1
|
Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, Maaza M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. BIOSENSORS 2023; 13:bios13020192. [PMID: 36831958 PMCID: PMC9953865 DOI: 10.3390/bios13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/28/2023]
Abstract
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Collapse
Affiliation(s)
- Azeez Olayiwola Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Seyi Philemon Akanji
- Petroleum Engineering, School of Engineering Department, Edith Cowan University, 270 Joondalup Drive, Perth, WA 6027, Australia
| | - Benjamin O. Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | | | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| |
Collapse
|
2
|
Novel Amperometric Biosensor Based on Tyrosinase/Chitosan Nanoparticles for Sensitive and Interference-Free Detection of Total Catecholamine. BIOSENSORS 2022; 12:bios12070519. [PMID: 35884322 PMCID: PMC9313403 DOI: 10.3390/bios12070519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022]
Abstract
The regulation of nervous and cardiovascular systems and some brain-related behaviors, such as stress, panic, anxiety, and depression, are strictly dependent on the levels of the main catecholamines of clinical interest, dopamine (DA), epinephrine (EP), and norepinephrine (NEP). Therefore, there is an urgent need for a reliable sensing device able to accurately monitor them in biological fluids for early diagnosis of the diseases related to their abnormal levels. In this paper, we present the first tyrosinase (Tyr)-based biosensor based on chitosan nanoparticles (ChitNPs) for total catecholamine (CA) detection in human urine samples. ChitNPs were synthetized according to an ionic gelation process and successively characterized by SEM and EDX techniques. The screen-printed graphene electrode was prepared by a two-step drop-casting method of: (i) ChitNPS; and (ii) Tyr enzyme. Optimization of the electrochemical platform was performed in terms of the loading method of Tyr on ChitNPs (nanoprecipitation and layer-by-layer), enzyme concentration, and enzyme immobilization with and without 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) as cross-linking agents. The Tyr/EDC-NHS/ChitNPs nanocomposite showed good conductivity and biocompatibility with Tyr enzyme, as evidenced by its high biocatalytic activity toward the oxidation of DA, EP, and NEP to the relative o-quinone derivatives electrochemically reduced at the modified electrode. The resulting Tyr/EDC-NHS/ChitNPs-based biosensor performs interference-free total catecholamine detection, expressed as a DA concentration, with a very low LOD of 0.17 μM, an excellent sensitivity of 0.583 μA μM−1 cm−2, good stability, and a fast response time (3 s). The performance of the biosensor was successively assessed in human urine samples, showing satisfactory results and, thus, demonstrating the feasibility of the proposed biosensor for analyzing total CA in physiological samples.
Collapse
|
3
|
Nandi SK, Singh D, Upadhay J, Gupta N, Dhiman N, Mittal SK, Mahindroo N. Identification of tear-based protein and non-protein biomarkers: Its application in diagnosis of human diseases using biosensors. Int J Biol Macromol 2021; 193:838-846. [PMID: 34728300 DOI: 10.1016/j.ijbiomac.2021.10.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Discovery of robust, selective and specific biomarkers are important for early diagnosis and monitor progression of human diseases. Eye being a common target for several human diseases, vision impediment and complications are often associated with systemic and ocular diseases. Tears are bodily fluids that are closest to eye and are rich in protein content and other metabolites. As a biomarker repository, it advantages over other bodily fluids due to the ability to collect it non-invasively. In this review, we highlight some recent advancements in identification of tear-based protein biomarkers like lacryglobin and cystatin SA for cancer; interleukin-6 and immunoglobulin-A antibody for COVID-19; tau, amyloid-β-42 and lysozyme-C for Alzheimer's disease; peroxiredoxin-6 and α-synuclein for Parkinson's disease; kallikrein, angiotensin converting enzyme and lipocalin-1 for glaucoma; lactotransferrin and lipophilin-A for diabetic retinopathy and zinc-alpha-2 glycoprotein-1, prolactin and calcium binding protein-A4 for eye thyroid disease. We also discussed identification of tear based non-protein biomarkers like lysophospholipids and acetylcarnitine for glaucoma, 8-hydroxy-2'-deoxyquanosine and malondialdehyde for thyroid eye disease. We elucidate technological advancement in developing tear-based biosensors for diagnosis and monitoring diseases such as diabetes, diabetic retinopathy and Alzheimer's disease. Altogether, the study of tears as potential biomarkers for early diagnosis of human diseases is promising.
