1
|
Zhao W, Ye T, Zhou J, Zhang X, Wang K, Zhang H, Cui J, Zhang S, Wang L. Hydrogen bonding-mediated interaction underlies the enhanced membrane toxicity of chemically transformed polystyrene microplastics by cadmium. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135562. [PMID: 39178779 DOI: 10.1016/j.jhazmat.2024.135562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The global attention on microplastic pollution and its implications for human health has grown in recent years. Additionally, the co-existence of heavy metals may significantly alter microplastics' physicochemical characteristics, potentially amplifying their overall toxicity-a facet that remains less understood. In this study, we focused the membrane toxicity of modified polystyrene microplastics (PS-MPs) following cadmium (Cd) pretreatment. Our findings revealed that Cd-pretreated PS-MPs exacerbated their toxic effects, including diminished membrane integrity and altered phase fluidity in simulated lipid membrane giant unilamellar vesicles (GUVs), as well as heightened membrane permeability, protein damage, and lipid peroxidation in red blood cells and macrophages. Mechanistically, these augmented membrane toxicities can be partially ascribed to modifications in the surface roughness and hydrophilicity of Cd-pretreated PS-MPs, as well as to interactions between PS-MPs and lipid bilayers. Notably, hydrogen bonds emerged as a crucial mechanism underlying the enhanced interaction of PS-MPs with lipid bilayers.
Collapse
Affiliation(s)
- Wanqing Zhao
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Tong Ye
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Jianwen Zhou
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Ke Wang
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| | - Hong Zhang
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang 050011, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China
| | - Shuping Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University, Jinan 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250062, China.
| | - Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Hebei Key Laboratory of Pollution Prevention Biotechnology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Pan Y, Zhu Y, Ma Y, Hong J, Zhao W, Gao Y, Guan J, Ren R, Zhang Q, Yu J, Guan Z, Yang Z. Design and synthesis of nucleotidyl lipids and their application in the targeted delivery of siG12D for pancreatic cancer therapy. Biomed Pharmacother 2024; 172:116239. [PMID: 38325267 DOI: 10.1016/j.biopha.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
Nucleic acid drugs are attracting significant attention as prospective therapeutics. However, their efficacy is hindered by challenges in penetrating cell membranes and reaching target tissues, limiting their applications. Nucleotidyl lipids, with their specific intermolecular interactions such as H-bonding and π-π stacking, offer a promising solution as gene delivery vehicles. In this study, a novel series of nucleotide-based amphiphiles were synthesized. These lipid molecules possess the ability to self-assemble into spherical vesicles of appropriate size and zeta potential in aqueous solution. Furthermore, their complexes with oligonucleotides demonstrated favorable biocompatibility and exhibited antiproliferative effects against a broad range of cancer cells. Additionally, when combined with the cationic lipid CLD, these complexes displayed promising in vitro performance and in vivo efficacy. By incorporating DSPE-PEGylated cRGD into the formulation, targeted accumulation of siG12D in pancreatic cancer cells increased from approximately 6% to 18%, leading to effective treatment outcomes (intravenous administration, 1 mg/kg). This finding holds significant importance for the liposomal delivery of nucleic acid drugs to extrahepatic tissues.
