1
|
Zheng JA, Holmes-Cerfon M, Pine DJ, Marbach S. Hopping and crawling DNA-coated colloids. Proc Natl Acad Sci U S A 2024; 121:e2318865121. [PMID: 39352927 PMCID: PMC11474044 DOI: 10.1073/pnas.2318865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the motion of particles with multivalent ligand-receptors is important for biomedical applications and material design. Yet, even among a single design, the prototypical DNA-coated colloids, seemingly similar micrometric particles hop or roll, depending on the study. We shed light on this problem by observing DNA-coated colloids diffusing near surfaces coated with complementary strands for a wide array of coating designs. We find colloids rapidly switch between 2 modes: They hop-with long and fast steps-and crawl-with short and slow steps. Both modes occur at all temperatures around the melting point and over various designs. The particles become increasingly subdiffusive as temperature decreases, in line with subsequent velocity steps becoming increasingly anticorrelated, corresponding to switchbacks in the trajectories. Overall, crawling (or hopping) phases are more predominant at low (or high) temperatures; crawling is also more efficient at low temperatures than hopping to cover large distances. We rationalize this behavior within a simple model: At lower temperatures, the number of bound strands increases, and detachment of all bonds is unlikely, hence, hopping is prevented and crawling favored. We thus reveal the mechanism behind a common design rule relying on increased strand density for long-range self-assembly: Dense strands on surfaces are required to enable crawling, possibly facilitating particle rearrangements.
Collapse
Affiliation(s)
| | - Miranda Holmes-Cerfon
- Department of Mathematics, University of British Columbia, Vancouver, BCV6T 1Z2, Canada
| | - David J. Pine
- Department of Physics, New York University, New York, NY10003
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY11201
| | - Sophie Marbach
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
- Department of Chemistry, CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, ParisF-75005, France
| |
Collapse
|
2
|
Hamming PHE, Overeem NJ, Diestelhorst K, Fiers T, Tieke M, Vos GM, Boons GJPH, van der Vries E, Block S, Huskens J. Receptor Density-Dependent Motility of Influenza Virus Particles on Surface Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25066-25076. [PMID: 37167605 DOI: 10.1021/acsami.3c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Influenza viruses can move across the surface of host cells while interacting with their glycocalyx. This motility may assist in finding or forming locations for cell entry and thereby promote cellular uptake. Because the binding to and cleavage of cell surface receptors forms the driving force for the process, the surface-bound motility of influenza is expected to be dependent on the receptor density. Surface gradients with gradually varying receptor densities are thus a valuable tool to study binding and motility processes of influenza and can function as a mimic for local receptor density variations at the glycocalyx that may steer the directionality of a virus particle in finding the proper site of uptake. We have tracked individual influenza virus particles moving over surfaces with receptor density gradients. We analyzed the extracted virus tracks first at a general level to verify neuraminidase activity and subsequently with increasing detail to quantify the receptor density-dependent behavior on the level of individual virus particles. While a directional bias was not observed, most likely due to limitations of the steepness of the surface gradient, the surface mobility and the probability of sticking were found to be significantly dependent on receptor density. A combination of high surface mobility and high dissociation probability of influenza was observed at low receptor densities, while the opposite occurred at higher receptor densities. These properties result in an effective mechanism for finding high-receptor density patches, which are believed to be a key feature of potential locations for cell entry.
Collapse
Affiliation(s)
- P H Erik Hamming
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Nico J Overeem
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kevin Diestelhorst
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tren Fiers
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Malte Tieke
- Division of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Gaël M Vos
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Erhard van der Vries
- Division of Virology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
3
|
Li X, Feng K, Li L, Yang L, Pan X, Yazd HS, Cui C, Li J, Moroz L, Sun Y, Wang B, Li X, Huang T, Tan W. Lipid-oligonucleotide conjugates for bioapplications. Natl Sci Rev 2020; 7:1933-1953. [PMID: 34691533 PMCID: PMC8290939 DOI: 10.1093/nsr/nwaa161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 07/08/2020] [Indexed: 11/12/2022] Open
Abstract
Lipid-oligonucleotide conjugates (LONs) are powerful molecular-engineering materials for various applications ranging from biosensors to biomedicine. Their unique amphiphilic structures enable the self-assembly and the conveyance of information with high fidelity. In particular, LONs present remarkable potential in measuring cellular mechanical forces and monitoring cell behaviors. LONs are also essential sensing tools for intracellular imaging and have been employed in developing cell-surface-anchored DNA nanostructures for biomimetic-engineering studies. When incorporating therapeutic oligonucleotides or small-molecule drugs, LONs hold promise for targeted therapy. Moreover, LONs mediate the controllable assembly and fusion of vesicles based on DNA-strand displacements, contributing to nanoreactor construction and macromolecule delivery. In this review, we will summarize the general synthesis strategies of LONs, provide some characterization analysis and emphasize recent advances in bioanalytical and biomedical applications. We will also consider the relevant challenges and suggest future directions for building better functional LONs in nanotechnology and materials-science applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Kejun Feng
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Long Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiaoshu Pan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Leonid Moroz
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Yujia Sun
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Bang Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Tong Huang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611–7200, USA
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
4
|
Zhang H, Xu X, Jiang W. An interparticle relatively motional DNA walker and its sensing application. Chem Sci 2020; 11:7415-7423. [PMID: 34123022 PMCID: PMC8159414 DOI: 10.1039/d0sc00109k] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA molecular machines are DNA self-assemblies that perform quasi-mechanical movement at the micro-nano scale, and have attracted increasing attention in the fields of biosensing, drug delivery and biocomputing. Herein, we report the concept and operation of an interparticle relatively motional DNA walker. The walker is composed of walking particles (WPs) and track particles (TPs). The WPs and TPs are obtained by respective functionalization of locked walking strands containing DNAzyme sequences and fluorophore-labelled track strands containing substrate sequences onto gold nanoparticles (AuNPs). Triggered by the target that specifically unlocks the walking strand, the liberated walking strands cooperatively hybridize with the track strands. The track strand gets cleaved by the DNAzyme, accompanied by the fluorophore release. The adjacent walking strand on the WP subsequently hybridizes to the next track strand, inducing the relative motion of the WP around the TP. After walking along the surface of one TP, the WP can continue to interact with another TP. As a result of the improved moving freedom and area, the interparticle motional mode induces high continuity and achieves large signal accumulation. Taking Zika virus RNA fragments (ZIKV-RNA) as a model target, the DNA walker shows a high sensitivity with a detection limit of 118 pM, and can reliably detect the target in biological fluids due to the stability of its components. The constructed DNA walker provides a new type of free and robust motion mode between particles and holds potential in clinical diagnosis.