Collapse
Affiliation(s)
- Sandip K Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Deepanmol Singh
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Jyoti Upadhay
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Neeti Gupta
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Nayan Dhiman
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Sanjeev Kumar Mittal
- Department of Ophthalmology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Neeraj Mahindroo
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
4
|
Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. Eur J Med Chem 2021; 221:113572. [PMID: 34087497 DOI: 10.1016/j.ejmech.2021.113572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
It is often challenging to design diagnostic and therapeutic agents that fulfill all functional requirements. So, bulk and surface modifications as a common approach for biomedical applications have been suggested. There have been considerable research interests in using nanomaterials to the prementioned methods. Among all nanomaterials, dendritic materials with three-dimensional structures, host-guest properties, and nano-polymeric dimensions have received considerable attention. Amine-terminated dendritic structures including, polyamidoamine (PAMAM), polypropyleneimine (PPI), and polyethyleneimine (PEI), have been enormously utilized in bio-modification. This review briefly described the structure of these three common dendritic polymers and their use to modify diagnostic and therapeutic agents in six major applications, including drug delivery, gene delivery, biosensor, bioimaging, tissue engineering, and antimicrobial activity. The current review covers amine-terminated dendritic polymers toxicity challenging and improvement strategies as well.
Collapse
Affiliation(s)
- Mahsa Delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Somaye Akbari
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Atefeh Solouk
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
6
|
Amperometric aptasensor with sandwich-type architecture for troponin I based on carboxyethylsilanetriol-modified graphene oxide coated electrodes. Biosens Bioelectron 2021; 183:113203. [PMID: 33823466 DOI: 10.1016/j.bios.2021.113203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/13/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023]
Abstract
A novel amperometric aptasensor for the specific detection of cardiac troponin I (cTnI) was constructed by using screen-printed carbon electrodes coated with a carboxyethylsilanetriol-modified graphene oxide derivative as transduction element. This novel carboxylic acid-enriched nanomaterial allows easy and high load immobilization of the capture aptamer molecules on the electrode surface. The biosensing interface was assembled by covalent attachment of an amino-functionalized DNA aptamer on the carboxylic acid-enriched electrode surface. The sensing approach relies on the specific recognition of cTnI by the aptamer and further assembly of a sandwich-type architecture with a novel aptamer-peroxidase conjugate as signaling element. The aptasensor was employed to detect the cardiac biomarker in the broad range from 1.0 pg/mL to 1.0 μg/mL with a detection limit of 0.6 pg/mL. This electroanalytical device also showed high specificity, reproducibility and stability, and was useful to quantify cTnI in reconstituted human serum samples.
Collapse
|
7
|
Gentil S, Pifferi C, Rousselot-Pailley P, Tron T, Renaudet O, Le Goff A. Clicked Bifunctional Dendrimeric and Cyclopeptidic Addressable Redox Scaffolds for the Functionalization of Carbon Nanotubes with Redox Molecules and Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1001-1011. [PMID: 33433232 DOI: 10.1021/acs.langmuir.0c02095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Carbon nanotube electrodes were modified with ferrocene and laccase using two different click reactions strategies and taking advantage of bifunctional dendrimers and cyclopeptides. Using diazonium functionalization and the efficiency of oxime ligation, the combination of both multiwalled carbon nanotube surfaces and modified dendrimers or cyclopeptides allows the access to a high surface coverage of ferrocene in the order of 50 nmol cm-2, a 50-fold increase compared to a classic click reaction without oxime ligation of these highly branched macromolecules. Furthermore, this original immobilization strategy allows the immobilization of mono- and bi-functionalized active multicopper enzymes, laccases, via copper(I)-catalyzed azide-alkyne cycloaddition. Electrochemical studies underline the high efficiency of the oxime-ligated dendrimers or cyclopeptides for the immobilization of redox entities on surfaces while being detrimental to electron tunneling with enzyme active sites despite controlled orientation.