Collapse
Affiliation(s)
- Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jiamei Hong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenting Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujing Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Runan Ren
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Cardellini J, Montis C, Barbero F, De Santis I, Caselli L, Berti D. Interaction of Metallic Nanoparticles With Biomimetic Lipid Liquid Crystalline Cubic Interfaces. Front Bioeng Biotechnol 2022; 10:848687. [PMID: 35372312 PMCID: PMC8964527 DOI: 10.3389/fbioe.2022.848687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
In the past decades, events occurring at the nano-bio interface (i.e., where engineered nanoparticles (NPs) meet biological interfaces such as biomembranes) have been intensively investigated, to address the cytotoxicity of nanomaterials and boost their clinical translation. In this field, lamellar synthetic model membranes have been instrumental to disentangle non-specific interactions between NPs and planar biological interfaces. Much less is known on nano-biointeractions occurring at highly curved biological interfaces, such as cubic membranes. These non-lamellar architectures play a crucial -but far from understood-role in several biological processes and occur in cells as a defence mechanism against bacterial and viral pathologies, including coronaviruses infections. Despite its relevance, the interaction of cubic membranes with nano-sized objects (such as viral pathogens, biological macromolecules and synthetic NPs) remains largely unexplored to date. Here, we address the interaction of model lipid cubic phase membranes with two prototypical classes of NPs for Nanomedicine, i.e., gold (AuNPs) and silver NPs (AgNPs). To this purpose, we challenged lipid cubic phase membranes, either in the form of dispersed nanoparticles (i.e., cubosomes) or solid-supported layers of nanometric thickness, with citrate-stabilized AuNPs and AgNPs and monitored the interaction combining bulk techniques (UV-visible spectroscopy, Light and Synchrotron Small-Angle X-ray Scattering) with surface methods (Quartz Crystal Microbalance and Confocal Laser Scanning Microscopy). We show that the composition of the metal core of NPs (i.e., Au vs Ag) modulates their adsorption and self-assembly at cubic interfaces, leading to an extensive membrane-induced clustering of AuNPs, while only to a mild adsorption of isolated AgNPs. Such differences mirror opposite effects at the membrane level, where AuNPs induce lipid extraction followed by a fast disruption of the cubic assembly, while AgNPs do not affect the membrane morphology. Finally, we propose an interaction mechanism accounting for the different behaviour of AuNPs and AgNPs at the cubic interface, highlighting a prominent role of NPs’ composition and surface chemistry in the overall interaction mechanism.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Barbero
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry, University of Turin, Turin, Italy
| | - Ilaria De Santis
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| | - Lucrezia Caselli
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Lucrezia Caselli,
| | - Debora Berti
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
- CSGI, Consorzio Sistemi a Grande Interfase, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Advanced Static and Dynamic Fluorescence Microscopy Techniques to Investigate Drug Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13060861. [PMID: 34208080 PMCID: PMC8230741 DOI: 10.3390/pharmaceutics13060861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the past decade(s), fluorescence microscopy and laser scanning confocal microscopy (LSCM) have been widely employed to investigate biological and biomimetic systems for pharmaceutical applications, to determine the localization of drugs in tissues or entire organisms or the extent of their cellular uptake (in vitro). However, the diffraction limit of light, which limits the resolution to hundreds of nanometers, has for long time restricted the extent and quality of information and insight achievable through these techniques. The advent of super-resolution microscopic techniques, recognized with the 2014 Nobel prize in Chemistry, revolutionized the field thanks to the possibility to achieve nanometric resolution, i.e., the typical scale length of chemical and biological phenomena. Since then, fluorescence microscopy-related techniques have acquired renewed interest for the scientific community, both from the perspective of instrument/techniques development and from the perspective of the advanced scientific applications. In this contribution we will review the application of these techniques to the field of drug delivery, discussing how the latest advancements of static and dynamic methodologies have tremendously expanded the experimental opportunities for the characterization of drug delivery systems and for the understanding of their behaviour in biologically relevant environments.