Collapse
Affiliation(s)
- Hong Zhang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan P. R. China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan P. R. China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan P. R. China
| |
Collapse
|
5
|
Qi S. Particle Penetration into Polydisperse Polymer Brushes: A Theoretical Analysis. MACROMOL THEOR SIMUL 2017. [DOI: 10.1002/mats.201700029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuanhu Qi
- Institut für Physik; Johannes Gutenberg-Universität Mainz; Staudingerweg 7 55099 Mainz Germany
| |
Collapse
|
6
|
Sciortino F. Three-body potential for simulating bond swaps in molecular dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:3. [PMID: 28083792 DOI: 10.1140/epje/i2017-11496-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/19/2016] [Indexed: 05/24/2023]
Abstract
Novel soft matter materials join the resistance of a permanent mesh of strong inter-particle bonds with the self-healing and restructuring properties allowed by bond-swapping processes. Theoretical and numerical studies of the dynamics of coarse-grained models of covalent adaptable networks and vitrimers require effective algorithms for modelling the corresponding evolution of the network topology. Here I propose a simple trick for performing molecular dynamics simulations of bond-swapping network systems with particle-level description. The method is based on the addition of a computationally non-expensive three-body repulsive potential that encodes for the single-bond per particle condition and establishes a flat potential energy surface for the bond swap.
Collapse
Affiliation(s)
- Francesco Sciortino
- Physics Department, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185, Rome, Italy.
| |
Collapse
|
7
|
Parolini L, Kotar J, Di Michele L, Mognetti BM. Controlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanism. ACS NANO 2016; 10:2392-8. [PMID: 26845414 DOI: 10.1021/acsnano.5b07201] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The selectivity of Watson-Crick base pairing has allowed the design of DNA-based functional materials bearing an unprecedented level of accuracy. Examples include DNA origami, made of tiles assembling into arbitrarily complex shapes, and DNA coated particles featuring rich phase behaviors. Frequently, the realization of conceptual DNA-nanotechnology designs has been hampered by the lack of strategies for effectively controlling relaxations. In this article, we address the problem of kinetic control on DNA-mediated interactions between Brownian objects. We design a kinetic pathway based on toehold-exchange mechanisms that enables rearrangement of DNA bonds without the need for thermal denaturation, and test it on suspensions of DNA-functionalized liposomes, demonstrating tunability of aggregation rates over more than 1 order of magnitude. While the possibility to design complex phase behaviors using DNA as a glue is already well recognized, our results demonstrate control also over the kinetics of such systems.
Collapse
Affiliation(s)
- Lucia Parolini
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Jurij Kotar
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bortolo M Mognetti
- Interdisciplinary Center for Nonlinear Phenomena and Complex Systems & Service de Physique des Systémes Complexes et Mécanique Statistique, Université Libre de Bruxelles (ULB) , Campus Plaine, CP 231, Blvd du Triomphe, B-1050 Brussels, Belgium
| |
Collapse
|
8
|
Angioletti-Uberti S, Mognetti BM, Frenkel D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys Chem Chem Phys 2016; 18:6373-93. [PMID: 26862595 DOI: 10.1039/c5cp06981e] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By exploiting the exquisite selectivity of DNA hybridization, DNA-coated colloids (DNACCs) can be made to self-assemble in a wide variety of structures. The beauty of this system stems largely from its exceptional versatility and from the fact that a proper choice of the grafted DNA sequences yields fine control over the colloidal interactions. Theory and simulations have an important role to play in the optimal design of self assembling DNACCs. At present, the powerful model-based design tools are not widely used, because the theoretical literature is fragmented and the connection between different theories is often not evident. In this Perspective, we aim to discuss the similarities and differences between the different models that have been described in the literature, their underlying assumptions, their strengths and their weaknesses. Using the tools described in the present Review, it should be possible to move towards a more rational design of novel self-assembling structures of DNACCs and, more generally, of systems where ligand-receptor are used to control interactions.
Collapse
Affiliation(s)
- Stefano Angioletti-Uberti
- International Research Centre for Soft Matter, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | | | | |
Collapse
|
9
|
Angioletti-Uberti S, Varilly P, Mognetti BM, Frenkel D. Mobile linkers on DNA-coated colloids: valency without patches. PHYSICAL REVIEW LETTERS 2014; 113:128303. [PMID: 25279648 DOI: 10.1103/physrevlett.113.128303] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 05/23/2023]
Abstract
Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.
Collapse
Affiliation(s)
| | - Patrick Varilly
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| |
Collapse
|