1
|
Majidi RF, Mesgar ASM, Milan PB. Surface-modified, zinc-incorporated mesoporous silica nanoparticles with improved antibacterial and rapid hemostatic properties. Colloids Surf B Biointerfaces 2024; 243:114132. [PMID: 39094209 DOI: 10.1016/j.colsurfb.2024.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe bleeding and bacterial infections pose significant challenges to the global public health. Effective hemostatic materials have the potential to be used for rapid control of bleeding at the wound site. In this study, mesoporous silica nanoparticles (MSN) were doped with zinc ions (MSN@Zn) and subsequently functionalized with carboxyl (-COOH) groups through post-grafting, resulting in (MSN@Zn-COOH). The results demonstrated the successful functionalization of carboxyl groups on the surface of MSN@Zn mesoporous materials with minimal impact on the morphology. The released zinc ions showed potent antibacterial activity (above ∼80 %) against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro and in vivo assessments of MSN@Zn-COOH revealed excellent hemostatic effects and favorable blood compatibility. Hemolysis percentages associated with MSN@Zn-COOH exhibited noteworthy reductions in comparison to MSN. Furthermore, a decrease in APTT (a test evaluating the intrinsic coagulation pathway) of modified MSN@Zn indicated enhanced hemostasis, supported by their negative zeta potential (∼ -14 to -43 mV). Importantly, all samples showed no cytotoxicity. This work underscores the potential of MSN@Zn-COOH, with its combined hemostatic performance and antibacterial activity, for emergency clinical applications.
Collapse
Affiliation(s)
- Raheleh Faridi Majidi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Abdorreza Sheikh-Mehdi Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kulkarni S, Kumar A, Pandey A, Soman S, Subramanian S, Mutalik S. Exploring 99mTc-Labeled Iron-Binding Glycoprotein Nanoparticles as a Potential Nanoplatform for Sentinel Lymph Node Imaging: Development, Characterization, and Radiolabeling Studies. ACS OMEGA 2024; 9:42410-42422. [PMID: 39431106 PMCID: PMC11483396 DOI: 10.1021/acsomega.4c05991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Lactoferrin, an iron binding glycoprotein-based nanoparticle, has emerged as a promising platform for drug delivery and imaging. This study presents the potential use of the protein nanocarrier in tracking sentinel lymph nodes for cancer staging. Lactoferrin nanoparticles (LF-NPs) were synthesized using a thermal treatment process and optimized to obtain 60-70 nm particle size with PDI less than 0.2. The NPs were characterized microscopically and spectroscopically, ensuring a comprehensive understanding of their physicochemical properties. The LF-NPs were found to be stable in different pH conditions. Their biocompatibility was confirmed through cytotoxicity assessments on RAW 264.7 cells, and hemolysis assay and in vivo toxicity study reveal their safe profile. Additionally, LF-NPs were successfully radiolabeled with technetium-99m (>90% labeling yield). Cell uptake studies with RAW 264.7 exhibited an uptake of ∼6%. Biodistribution studies in Wistar rats shed light on their in vivo behavior and suitability for targeted drug delivery systems. These findings collectively emphasize the multifaceted utility of LF-NPs, positioning them as a promising platform for diverse biomedical innovations.
Collapse
Affiliation(s)
- Sanjay Kulkarni
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anuj Kumar
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Abhijeet Pandey
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Global
Drug Development/Technical Research and Development, Novartis Healthcare Pvt. Ltd., Genome Valley, Hyderabad 500081, India
| | - Soji Soman
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Suresh Subramanian
- Radiopharmaceuticals
Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra State 400085, India
| | - Srinivas Mutalik
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
3
|
Al Tahan MA, Michaelides K, Somasekharan Nair S, AlShatti S, Russell C, Al-Khattawi A. Mesoporous Silica Microparticle-Protein Complexes: Effects of Protein Size and Solvent Properties on Diffusion and Loading Efficiency. Br J Biomed Sci 2024; 81:13595. [PMID: 39445315 PMCID: PMC11496099 DOI: 10.3389/bjbs.2024.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Oral administration of protein-based therapeutics is highly desirable due to lower cost, enhanced patient compliance, and convenience. However, the harsh pH environment of the gastrointestinal tract poses significant challenges. Silica-based carriers have emerged as potential candidates for the delivery of protein molecules, owing to their tuneable surface area and pore volume. We explored the use of a commercial mesoporous silica carrier, SYLOID, for the delivery of octreotide and bovine serum albumin (BSA) using a solvent evaporation method in three different solvents. The loading of proteins into SYLOID was driven by diffusion, as described by the Stokes-Einstein equation. Various parameters were investigated, such as protein size, diffusion, and solubility. Additionally, 3D fluorescence confocal imaging was employed to identify fluorescence intensity and protein diffusion within the carrier. Our results indicated that the loading process was influenced by the molecular size of the protein as octreotide exhibited a higher recovery rate (71%) compared to BSA (32%). The methanol-based loading of octreotide showed uniform diffusion into the silica carrier, whereas water and ethanol loading resulted in the drug being concentrated on the surface, as shown by confocal imaging, and further confirmed by scanning electron microscopy (SEM). Pore volume assessment supported these findings, showing that octreotide loaded with methanol had a low pore volume (1.2 cc/g). On the other hand, BSA loading was affected by its solubility in the three solvents, its tendency to aggregate, and its low solubility in ethanol and methanol, which resulted in dispersed particle sizes of 223 and 231 μm, respectively. This reduced diffusion into the carrier, as confirmed by fluorescence intensity and diffusivity values. This study underscores the importance of protein size, solvent properties, and diffusion characteristics when using porous carriers for protein delivery. Understanding these factors allows for the development of more effective oral protein-based therapeutics by enhancing loading efficiency. This, in turn, will lead to advances in targeted drug delivery and improved patient outcomes.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Kyprianos Michaelides