Collapse
|
5
|
Chen M, Dong F, Li H, Zhao Y, Ou S, Liu M, Zhang W. Interface interaction between high-siliceous/calcareous mineral granules and model cell membranes dominated by electrostatic force. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27432-27445. [PMID: 33506418 DOI: 10.1007/s11356-021-12584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
High-siliceous/calcareous mineral granules may cause cytotoxicity by attaching to cell membranes. In this research, giant (GUVs) and small unilamellar vesicles (SUVs) were used as model membranes for studying the interaction between high-siliceous/calcareous mineral granules (micro calcite, micro quartz, nano calcium carbonate, and nano silica) and artificial membranes. Confocal laser scanning microscopy (CLSM) and fluorescence labeling experiments suggest that nano calcium carbonate (nano CaCO3) and nano silica (nano SiO2) induce gelation by disrupting the oppositely charged membranes, indicating the important role of electrostatic forces. Thereby, the mineral granule size affects the electrostatic interactions and thus leading to the damage of the membranes. FTIR spectra and molecular dynamics reveal that mineral granules mainly interact with -PO2-, -OH, and -C-N(CH3)3+ groups in phospholipids. The electrostatic force between nano minerals and phospholipids is greater in the case SiO2 when compared to CaCO3. Moreover, nano SiO2 forms the strongest hydrogen bond with the -PO2- group as confirmed by FTIR. Thus, nano SiO2 causes the greatest damage to membranes. This research provides a deeper understanding of the mechanism regarding the interaction between inhalable mineral granules and cell membranes.
Collapse
Affiliation(s)
- Mulan Chen
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010, People's Republic of China.
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Hailong Li
- Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education of China, Mianyang, 621010, People's Republic of China
| | - Yulian Zhao
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Shi Ou
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Mingxue Liu
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.
| | - Wei Zhang
- Analytical and Testing Center, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| |
Collapse
|
6
|
Gabdrakhmanov DR, Kuznetsova DA, Saifina LF, Shulaeva MM, Semenov VE, Zakharova LY. Novel dicationic pyrimidine-based nucleolipid bearing piperidine head groups: Synthesis, aggregation behavior, solubilization capacity and interaction with DNA decamer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Zhu B, Wei X, Song J, Zhang Q, Jiang W. Crystalline phase and surface coating of Al 2O 3 nanoparticles and their influence on the integrity and fluidity of model cell membranes. CHEMOSPHERE 2020; 247:125876. [PMID: 31978652 DOI: 10.1016/j.chemosphere.2020.125876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 05/28/2023]
Abstract
Aluminium oxide nanoparticles (Al2O3 NPs) potentially cause health hazards after their release into the environment. The crystalline phase of Al2O3 NPs determines their surface structure and the number of functional groups. The adsorption of natural organic matter (NOM) or biomolecules on the surface Al2O3 NPs also alters their surface properties and subsequent interactions with organisms. In this study, the roles of the Al2O3 crystalline phase and the surface coating of the nanoparticles on the membrane integrity and fluidity were investigated. Giant and small unilamellar vesicles (GUVs and SUVs) were prepared as model cell membranes to detect membrane disruption after exposure to Al2O3 NPs. Due to amorphous structure and high surface activity of γ-Al2O3 NPs, they had a stronger affinity with the membrane and caused more serious membrane rupture than that of α-Al2O3 NPs. The deposition of Al2O3 NPs on the membrane and the induced membrane disruption were monitored by a quartz crystal microbalance with dissipation (QCM-D) method. HA-coated Al2O3 NPs disrupted the SUV layer on the QCM-D sensor, while BSA-coated Al2O3 NPs only adhered to the membrane and induced unremarkable vesicle disruption. In addition, untreated γ-Al2O3 NPs induced remarkable gelation of a negatively charged membrane, but other types of Al2O3 NPs caused negligible membrane phase changes. The outcomes of this study demonstrate that the crystalline phase of the Al2O3 NPs affects the integrity and fluidity of cell membranes. The protein coatings on the NPs weaken the NP-membrane interaction, while HA coatings increase the damage of the NP-induced interaction.