Collapse
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38000 Grenoble, France
| | - Carlo Pifferi
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | | | - Thierry Tron
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397 Marseille, France
| | | | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| |
Collapse
|
8
|
Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021; 413:727-762. [PMID: 33094369 PMCID: PMC7581469 DOI: 10.1007/s00216-020-03002-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The research interest in wearable sensors has tremendously increased in recent years. Amid the different biosensors, electrochemical biosensors are unparalleled and ideal for the design and manufacture of such flexible and wearable sensors because of their various benefits, including convenient operation, quick response, portability, and inherent miniaturization. A number of studies on flexible and wearable electrochemical biosensors have been reported in recent years for invasive/non-invasive and real-time monitoring of biologically relevant molecules such as glucose, lactate, dopamine, cortisol, and antigens. To attain this, novel two-dimensional nanomaterials and their hybrids, various substrates, and detection methods have been explored to fabricate flexible conductive platforms that can be used to develop flexible electrochemical biosensors. In particular, there are many advantages associated with the advent of two-dimensional materials, such as light weight, high stretchability, high performance, and excellent biocompatibility, which offer new opportunities to improve the performance of wearable electrochemical sensors. Therefore, it is urgently required to study wearable/flexible electrochemical biosensors based on two-dimensional nanomaterials for health care monitoring and clinical analysis. In this review, we described recently reported flexible electrochemical biosensors based on two-dimensional nanomaterials. We classified them into specific groups, including enzymatic/non-enzymatic biosensors and affinity biosensors (immunosensors), recent developments in flexible electrochemical immunosensors based on polymer and plastic substrates to monitor biologically relevant molecules. This review will discuss perspectives on flexible electrochemical biosensors based on two-dimensional materials for the clinical analysis and wearable biosensing devices, as well as the limitations and prospects of the these electrochemical flexible/wearable biosensors.Graphical abstract.
Collapse
Affiliation(s)
- Minu Mathew
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Antara Vaidyanathan
- Department of Chemistry, Ramnarain Ruia Autonomous College, Matunga, Mumbai, 40085, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India.
- Homi Bhabha National Institute, Mumbai, 40094, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India.
| |
Collapse
|
9
|
Bahari D, Babamiri B, Salimi A, Hallaj R, Amininasab SM. A self-enhanced ECL-RET immunosensor for the detection of CA19-9 antigen based on Ru(bpy)2(phen-NH2)2+ - Amine-rich nitrogen-doped carbon nanodots as probe and graphene oxide grafted hyperbranched aromatic polyamide as platform. Anal Chim Acta 2020; 1132:55-65. [DOI: 10.1016/j.aca.2020.07.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
|
10
|
Gheybi H, Sattari S, Soleimani K, Adeli M. Graphene-dendritic polymer hybrids: synthesis, properties, and applications. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01817-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Mohammadi MM, Shao S, Srivatsa Gunturi S, Raghavan AR, Alexander N, Liu Y, Stafford CM, Buchner RD, Swihart MT. A general approach to multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a flame-based process. NANOSCALE 2019; 11:19571-19578. [PMID: 31591616 PMCID: PMC6996788 DOI: 10.1039/c9nr05792g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a general approach for synthesizing multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a one-step, continuous flame-based process. Crumpled reduced graphene oxide balls (CGB) were produced from graphene oxide (GO) in a High Temperature Reducing Jet (HTRJ) reactor. Moreover, CGBs were simultaneously decorated with different transition metal nanoparticles, including cobalt (Co), nickel (Ni), iron (Fe), and palladium (Pd). Various metal alloy-decorated crumpled reduced graphene oxide balls (M-CGBs) including CoPd-, CoNi-, CoPdNi-, and CoNiFe-CGBs were successfully synthesized using a general recipe. The key advantage of the HTRJ system over common flame-based aerosol synthesis methods is the separation of flame and product formation zones, which allows production and/or reduction of nanomaterials that can be reduced by H2 in the presence of H2O. Nanomaterials are produced from aqueous precursors containing low-cost metal salts and dispersed GO. Electron microscopy and other characterization methods show the decoration of the CGBs with sub-4 nm diameter binary and ternary alloy, non-oxide transition metal nanoparticles of controlled compositions. The nanostructures made by this process can potentially be used as electrocatalysts for fuel cells, electrodes in batteries and supercapacitors, conductive inks for printed electronics, catalysts in wastewater treatment, and many other applications where a graphitized carbon-metal nanomaterial is needed.
Collapse
Affiliation(s)
- Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Shikuan Shao
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Santosh Srivatsa Gunturi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Anirudh Ravi Raghavan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Naveshkaanth Alexander
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Yang Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Raymond D Buchner
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
12
|
Lawal AT. Graphene-based nano composites and their applications. A review. Biosens Bioelectron 2019; 141:111384. [PMID: 31195196 DOI: 10.1016/j.bios.2019.111384] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the current review article is to present a comprehensive understanding regarding pros and cons of graphene related nanocomposites and to find ways in order to improve the performance of nanocomposites with new designs. Nanomaterials including GR are employed in industrial applications such as supercapacitors, biosensors, solar cells, and corrosion studies. The present article has been prepared in three main categories. In the first part, graphene types have been presented, as pristine graphene, graphene oxide and reduced graphene oxide. In the second part, nanocomposites with many graphene, inorganic and polymeric materials such as polymer/GR, activated carbon/GR, metal oxide/GR, metal/graphene and carbon fibre/GR have been investigated in more detail. In the third part, the focus in on the industrial applications of GR nanocomposite, including super capacitors, biosensors, solar cells, and corrosion protection studies.