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Smith Somasekharan Nair
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Shouq AlShatti
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
4
|
Kargar B, Fazeli M, Sobhani Z, Hosseinzadeh S, Solhjoo A, Akbarizadeh AR. Exploration of the photothermal role of curcumin-loaded targeted carbon nanotubes as a potential therapy for melanoma cancer. Sci Rep 2024; 14:10117. [PMID: 38698033 PMCID: PMC11066107 DOI: 10.1038/s41598-024-57612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.
Collapse
Affiliation(s)
- Bahareh Kargar
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Fazeli
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Zahra Sobhani
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Solhjoo
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Drug and Food Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Keykhaee M, Rahimifard M, Najafi A, Baeeri M, Abdollahi M, Mottaghitalab F, Farokhi M, Khoobi M. Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration. Carbohydr Polym 2023; 321:121179. [PMID: 37739486 DOI: 10.1016/j.carbpol.2023.121179] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/24/2023]
Abstract
Diabetic foot ulcers (DFUs) often remain untreated because they are difficult to heal, caused by reduced skin sensitivity and impaired blood vessel formation. In this study, we propose a novel approach to manage DFUs using a multifunctional hydrogel made from a combination of alginate and gum arabic. To enhance the healing properties of the hydrogel, we immobilized nerve growth factor (NGF), within specially designed mesoporous silica nanoparticles (MSN). The MSNs were then incorporated into the hydrogel along with carnosine (Car), which further improves the hydrogel's therapeutic properties. The hydrogel containing the immobilized NGF (SiNGF) could control the sustain release of NGF for >21 days, indicating that the target hydrogel (AG-Car/SiNGF) can serve as a suitable reservoir managing diabetic wound regeneration. In addition, Car was able to effectively reduce inflammation and significantly increase angiogenesis compared to the control group. Based on the histological results obtained from diabetic rats, the target hydrogel (AG-Car/SiNGF) reduced inflammation and improved re-epithelialization, angiogenesis, and collagen deposition. Specific staining also confirmed that AG-Car/SiNGF exhibited improved tissue neovascularization, transforming growth factor-beta (TGFβ) expression, and nerve neurofilament. Overall, our research suggests that this newly developed composite system holds promise as a potential treatment for non-healing diabetic wounds.
Collapse
Affiliation(s)
- Maryam Keykhaee
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
6
|
Ilyas S, E M Sahnoun S, Szymura A, Pes J, Habib S, Florea A, Schäfer L, Buhl EM, Morgenroth A, Habib P, Mottaghy FM, Mathur S. Validation of Dual-Action Chemo-Radio-Labeled Nanocarriers with High Efficacy against Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48963-48977. [PMID: 37831583 DOI: 10.1021/acsami.3c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Identification and selectivity of molecular targets with prolonged action for difficult-to-target cancer such as triple-negative breast cancer (TNBC) represent a persisting challenge in the precision delivery of therapeutics. In the quest to target undruggable sites, this study validates the bioavailability of polydopamine-sealed mesoporous silica nanocarriers (PDA-mSiO2) for in vivo drug delivery to TNBC. For controlled transport and release, the chemotherapeutic drug doxorubicin was encapsulated in mSiO2 nanocarriers coated with a PDA layer serving as a stimuli-responsive gatekeeper or seal. For unifying targeting and treatment modalities, these nanocarriers were covalently conjugated to a macrocyclic chelator (DOTA) and folate (FA-mSiO2.) that enabled incorporation of radionuclides and identification of FR Alpha (FolRα) receptors present on TNBC cells. The robust chemical design of FA- and DOTA-functionalized PDA-coated mSiO2 nanocarriers constitutes mild reaction conditions to avoid the loss of surface-bound molecules. The radiolabeling studies with the theranostic pair 68Ga and 177Lu showed quantitative trends for radiochemical efficacy and purity. Nanocarriers equipped with both radiolabels and affinity ligands were optimally stable when incubated with human serum for up to 120 h (177Lu), demonstrating hydrophilicity with a partition coefficient (log P) of -3.29 ± 0.08. Specifically, when incubated with TNBC cells, the cells received significant FA-mSiO2 carriers, demonstrating efficient carrier internalization and time-dependent uptake. Moreover, in vivo results visualize the retention of drug-filled carriers at the tumor sites for a long time, which holds promise for therapeutic studies. This research work demonstrates for the first time the successful dual conjugation of nanocarriers through the colocation of radionuclides and anticancer drugs that is promising for both live molecular imaging and enhanced therapeutic effect for TNBC.