Collapse
Affiliation(s)
- Bao Zhu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaoran Wei
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Jian Song
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qiu Zhang
- School of Environmental Sciences and Engineering, Shandong University, Qingdao, 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Vasti C, Ambroggio E, Rojas R, Giacomelli CE. A closer look into the physical interactions between lipid membranes and layered double hydroxide nanoparticles. Colloids Surf B Biointerfaces 2020; 191:110998. [PMID: 32244154 DOI: 10.1016/j.colsurfb.2020.110998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
Layered double hydroxide nanoparticles (LDH-NPs) constitute promising nanocarriers for drug and gene delivery. Although their cell internalization has been studied, the interaction between LDH-NPs and biological membrane models, such as giant unilamellar vesicles (GUVs), remains unexplored. These vesicles are widely-used membrane models that allow minimizing the complexity and uncertainty associated with biological systems to study the physical interactions in the absence of cell metabolism effects. With such an approach the physicochemical properties of the membrane can be differentiated from the biological functionalities involved in cell internalization and the membrane-mediated internalization can be directly understood. In this work, we describe for the first time the interaction of LDH-NPs with freestanding negatively charged POPC:POPS GUVs by fluorescence microscopy. The experiments were performed with fluorescein labeled LDH-NPs of about 100 nm together with different fluorophores in order to evaluate the NPs interactions with the vesicles as well as their impact on the membrane morphology and permeability. Positively charged LDH-NPs are electrostatically accumulated at the GUVs membrane, altering its lateral phospholipid distribution and increasing the stiffness and permeability of the membrane. The adsorption of albumin (LDH@ALB) or polyacrylic acid (LDH@PA) passivates the surface of LDH-NPs eliminating long-range electrostatic attraction. The absence of membrane-mediated internalization of either LDH@ALB or LDH@PA, represents an advantage in the use of LDH-NPs as drug or nucleic acids nanocarriers, because suitable functionalization will allow an optimal cell targeting.
Collapse
Affiliation(s)
- Cecilia Vasti
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, Departamento de Fisicoquímica, CONICET, INFIQC, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ernesto Ambroggio
- Departamento de Química Biológica Ranwel Caputto, CONICET, CIQUIBIC, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Ricardo Rojas
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, Departamento de Fisicoquímica, CONICET, INFIQC, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - Carla E Giacomelli
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas, Departamento de Fisicoquímica, CONICET, INFIQC, Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
9
|
Rouquette M, Lepetre-Mouelhi S, Couvreur P. Adenosine and lipids: A forced marriage or a love match? Adv Drug Deliv Rev 2019; 151-152:233-244. [PMID: 30797954 DOI: 10.1016/j.addr.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/21/2022]
Abstract
Adenosine is a fascinating compound, crucial in many biochemical processes: this ubiquitous nucleoside serves as an essential building block of RNA, is also a component of ATP and regulates numerous pathophysiological mechanisms via binding to four extracellular receptors. Due to its hydrophilic nature, it belongs to a different world than lipids, and has no affinity for them. Since the 1970's, however, new discoveries have emerged and prompted the scientific community to associate adenosine with the lipid family, especially via liposomal preparations and bioconjugation. This seems to be an arranged marriage, but could it turn into a true love match? This review considered all types of unions established between adenosine and lipids. Even though exciting supramolecular structures were observed with adenosine-lipid conjugates, as well as with liposomal preparations which resulted in promising pre-clinical results, the translation of these technologies to the clinic is still limited.