Collapse
|
13
|
Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry 2018; 122:174-182. [PMID: 29656242 DOI: 10.1016/j.bioelechem.2018.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
The fabrication, characterization and analytical performance were investigated for a phenol biosensor based on the covalent bonding of tyrosinase (TYR) onto a graphene oxide (GO)-modified glassy carbon electrode (GCE) via glutaraldehyde (GA). The surface morphology of the modified electrode was studied by atomic force microscope (AFM) and field-emission scanning electron microscopy (FE-SEM). The fabricated TYR/GA/GO/GCE biosensor showed very good stability, reproducibility, sensitivity and practical usage. The catechol biosensor exhibited a wide sensing linear range from 5×10-8M to 5×10-5M, a lower detection limit of 3×10-8M, a current maximum (Imax) of 65.8μA and an apparent Michaelis constant (Kmapp) of 169.9μM.
Collapse
|
15
|
Silvestrini Fernandes D, Silveira Bonfim K, do Carmo DR. Silver Hexacyanoferrate (III) on a Hybrid Graphene Oxide/PAMAM Dendrimer Surface and Application as an Electrocatalyst in the Detection of Isoniazid. ELECTROANAL 2018. [DOI: 10.1002/elan.201800005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Daniela Silvestrini Fernandes
- Faculdade de Engenharia de Ilha Solteira; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Física e Química, Av. Brasil, 56, CEP.; 15385-000, Ilha Solteira-SP Brazil
| | - Kely Silveira Bonfim
- Faculdade de Engenharia de Ilha Solteira; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Física e Química, Av. Brasil, 56, CEP.; 15385-000, Ilha Solteira-SP Brazil
| | - Devaney Ribeiro do Carmo
- Faculdade de Engenharia de Ilha Solteira; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Departamento de Física e Química, Av. Brasil, 56, CEP.; 15385-000, Ilha Solteira-SP Brazil
| |
Collapse
|
16
|
Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2007-0] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Ma S, Wang Y, Wang X, Li Q, Tong S, Han X. Bifunctional Demulsifier of ODTS Modified Magnetite/Reduced Graphene Oxide Nanocomposites for Oil-water Separation. ChemistrySelect 2016. [DOI: 10.1002/slct.201601167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shenghua Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Yinan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Qingchuan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| | - Shanshan Tong
- College of Science; Northwest A&F University; Yangling, Shaanxi 712100 China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150001 China
| |
Collapse
|
18
|
Gao B, Zhang R, Gao F, He M, Wang C, Liu L, Zhao L, Cui H. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8339-8349. [PMID: 27472250 DOI: 10.1021/acs.langmuir.6b01485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.
Collapse
Affiliation(s)
- Bo Gao
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| | - Ruliang Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University , 250061 Jinan, People's Republic of China
| | - Fucheng Gao
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| | - Maoshuai He
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| | - Chengguo Wang
- Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University , 250061 Jinan, People's Republic of China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| | - Lifen Zhao
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Shandong University of Science and Technology , 266590 Qingdao, People's Republic of China
| |
Collapse
|
19
|
Povedano E, Cincotto FH, Parrado C, Díez P, Sánchez A, Canevari TC, Machado SAS, Pingarrón JM, Villalonga R. Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosens Bioelectron 2016; 89:343-351. [PMID: 27450540 DOI: 10.1016/j.bios.2016.07.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023]
Abstract
A novel nanocomposite material consisting of reduced graphene oxide/Rh nanoparticles was prepared by a one-pot reaction process. The strategy involved the simultaneous reduction of RhCl3 and graphene oxide with NaBH4 and the in situ deposition of the metal nanoparticles on the 2D carbon nanomaterial planar sheets. Glassy carbon electrode coated with this nanocomposite was employed as nanostructured support for the cross-linking of the enzyme laccase with glutaraldehyde to construct a voltammperometric biosensor for 17β-estradiol in the 0.9-11 pM range. The biosensor showed excellent analytical performance with high sensitivity of 25.7AµM-1cm-1, a very low detection limit of 0.54pM and high selectivity. The biosensor was applied to the rapid and successful determination of the hormone in spiked synthetic and real human urine samples.
