMID: 35191451 DOI: 10.1039/d2cc00502f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient and concise strategy has been successfully developed for merging spiro-tetrahydroquinoline with spiro-benzofuranone into a single new skeleton through asymmetric catalytic cascade reactions catalyzed by quinine-derived chiral bifunctional squaramide organocatalysts. In this approach, differently substituted spiro-tetrahydroquinoline derivatives were smoothly obtained with high yields, and excellent diastereoselectivities and enantioselectivities (up to 99% yield, up to >20 : 1 dr, up to >99% ee, 40 examples) under mild reaction conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Rui Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Huan-Huan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
20
|
Mandigma MJP, Žurauskas J, MacGregor CI, Edwards LJ, Shahin A, d'Heureuse L, Yip P, Birch DJS, Gruber T, Heilmann J, John MP, Barham JP. An organophotocatalytic late-stage N-CH 3 oxidation of trialkylamines to N-formamides with O 2 in continuous flow. Chem Sci 2022; 13:1912-1924. [PMID: 35308839 PMCID: PMC8849051 DOI: 10.1039/d1sc05840a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022] Open
Abstract
We report an organophotocatalytic, N-CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for flow processing. This allowed O2 to be harnessed as a sustainable oxidant for late-stage photocatalytic N-CH3 oxidations of complex natural products and active pharmaceutical ingredients bearing functional groups not tolerated by previous methods. The organophotocatalytic gas-liquid flow process affords cleaner reactions than in batch mode, in short residence times of 13.5 min and productivities of up to 0.65 g per day. Spectroscopic and computational mechanistic studies showed that catalyst derivatization not only enhanced solubility of the new catalyst compared to poorly-soluble DCA, but profoundly diverted the photocatalytic mechanism from singlet electron transfer (SET) reductive quenching with amines toward energy transfer (EnT) with O2.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jonas Žurauskas
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Callum I MacGregor
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Lee J Edwards
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Ludwig d'Heureuse
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Philip Yip
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - David J S Birch
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - Thomas Gruber
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jörg Heilmann
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Matthew P John
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
21
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
22
|
Liang H, Ji DS, Xu GQ, Luo YC, Zheng H, Xu PF. Metal-free, visible-light induced enantioselective three-component dicarbofunctionalization and oxytrifluoromethylation of enamines via chiral phosphoric acid catalysis. Chem Sci 2022; 13:1088-1094. [PMID: 35211274 PMCID: PMC8790774 DOI: 10.1039/d1sc06613g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Using diverse carbon-centered radical precursors and electron-rich (hetero)aromatics and alcohols as nucleophiles, a visible-light driven chiral phosphoric acid (CPA) catalyzed asymmetric intermolecular, three-component radical-initiated dicarbofunctionalization and oxytrifluoromethylation of enamines was developed, which provides a straightforward access to chiral arylmethylamines, aza-hemiacetals and γ-amino acid derivatives with excellent enantioselectivity. As far as we know, this is the first example of constructing a chiral C–O bond using simple alcohols via visible-light photocatalysis. Chiral phosphoric acid played multiple roles in the reaction, including controlling the reaction stereoselectivity and promoting the generation of radical intermediates by activating Togni's reagent. Mechanistic studies also suggested the importance of the N–H bond of the enamine and indole for the reactions. We have developed a metal-free, visible-light driven chiral phosphoric acid catalyzed asymmetric intermolecular, three-component radical-initiated dicarbofunctionalization and oxytrifluoromethylation of enamines.![]()
Collapse
Affiliation(s)
- Hui Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Dong-Sheng Ji
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University Lanzhou 730000 P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
23
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
24
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Wang D, Huang H, Zhu X. Development of Anthrazoline Photocatalyst for Promoting Amination and Amidation Reactions. Chem Commun (Camb) 2022; 58:3529-3532. [DOI: 10.1039/d1cc07315j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report the synthesis, optical and electrochemical properties of a series of organophotocatalysts bearing anthrazoline framework, as well as demonstrate their catalytic competencies in promoting C-N bond...