Collapse
|
10
|
The polyplex, protein corona, cell interplay: Tips and drawbacks. Colloids Surf B Biointerfaces 2018; 168:60-67. [DOI: 10.1016/j.colsurfb.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
|
11
|
Zeng Y, Wang Q, Zhang Q, Jiang W. Quantification of C60-induced membrane disruption using a quartz crystal microbalance. RSC Adv 2018; 8:9841-9849. [PMID: 35540840 PMCID: PMC9078712 DOI: 10.1039/c7ra13690k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/03/2018] [Indexed: 11/28/2022] Open
Abstract
Direct contact between fullerene C60 nanoparticles (NPs) and cell membranes is one of mechanisms for its cytotoxicity. In this study, the influence of C60 NPs on lipid membranes was investigated. Giant unilamellar vesicles (GUVs) were used as model cell membranes to observe the membrane disruption after C60 exposure. C60 NPs disrupted the positively charged GUVs but not the negatively charged vesicles, confirming the role of electrostatic forces. To quantify the C60 adhesion on membrane and the induced membrane disruption, a supported lipid bilayer (SLB) and a layer of small unilamellar vesicles (SUVs) were used to cover the sensor of a quartz crystal microbalance (QCM). The mass change on the SLB (ΔmSLB) was caused by the C60 adhesion on the membrane, while the mass change on the SUV layer (ΔmSUV) was the combined result of C60 adhesion (mass increase) and SUV disruption (mass loss). The surface area of SLB (ASLB) was much smaller than the surface area of SUV (ASUV), but ΔmSLB was larger than ΔmSUV after C60 deposition, indicating that C60 NPs caused remarkable membrane disruption. Therefore a new method was built to quantify the degree of NP-induced membrane disruption using the values of ΔmSUV/ΔmSLB and ASUV/ASLB. In this way, C60 can be compared with other types of NPs to know which one causes more serious membrane disruption. In addition, C60 NPs caused negligible change in the membrane phase, indicating that membrane gelation was not the mechanism of cytotoxicity for C60 NPs. This study provides important information to predict the environmental hazard presented by fullerene NPs and to evaluate the degree of membrane damage caused by different NPs. Fullerene C60 NPs adhere on lipid membrane due to electrostatic force and cause membrane disruption.![]()
Collapse
Affiliation(s)
- Yuxuan Zeng
- Environment Research Institute
- Shandong University
- Jinan
- China
| | - Qi Wang
- Environment Research Institute
- Shandong University
- Jinan
- China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- China
| | - Wei Jiang
- Environment Research Institute
- Shandong University
- Jinan
- China
| |
Collapse
|
12
|
Neubauer R, Höhn S, Dulle M, Lapp A, Schulreich C, Hellweg T. Protein diffusion in a bicontinuous microemulsion: inducing sub-diffusion by tuning the water domain size. SOFT MATTER 2017; 13:1998-2003. [PMID: 28197579 DOI: 10.1039/c6sm02107g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the diffusion of an enhanced green fluorescent protein (GFP+) in bicontinuous sugar-surfactant based microemulsions. The size of the water domains in such systems is controlled by changes of the oil-to-water ratio. Hence, microemulsions allow to produce confinement effects in a controlled way. At high water content the protein is found to exhibit Fickian diffusion. Decreasing the water domain size leads to a slowing down of the protein diffusion and sub-diffusive behavior is obtained on the scale observed by fluorescence correlation spectroscopy. Further decrease of the water domain size finally nearly fixes the GFP+ in these domains and forces it to increasingly follow the breathing mode of the microemulsion matrix.
Collapse
Affiliation(s)
- Ralph Neubauer
- Universität Bayreuth, Physikalische Chemie I, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Sebastian Höhn
- Universität Bayreuth, Physikalische Chemie I, Universitätsstr. 30, D-95447 Bayreuth, Germany and Universität Bielefeld, Physikalische und Biophysikalische Chemie, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Martin Dulle
- Universität Bayreuth, Physikalische Chemie I, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Alain Lapp
- Laboratoire Léon Brillouin, CE Saclay, Gif sur Yvette, France
| | - Christoph Schulreich
- Universität Bielefeld, Physikalische und Biophysikalische Chemie, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | - Thomas Hellweg
- Universität Bielefeld, Physikalische und Biophysikalische Chemie, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
13
|
Boccalini G, Conti L, Montis C, Bani D, Bencini A, Berti D, Giorgi C, Mengoni A, Valtancoli B. Methylene blue-containing liposomes as new photodynamic anti-bacterial agents. J Mater Chem B 2017; 5:2788-2797. [DOI: 10.1039/c6tb03367a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel cationic liposomes containing the photo-activatable drug methylene blue (MB) strongly enhance the antibacterial activity of MB towards Gram-negative bacteria and improve biofilm penetration.