Collapse
Affiliation(s)
- Eloy Povedano
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Fernando H Cincotto
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain; Institute of Chemistry, State University of São PauloPO Box 780São CarlosSP13560-970Brazil
| | - Concepción Parrado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Paula Díez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain.
| | - Thiago C Canevari
- Engineering School, Mackenzie Presbiterian UniversitySão PauloSP01302-907Brazil
| | - Sergio A S Machado
- Institute of Chemistry, State University of São PauloPO Box 780São CarlosSP13560-970Brazil
| | - José M Pingarrón
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of MadridMadrid28040Spain.
| |
Collapse
|
20
|
Boujakhrout A, Jimenez-Falcao S, Martínez-Ruiz P, Sánchez A, Díez P, Pingarrón JM, Villalonga R. Novel reduced graphene oxide–glycol chitosan nanohybrid for the assembly of an amperometric enzyme biosensor for phenols. Analyst 2016; 141:4162-9. [DOI: 10.1039/c5an02640g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A sensitive laccase biosensor for phenols based on a novel graphene oxide–glycol chitosan nanohybrid.
Collapse
Affiliation(s)
| | | | - Paloma Martínez-Ruiz
- Department of Organic Chemistry I
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Paula Díez
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
- IMDEA Nanoscience
| | - Reynaldo Villalonga
- Department of Analytical Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
- IMDEA Nanoscience
| |
Collapse
|
21
|
Fritea L, Le Goff A, Putaux JL, Tertis M, Cristea C, Săndulescu R, Cosnier S. Design of a reduced-graphene-oxide composite electrode from an electropolymerizable graphene aqueous dispersion using a cyclodextrin-pyrrole monomer. Application to dopamine biosensing. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.07.124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Borisova B, Ramos J, Díez P, Sánchez A, Parrado C, Araque E, Villalonga R, Pingarrón JM. A Layer-by-Layer Biosensing Architecture Based on Polyamidoamine Dendrimer and Carboxymethylcellulose-Modified Graphene Oxide. ELECTROANAL 2015. [DOI: 10.1002/elan.201500098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Abstract
Primary/secondary covalent/non-covalent interactions between dendritic polymers and nanomaterials can change the physicochemical properties, such as shape, of the obtained hybrid nanomaterials.
Collapse
Affiliation(s)
- R. Soleyman
- Polymer Science and Technology Division
- Research Institute of Petroleum Industry (RIPI)
- Tehran
- Iran
| | - M. Adeli
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
25
|
Boujakhrout A, Sánchez A, Díez P, Jiménez-Falcao S, Martínez-Ruiz P, Peña-Álvarez M, Pingarrón JM, Villalonga R. Decorating graphene oxide/nanogold with dextran-based polymer brushes for the construction of ultrasensitive electrochemical enzyme biosensors. J Mater Chem B 2015; 3:3518-3524. [DOI: 10.1039/c5tb00451a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel strategy to prepare a water-soluble graphene derivative by attaching dextran polymer brushes.
Collapse
Affiliation(s)
- Abderrahmane Boujakhrout
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Alfredo Sánchez
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Paula Díez
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Sandra Jiménez-Falcao
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Paloma Martínez-Ruiz
- Department of Organic Chemistry I
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Miriam Peña-Álvarez
- Department of Physical Chemistry I
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - José M. Pingarrón
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry
- Faculty of Chemistry
- Complutense University of Madrid
- 28040-Madrid
- Spain
| |
Collapse
|
26
|
Zhu N, Ulstrup J, Chi Q. Surface self-assembled hybrid nanocomposites with electroactive nanoparticles and enzymes confined in a polymer matrix for controlled electrocatalysis. J Mater Chem B 2015; 3:8133-8142. [DOI: 10.1039/c5tb01672j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three-dimensional interfacial nanocomposites consisting of a polymer matrix, electroactive nanoparticles and enzymes are synthesized on electrode surfaces via surface self-assembly chemistry. The nanocomposites show promising observations for achieving fast electron transfer and efficient electrocatalysis.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Jens Ulstrup
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Qijin Chi
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| |
Collapse
|
27
|
Araque E, Villalonga R, Gamella M, Martínez-Ruiz P, Sánchez A, García-Baonza V, Pingarrón JM. Water-Soluble Reduced Graphene Oxide-Carboxymethylcellulose Hybrid Nanomaterial for Electrochemical Biosensor Design. Chempluschem 2014. [DOI: 10.1002/cplu.201402017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Araque E, Arenas CB, Gamella M, Reviejo J, Villalonga R, Pingarrón JM. Graphene–polyamidoamine dendrimer–Pt nanoparticles hybrid nanomaterial for the preparation of mediatorless enzyme biosensor. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Plamper FA. Changing Polymer Solvation by Electrochemical Means: Basics and Applications. POROUS CARBONS – HYPERBRANCHED POLYMERS – POLYMER SOLVATION 2014. [DOI: 10.1007/12_2014_284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|