Collapse
|
26
|
Jiang B, Shi SL. Recent Progress in Upgrading of Alcohol and Amine via Asymmetric Dehydrogenative Coupling. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. De novo design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions. Chem Sci 2021; 12:15988-15997. [PMID: 35024122 PMCID: PMC8672711 DOI: 10.1039/d1sc05294b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023] Open
Abstract
Described here is the de novo design and synthesis of a series of 6H-dipyrido[1,2-e:2',1'-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1-5 showed their λ Abs(max) values in 433-477 nm, excited state redox potentials in 1.15-0.69 eV and -1.41 to -1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).
Collapse
Affiliation(s)
- Yameng Wan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Hao Wu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Nana Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Jie Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Wenjing Gao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 East of Construction Road Xinxiang Henan 453007 China
| |
Collapse
|
28
|
Dutta S, Li B, Rickertsen DRL, Valles DA, Seidel D. C-H Bond Functionalization of Amines: A Graphical Overview of Diverse Methods. SYNOPEN 2021; 5:173-228. [PMID: 34825124 PMCID: PMC8612105 DOI: 10.1055/s-0040-1706051] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This Graphical Review provides a concise overview of the manifold and mechanistically diverse methods that enable the functionalization of sp3 C-H bonds in amines and their derivatives.
Collapse
Affiliation(s)
- Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Bowen Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Dillon R L Rickertsen
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel A Valles
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
29
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
30
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
31
|
Fang G, Wang H, Zheng C, Pan L, Zhao G. Enantioselectivity switch in asymmetric Michael addition reactions using phosphonium salts. Org Biomol Chem 2021; 19:6334-6340. [PMID: 34231639 DOI: 10.1039/d1ob01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Efficient access to two enantiomers of one chiral compound is critical for the discovery of drugs. However, it is still a challenging problem owing to the difficulty in obtaining two enantiomers of one chiral catalyst. Here, we report a general method to obtain both enantiomeric products via fine tuning the hydrogen-bonding interactions of phosphonium salts. Amino acid derived phosphonium salts and dipeptide derived phosphonium salts exhibited different properties for controlling the transition state, which could efficiently promote the Michael addition reaction to give opposite configurations of products with high yields and enantioselectivities. Preliminary investigations on the mechanism of the reaction and applications of the products were also performed.
Collapse
Affiliation(s)
- Guosheng Fang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Hongyu Wang
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Changwu Zheng
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Lu Pan
- Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| | - Gang Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China. and Center for Excellence in Molecular Synthesis, Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 LingLing Road, Shanghai 200032, China
| |
Collapse
|
32
|
Strassfeld DA, Algera RF, Wickens ZK, Jacobsen EN. A Case Study in Catalyst Generality: Simultaneous, Highly-Enantioselective Brønsted- and Lewis-Acid Mechanisms in Hydrogen-Bond-Donor Catalyzed Oxetane Openings. J Am Chem Soc 2021; 143:9585-9594. [PMID: 34152759 PMCID: PMC8564877 DOI: 10.1021/jacs.1c03992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generality in asymmetric catalysis can be manifested in dramatic and valuable ways, such as high enantioselectivity across a wide assortment of substrates in a given reaction (broad substrate scope) or as applicability of a given chiral framework across a variety of mechanistically distinct reactions (privileged catalysts). Reactions and catalysts that display such generality hold special utility, because they can be applied broadly and sometimes even predictably in new applications. Despite the great value of such systems, the factors that underlie generality are not well understood. Here, we report a detailed investigation of an asymmetric hydrogen-bond-donor catalyzed oxetane opening with TMSBr that is shown to possess unexpected mechanistic generality. Careful analysis of the role of adventitious protic impurities revealed the participation of competing pathways involving addition of either TMSBr or HBr in the enantiodetermining, ring-opening event. The optimal catalyst induces high enantioselectivity in both pathways, thereby achieving precise stereocontrol in fundamentally different mechanisms under the same conditions and with the same chiral framework. The basis for that generality is analyzed using a combination of experimental and computational methods, which indicate that proximally localized catalyst components cooperatively stabilize and precisely orient dipolar enantiodetermining transition states in both pathways. Generality across different mechanisms is rarely considered in catalyst discovery efforts, but we suggest that it may play a role in the identification of so-called privileged catalysts.