Collapse
Affiliation(s)
- Giulia Boccalini
- Department of Experimental & Clinical Medicine
- Research Unit of Histology & Embryology
- University of Florence
- Italy
| | - Luca Conti
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Costanza Montis
- Department of Chemistry Ugo Schiff and CSGI
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine
- Research Unit of Histology & Embryology
- University of Florence
- Italy
| | - Andrea Bencini
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Debora Berti
- Department of Chemistry Ugo Schiff and CSGI
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Claudia Giorgi
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Alessio Mengoni
- Department of Biology
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| | - Barbara Valtancoli
- Department of Chemistry Ugo Schiff
- University of Florence
- Sesto Fiorentino (FI)
- Italy
| |
Collapse
|
14
|
Montis C, Gerelli Y, Fragneto G, Nylander T, Baglioni P, Berti D. Nucleolipid bilayers: A quartz crystal microbalance and neutron reflectometry study. Colloids Surf B Biointerfaces 2016; 137:203-13. [DOI: 10.1016/j.colsurfb.2015.07.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
15
|
Smeazzetto S, Tadini-Buoninsegni F, Thiel G, Berti D, Montis C. Phospholamban spontaneously reconstitutes into giant unilamellar vesicles where it generates a cation selective channel. Phys Chem Chem Phys 2015; 18:1629-36. [PMID: 26673394 DOI: 10.1039/c5cp05893g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phospholamban (PLN) is a small integral membrane protein, which modulates the activity of the Sarcoplasmic Reticulum Ca(2+)-ATPase (SERCA) of cardiac myocytes. PLN, as a monomer, can directly interact and tune SERCA activity, but the physiological function of the pentameric form is not yet fully understood and still debated. In this work, we reconstituted PLN in Giant Unilamellar Vesicles (GUVs), a simple and reliable experimental model system to monitor the activity of proteins in membranes. By Laser Scanning Confocal Microscopy (LSCM) and Fluorescence Correlation Spectroscopy (FCS) we verified a spontaneous reconstitution of PLN into the phospholipid bilayer. In parallel experiments, we measured with the patch clamp technique canonical ion channel fluctuations, which highlight a preference for Cs(+) over K(+) and do not conduct Ca(2+). The results prove that PLN forms, presumably in its pentameric form, a cation selective ion channel.
Collapse
Affiliation(s)
- S Smeazzetto
- Department of Chemistry "Ugo Schiff", University of Florence, Firenze, Italy
| | | | | | | | | |
Collapse
|
16
|
Magnetocubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci 2015; 449:317-26. [DOI: 10.1016/j.jcis.2014.11.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 11/18/2022]
|
17
|
Werz E, Rosemeyer H. Terminal lipophilization of a unique DNA dodecamer by various nucleolipid headgroups: Their incorporation into artificial lipid bilayers and hydrodynamic properties. Beilstein J Org Chem 2015; 11:913-29. [PMID: 26124894 PMCID: PMC4464448 DOI: 10.3762/bjoc.11.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
A series of six cyanine-5-labeled oligonucleotides (LONs 10-15), each terminally lipophilized with different nucleolipid head groups, were synthesized using the recently prepared phosphoramidites 4b-9b. The insertion of the LONs within an artificial lipid bilayer, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), was studied by single molecule fluorescence spectroscopy and microscopy with the help of an optically transparent microfluidic sample carrier with perfusion capabilities. The incorporation of the lipo-oligonucleotides into the bilayer was studied with respect to efficiency (maximal bilayer brightness) as well as stability against perfusion (final stable bilayer brightness). Attempts to correlate these parameters with the log P values of the corresponding nucleolipid head groups failed, a result which clearly demonstrates that not only the lipophilicity but mainly the chemical structure and topology of the head group is of decisive importance for the optimal interaction of a lipo-oligonucleotide with an artificial lipid bilayer. Moreover, fluorescence half-live and diffusion time values were measured to determine the diffusion coefficients of the lipo-oligonucleotides.