Collapse
Affiliation(s)
- Shaista Ilyas
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Sabri E M Sahnoun
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Annika Szymura
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| | - Jonas Pes
- Department of Neurology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Shahin Habib
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Alexandru Florea
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Laura Schäfer
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, University Hospital Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Pardes Habib
- Department of Neurology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Biochemistry and Molecular Immunology, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- JARA-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, 52074 Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202 Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, 50937 Cologne, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany
| |
Collapse
|
7
|
Lérida-Viso A, Estepa-Fernández A, García-Fernández A, Martí-Centelles V, Martínez-Máñez R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv Drug Deliv Rev 2023; 201:115049. [PMID: 37573951 DOI: 10.1016/j.addr.2023.115049] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted the attention of chemists, who have developed numerous systems for the encapsulation of a plethora of molecules, allowing the use of mesoporous silica nanoparticles for biomedical applications. MSNs have been extensively studied for their use in nanomedicine, in applications such as drug delivery, diagnosis, and bioimaging, demonstrating significant in vivo efficacy in different preclinical models. Nevertheless, for the transition of MSNs into clinical trials, it is imperative to understand the characteristics that make MSNs effective and safe. The biosafety properties of MSNs in vivo are greatly influenced by their physicochemical characteristics such as particle shape, size, surface modification, and silica framework. In this review, we compile the most relevant and recent progress in the literature up to the present by analyzing the contributions on biodistribution, biodegradability, and clearance of MSNs. Furthermore, the ongoing clinical trials and the potential challenges related to the administration of silica materials for advanced therapeutics are discussed. This approach aims to provide a solid overview of the state-of-the-art in this field and to encourage the translation of MSNs to the clinic.
Collapse
Affiliation(s)
- Araceli Lérida-Viso
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alejandra Estepa-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| | - Vicente Martí-Centelles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Ramón Martínez-Máñez
- Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, IIS La Fe. Av. Fernando Abril Martorell, 106 Torre A 7ª planta. 46026, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM) Universitat Politècnica de València, Universitat de València. Camino de Vera, s/n. 46022, Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3. 46012, Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
8
|
Wang L, Sun Y, Zhang R, Pan K, Li Y, Wang R, Zhang L, Zhou C, Li J, Li Y, Zhu B, Han J. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:136. [PMID: 37710352 PMCID: PMC10503012 DOI: 10.1186/s13068-023-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. RESULTS In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. CONCLUSION This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Ruihao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Yuhang Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315200, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China.
| |
Collapse
|
9
|
Solarska-Ściuk K, Męczarska K, Jencova V, Jędrzejczak P, Klapiszewski Ł, Jaworska A, Hryć M, Bonarska-Kujawa D. Effect of Non-Modified as Well as Surface-Modified SiO 2 Nanoparticles on Red Blood Cells, Biological and Model Membranes. Int J Mol Sci 2023; 24:11760. [PMID: 37511517 PMCID: PMC10380300 DOI: 10.3390/ijms241411760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Nanoparticles are extremely promising components that are used in diagnostics and medical therapies. Among them, silica nanoparticles are ultrafine materials that, due to their unique physicochemical properties, have already been used in biomedicine, for instance, in cancer therapy. The aim of this study was to investigate the cytotoxicity of three types of nanoparticles (SiO2, SiO2-SH, and SiO2-COOH) in relation to red blood cells, as well as the impact of silicon dioxide nanoparticles on biological membranes and liposome models of membranes. The results obtained prove that hemolytic toxicity depends on the concentration of nanoparticles and the incubation period. Silica nanoparticles have a marginal impact on the changes in the osmotic resistance of erythrocytes, except for SiO2-COOH, which, similarly to SiO2 and SiO2-SH, changes the shape of erythrocytes from discocytes mainly towards echinocytes. What is more, nanosilica has an impact on the change in fluidity of biological and model membranes. The research gives a new view of the practical possibilities for the use of large-grain nanoparticles in biomedicine.