Collapse
Affiliation(s)
- Daniel A Strassfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Russell F Algera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zachary K Wickens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Zhang JL, Ye WL, Zhang J, Hu XQ, Xu PF. Enantioselective Construction of Polycyclic Indazole Skeletons Bearing Five Consecutive Chiral Centers through an Asymmetric Triple-Reaction Sequence. Org Lett 2021; 23:5033-5038. [PMID: 34138570 DOI: 10.1021/acs.orglett.1c01559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the asymmetric construction of polycyclic indazole skeletons via enamine-imine activation and PCET activation was developed by merging organocatalysis with photocatalysis through an asymmetric triple-reaction sequence. In this process, five C-X bonds and five consecutive chiral centers were efficiently constructed. Differently substituted polycyclic indazole deriatives were successfully constructed with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wen-Long Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jie Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Comerford TA, Zysman-Colman E. Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas A. Comerford
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre EaSTCHEM School of Chemistry University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
35
|
Ao NRM, Zhu XQ, Zhao CX, Gao YR, Wang YQ. Photocatalyzed Csp 3-Csp 3 cross-dehydrogenative coupling of N-Boc-tetrahydroisoquinolines with α,β-unsaturated ketones. Org Biomol Chem 2021; 19:4752-4759. [PMID: 33978053 DOI: 10.1039/d1ob00527h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel photocatalyzed cross-dehydrogenative coupling reaction of N-Boc-tetrahydroisoquinolines with α,β-unsaturated ketones has been developed. This research provides an easy access to a variety of C1-substituted tetrahydroisoquinolines, which can be further transformed into benzo[a]-quinolizine-2-ones, the skeletons of natural products with a wide range of biological activities. The load of the photocatalyst is low and the oxidant is inexpensive and less toxic.
Collapse
Affiliation(s)
- Na-Ri-Mei Ao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Xue-Qing Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Chun-Xin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Ya-Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China.
| |
Collapse
|
36
|
Ansari A, Gorde AB, Ramapanicker R. Asymmetric synthesis of six tetrahydroisoquinoline natural products through α-amination of an aldehyde. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Zhang JL, Liu JY, Xu GQ, Luo YC, Lu H, Tan CY, Hu XQ, Xu PF. One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Org Lett 2021; 23:3287-3293. [DOI: 10.1021/acs.orglett.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
38
|
Yang WL, Liu TT, Ni T, Zhu B, Luo X, Deng WP. Iridium-Catalyzed Asymmetric Cascade Allylation/Pictet-Spengler Cyclization Reaction for the Enantioselective Synthesis of 1,3,4-Trisubstituted Tetrahydroisoquinolines. Org Lett 2021; 23:2790-2796. [PMID: 33734718 DOI: 10.1021/acs.orglett.1c00709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An iridium-catalyzed trifluoroacetic acid-promoted asymmetric cascade allylation/Pictet-Spengler cyclization reaction of azomethine ylides with aromatic allylic alcohols is reported. This protocol provides a facile and scalable method for the construction of 1,3,4-trisubstituted tetrahydroisoquinolines containing two stereogenic centers in good yields (up to 96%) with generally excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). Furthermore, a series of aromatic heterocycle-fused piperidines were also obtained with excellent enantiocontrol by this methodology.
Collapse
|
39
|
Abstract
The nature of the terminal oxidant in oxidation reactions is an important reaction variable that can profoundly impact the mechanism, efficiency, and practicality of a synthetic protocol. One might reasonably categorize catalytic oxidation reactions into either "oxygenase" type reactions, in which the oxidant serves as an atom- or group-transfer reagent, or "oxidase" type reactions, where the oxidant is involved in catalyst turnover but does not become structurally incorporated into the product. As the field of photoredox catalysis has matured over the past decade, many successful oxygenase-type photoreactions have been reported. The development of photocatalytic oxidase reactions, on the other hand, has been somewhat slower. This tutorial review presents selected examples of some of the key classes of terminal oxidants that have been used in the design of photoredox oxidase transformations, along with the mechanistic features and benefits of each.