Collapse
Affiliation(s)
- Emma Werz
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany ; Ionovation GmbH, Westerbreite 7, 49078 Osnabrück, Germany
| | - Helmut Rosemeyer
- Organic Chemistry I - Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
| |
Collapse
|
18
|
Wei X, Jiang W, Yu J, Ding L, Hu J, Jiang G. Effects of SiO2 nanoparticles on phospholipid membrane integrity and fluidity. JOURNAL OF HAZARDOUS MATERIALS 2015; 287:217-224. [PMID: 25661168 DOI: 10.1016/j.jhazmat.2015.01.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 01/03/2015] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
Silicon nanoparticles (NPs) are widely used nanomaterials and reported to have pathogenicity. Effects of five different SiO2 NPs on the membrane integrity and fluidity were studied using giant unilamellar vesicles (GUVs) as model cell membranes. GUVs were made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by gentle hydration method, and adjusted to be positively- or negatively-charged by adding charged lipids into vesicles. SiO2 NPs caused more serious damage to oppositely-charged membrane because electrostatic attraction favored the hydrogen bonding to the phospholipids. Increase in NP exposure dose/time and NP sedimentation process aggravated the membrane damage. The membrane phases were evaluated applying the fluorescent probe Laurdan and the calculated generalized polarization (GP) values. Anionic SiO2 NPs increased the GP value and induced membrane gelation. Cationic SiO2 NPs did not change the phase of positively-charged GUV and pure DOPC vesicles, but induced the gelation of negatively-charged GUV. Break of membrane integrity and change in membrane phase are possible mechanisms of cytotoxicity because cellular physiological activities require a separated intracellular environment and a fluid membrane phase to support proteins and regulate molecular transport.
Collapse
Affiliation(s)
- Xiaoran Wei
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Jinan 250100, China.
| | - Junchao Yu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Lei Ding
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jingtian Hu
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Tittel J, Welz T, Czogalla A, Dietrich S, Samol-Wolf A, Schulte M, Schwille P, Weidemann T, Kerkhoff E. Membrane targeting of the Spir·formin actin nucleator complex requires a sequential handshake of polar interactions. J Biol Chem 2015; 290:6428-44. [PMID: 25564607 DOI: 10.1074/jbc.m114.602672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spir and formin (FMN)-type actin nucleators initiate actin polymerization at vesicular membranes necessary for long range vesicular transport processes. Here we studied in detail the membrane binding properties and protein/protein interactions that govern the assembly of the membrane-associated Spir·FMN complex. Using biomimetic membrane models we show that binding of the C-terminal Spir-2 FYVE-type zinc finger involves both the presence of negatively charged lipids and hydrophobic contributions from the turret loop that intrudes the lipid bilayer. In solution, we uncovered a yet unknown intramolecular interaction between the Spir-2 FYVE-type domain and the N-terminal kinase non-catalytic C-lobe domain (KIND) that could not be detected in the membrane-bound state. Interestingly, we found that the intramolecular Spir-2 FYVE/KIND and the trans-regulatory Fmn-2-FSI/Spir-2-KIND interactions are competitive. We therefore characterized co-expressed Spir-2 and Fmn-2 fluorescent protein fusions in living cells by fluorescence cross-correlation spectroscopy. The data corroborate a model according to which Spir-2 exists in two different states, a cytosolic monomeric conformation and a membrane-bound state in which the KIND domain is released and accessible for subsequent Fmn-2 recruitment. This sequence of interactions mechanistically couples membrane binding of Spir to the recruitment of FMN, a pivotal step for initiating actin nucleation at vesicular membranes.