Collapse
Affiliation(s)
- Nicholas L Reed
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
40
|
Patel SM, P EP, Bakthadoss M, Sharada DS. Photocatalytic Visible-Light-Induced Nitrogen Insertion via Dual C(sp 3)-H and C(sp 2)-H Bond Functionalization: Access to Privileged Imidazole-based Scaffolds. Org Lett 2021; 23:257-261. [PMID: 33373256 DOI: 10.1021/acs.orglett.0c03269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we have demonstrated a visible-light-mediated metal-free organic-dye-catalyzed dehydrogenative N-insertion leading to highly substituted imidazoles and privileged dihydroisoquinoline-based imidazole derivatives via C(sp3)-H and C(sp2)-H bond functionalization. A sustainable, convenient, metal-free azidation/C-H aminative cyclization approach in the absence of stoichiometric oxidants is presented. This protocol involves a rare photoinduced iminyl radical as a key intermediate for the "N" insertion.
Collapse
Affiliation(s)
- Srilaxmi M Patel
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | - Ermiya Prasad P
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | | | - Duddu S Sharada
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| |
Collapse
|
41
|
Jin LM, Xu P, Xie J, Zhang XP. Enantioselective Intermolecular Radical C-H Amination. J Am Chem Soc 2020; 142:20828-20836. [PMID: 33238707 DOI: 10.1021/jacs.0c10415] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radical reactions hold a number of inherent advantages in organic synthesis that may potentially impact the planning and practice for construction of organic molecules. However, the control of enantioselectivity in radical processes remains one of the longstanding challenges. While significant advances have recently been achieved in intramolecular radical reactions, the governing of asymmetric induction in intermolecular radical reactions still poses challenging issues. We herein report a catalytic approach that is highly effective for controlling enantioselectivity as well as reactivity of the intermolecular radical C-H amination of carboxylic acid esters with organic azides via Co(II)-based metalloradical catalysis (MRC). The key to the success lies in the catalyst development to maximize noncovalent attractive interactions through fine-tuning of the remote substituents of the D2-symmetric chiral amidoporphyrin ligand. This noncovalent interaction strategy presents a solution that may be generally applicable in controlling reactivity and enantioselectivity in intermolecular radical reactions. The Co(II)-catalyzed intermolecular C-H amination, which operates under mild conditions with the C-H substrate as the limiting reagent, exhibits a broad substrate scope with high chemoselectivity, providing effective access to valuable chiral amino acid derivatives with high enantioselectivities. Systematic mechanistic studies shed light into the working details of the underlying stepwise radical pathway for the Co(II)-based C-H amination.