Collapse
Affiliation(s)
- Janine Tittel
- From the Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany, Biotechnology Center (BIOTEC), Biophysics Research Group and
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and
| | - Aleksander Czogalla
- Paul Langerhans Institute, Technische Universität (TU) Dresden, Tatzberg 47-51, D-01307 Dresden, Germany, German Center for Diabetes Research (Deutsches Zentrum für Diabetesforschung), 85764 Neuherberg, Germany
| | - Susanne Dietrich
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and
| | - Annette Samol-Wolf
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and
| | - Markos Schulte
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and
| | - Petra Schwille
- From the Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany, Biotechnology Center (BIOTEC), Biophysics Research Group and
| | - Thomas Weidemann
- From the Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany, Biotechnology Center (BIOTEC), Biophysics Research Group and
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany, and
| |
Collapse
|
20
|
Werz E, Rosemeyer H. Specific DNA duplex formation at an artificial lipid bilayer: fluorescence microscopy after Sybr Green I staining. Beilstein J Org Chem 2014; 10:2307-21. [PMID: 25298798 PMCID: PMC4187062 DOI: 10.3762/bjoc.10.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
The article describes the immobilization of different probe oligonucleotides (4, 7, 10) carrying each a racemic mixture of 2,3-bis(hexadecyloxy)propan-1-ol (1a) at the 5'-terminus on a stable artificial lipid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The bilayer separates two compartments (cis/trans channel) of an optical transparent microfluidic sample carrier with perfusion capabilities. Injection of unlabeled target DNA sequences (6, 8, or 9), differing in sequence and length, leads in the case of complementarity to the formation of stable DNA duplexes at the bilayer surface. This could be verified by Sybr Green I double strand staining, followed by incubation periods and thorough perfusions, and was visualized by single molecule fluorescence spectroscopy and microscopy. The different bilayer-immobilized complexes consisting of various DNA duplexes and the fluorescent dye were studied with respect to the kinetics of their formation as well as to their stability against perfusion.
Collapse
Affiliation(s)
- Emma Werz
- Organic Materials Chemistry and Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany ; Ionovation GmbH, Westerbreite 7 (CUT), D-49084 Osnabrück, Germany
| | - Helmut Rosemeyer
- Organic Materials Chemistry and Bioorganic Chemistry, Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany
| |
Collapse
|
21
|
Montis C, Sostegni S, Milani S, Baglioni P, Berti D. Biocompatible cationic lipids for the formulation of liposomal DNA vectors. SOFT MATTER 2014; 10:4287-4297. [PMID: 24788854 DOI: 10.1039/c4sm00142g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ethylphosphocholine lipids are highly biocompatible cationic amphiphiles that can be used for the formulation of liposomal DNA vectors, with negligible toxic effects on cells and organisms. Here we report the characterization of EDPPC (1,2-dipalmitoyl-sn-glycero-O-ethyl-3-phosphocholine chloride) liposomes, containing two different zwitterionic helper lipids, POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine). Depending on the nature of the helper lipid, a phase separation in the bilayer is found at room temperature, where domains enriched in the cationic component coexist in a relatively large temperature range with regions where the zwitterionic lipids are predominant. We studied DNA complexation, the internal structure of lipoplexes and their docking and fusogenic ability with model target bilayers. The structural and functional modifications caused by DNA binding were studied using Dynamic Light Scattering (DLS), zeta potential, and small and wide angle X-ray scattering (SAXS-WAXS) measurements, while the interaction with membranes was assessed by using Giant Unilamellar Vesicles (GUVs) as model target bilayers. The results presented establish a connection between the physicochemical properties of lipid bilayers, and in particular of lipid demixing, with the phase state of the complexes and their ability to interact with model membranes.
Collapse
Affiliation(s)
- Costanza Montis
- CSGI and Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | |
Collapse
|
22
|
Montis C, Maiolo D, Alessandri I, Bergese P, Berti D. Interaction of nanoparticles with lipid membranes: a multiscale perspective. NANOSCALE 2014; 6:6452-7. [PMID: 24807475 DOI: 10.1039/c4nr00838c] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.
Collapse
Affiliation(s)
- Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | |
Collapse
|