Collapse
Affiliation(s)
- Li-Mei Jin
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
42
|
Guarnieri-Ibáñez A, de Aguirre A, Besnard C, Poblador-Bahamonde AI, Lacour J. Regiodivergent synthesis of pyrazino-indolines vs. triazocines via α-imino carbenes addition to imidazolidines. Chem Sci 2020; 12:1479-1485. [PMID: 34163911 PMCID: PMC8179195 DOI: 10.1039/d0sc05725h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hexahydropyrazinoindoles were prepared in a single step from N-sulfonyl triazoles and imidazolidines. Under dirhodium catalysis, α-imino carbenes were generated and formed nitrogen ylide intermediates that, after subsequent aminal opening, afforded the pyrazinoindoles predominantly via formal [1,2]-Stevens and tandem Friedel–Crafts cyclizations. Of mechanistic importance, a regiodivergent reactivity was engineered through the use of a specific unsymmetrically substituted imidazolidine that promoted the exclusive formation of 8-membered ring 1,3,6-triazocines. Based on DFT calculations, an original Curtin–Hammett-like situation was demonstrated for the mechanism. Further derivatizations led to functionalized tetrahydropyrazinoindoles in high yields. Hexahydropyrazinoindoles are prepared in a single step from N-sulfonyl triazoles and imidazolidines. Of mechanistic importance, a regiodivergent reactivity can be engineered towards the exclusive formation of 8-membered ring 1,3,6-triazocines.![]()
Collapse
Affiliation(s)
- Alejandro Guarnieri-Ibáñez
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211 Geneva 4 Switzerland
| | - Adiran de Aguirre
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211 Geneva 4 Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva Quai Ernest Ansermet 24, 1211 Geneva 4 Switzerland
| | | | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva Quai Ernest Ansermet 30, 1211 Geneva 4 Switzerland
| |
Collapse
|
43
|
Ong DY, Chen JH, Chiba S. Reductive Functionalization of Carboxamides: A Recent Update. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Derek Yiren Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jia-hua Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
44
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Asymmetric Oxidative Mannich Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
45
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
46
|
Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nat Chem 2020; 12:990-1004. [DOI: 10.1038/s41557-020-00561-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/03/2020] [Indexed: 01/28/2023]
|
47
|
Saha D. Catalytic Enantioselective Radical Transformations Enabled by Visible Light. Chem Asian J 2020; 15:2129-2152. [PMID: 32463981 DOI: 10.1002/asia.202000525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light-induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon-carbon and carbon-heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.
Collapse
Affiliation(s)
- Debajyoti Saha
- Department of Chemistry, Krishnagar Govt. College, Krishnagar, Nadia, 741101, India
| |
Collapse
|
48
|
Hong BC. Enantioselective synthesis enabled by visible light photocatalysis. Org Biomol Chem 2020; 18:4298-4353. [PMID: 32458948 DOI: 10.1039/d0ob00759e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Enantioselective photoreaction has been a synthetic challenge for decades. With the continuous development of modern visible light photocatalysis and asymmetric catalysis, remarkable advances have been achieved through the synergistic action of these catalytic reactions, allowing the construction of various enantiomerically enriched molecules that were once inaccessible using photocatalytic reactions. This review presents some of the contemporary developments in enantioselective visible-light photocatalysis reactions, covering the period from 2008 to March 2020, with the contents classified by catalysis type.
Collapse
Affiliation(s)
- Bor-Cherng Hong
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, Republic of China.
| |
Collapse
|
49
|
Yang X, Xie Z, Li Y, Zhang Y. Enantioselective aerobic oxidative cross-dehydrogenative coupling of glycine derivatives with ketones and aldehydes via cooperative photoredox catalysis and organocatalysis. Chem Sci 2020; 11:4741-4746. [PMID: 34122929 PMCID: PMC8159221 DOI: 10.1039/d0sc00683a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The combination of photoredox catalysis and enamine catalysis has enabled the development of an enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes, which provides an efficient approach for the rapid synthesis of enantiopure unnatural α-alkyl α-amino acid derivatives in good yield with excellent diastereo- (up to >99 : 1) and enantioselectivities (up to 97% ee). This process includes the direct photoinduced oxidation of glycine derivatives to an imine intermediate, followed by the asymmetric Mannich-type reaction with an enamine intermediate generated in situ from a ketone or aldehyde and a chiral secondary amine organocatalyst. This mild method allows the direct formation of a C–C bond with simultaneous installation of two new stereocenters without wasteful removal of functional groups. A visible-light-induced enantioselective aerobic oxidative cross-dehydrogenative coupling between glycine derivatives and simple ketones or aldehydes is achieved.![]()
Collapse
Affiliation(s)
- Xiaorong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University 222 Tianshui South Road Lanzhou 730000 P. R. China
| |
Collapse
|
50
|
Gao Z, Xia Z, Dai L, Ye S. N‐Heterocyclic Carbene Catalyzed Photooxidation: Intramolecular Cross Dehydrogenative Coupling of Tetrahydroisoquinoline‐Tethered Aldehydes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhong‐Hua Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
| | - Zi‐Hao Xia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|