Collapse
Affiliation(s)
- Katarzyna Solarska-Ściuk
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Katarzyna Męczarska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Vera Jencova
- Department of Chemistry, Faculty of Science, Humanities and Education, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Aleksandra Jaworska
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Monika Hryć
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida St. 25, 50-375 Wrocław, Poland
| |
Collapse
|
10
|
Martins da Silva Filho P, Higor Rocha Mariano P, Lopes Andrade A, Barros Arrais Cruz Lopes J, de Azevedo Pinheiro A, Itala Geronimo de Azevedo M, Carneiro de Medeiros S, Alves de Vasconcelos M, Gonçalvez da Cruz Fonseca S, Barbosa Grangeiro T, Gonzaga de França Lopes L, Henrique Silva Sousa E, Holanda Teixeira E, Longhinotti E. Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens. Int J Pharm 2023; 641:123074. [PMID: 37230370 DOI: 10.1016/j.ijpharm.2023.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.8 mg g-1, on silica nanoparticles (MPSi-CTAB). Our results show that MPSi-CTAB exhibits antimicrobial activity against Methicillin-resistant Staphylococcus aureus strain (S. aureus ATCC 700698) with MIC and MBC of 0.625 mg mL-1 and 1.25 mg mL-1, respectively. Additionally, for Staphylococcus epidermidis ATCC 35984, MPSi-CTAB reduces MIC and MBC by 99.99% of viable cells on the biofilm. Furthermore, when combined with ampicillin or tetracycline, MPSi-CTAB exhibits reduced MIC values by 32- and 16-folds, respectively. MPSi-CTAB also exhibited in vitro antifungal activity against reference strains of Candida, with MIC values ranging from 0.0625 to 0.5 mg mL-1. This nanomaterial has low cytotoxicity in human fibroblasts, where over 80% of cells remained viable at 0.31 mg mL-1 of MPSi-CTAB. Finally, we developed a gel formulation of MPSi-CTAB, which inhibited in vitro the growth of Staphylococcus and Candida strains. Overall, these results support the efficacy of MPSi-CTAB with potential application in the treatment and/or prevention of infections caused by methicillin-resistant Staphylococcus and/or Candida species.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil; Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Pedro Higor Rocha Mariano
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Jessica Barros Arrais Cruz Lopes
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | | | - Suelen Carneiro de Medeiros
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil; Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, 59610-090, Mossoró - RN, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis - MG, Brazil
| | | | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil.
| |
Collapse
|
11
|
Cheng Y, Tao J, Zhang Y, Xi L, Han R, Xu M, Lee SMY, Ge W, Gan Y, Zheng Y. Shape and Shear Stress Impact on the Toxicity of Mesoporous Silica Nanoparticles: In Vitro and In Vivo Evidence. Mol Pharm 2023. [PMID: 37167021 DOI: 10.1021/acs.molpharmaceut.3c00180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in the biomedical field because of their unique and excellent properties. However, the potential toxicity of different shaped MSNs via injection has not been fully studied. This study aims to systematically explore the impact of shape and shear stress on the toxicity of MSNs after injection. An in vitro blood flow model was developed to investigate the cytotoxicity and the underlying mechanisms of spherical MSNs (S-MSN) and rodlike MSNs (R-MSN) in human umbilical vein endothelial cells (HUVECs). The results suggested that the interactions between MSNs and HUVECs under the physiological flow conditions were significantly different from that under static conditions. Whether under static or flow conditions, R-MSN showed better cellular uptake and less oxidative damage than S-MSN. The main mechanism of cytotoxicity induced by R-MSN was due to shear stress-dependent mechanical damage of the cell membrane, while the toxicity of S-MSN was attributed to mechanical damage and oxidative damage. The addition of fetal bovine serum (FBS) alleviated the toxicity of S-MSN by reducing cellular uptake and oxidative stress under static and flow conditions. Moreover, the in vivo results showed that both S-MSN and R-MSN caused cardiovascular toxicity in zebrafish and mouse models due to the high shear stress, especially in the heart. S-MSN led to severe oxidative damage at the accumulation site, such as liver, spleen, and lung in mice, while R-MSN did not cause significant oxidative stress. The results of in vitro blood flow and in vivo models indicated that particle shape and shear stress are crucial to the biosafety of MSNs, providing new evidence for the toxicity mechanisms of the injected MSNs.
Collapse
Affiliation(s)
- Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaqi Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Run Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Yong Gan
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
12
|
Khan HN, Imran M, Sanaullah I, Ullah Khan I, Sabri AN, Naseem S, Riaz S. In Vivo biodistribution, antioxidant and hemolysis tendency of superparamagnetic iron oxide nanoparticles – potential anticancer agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
13
|
Kim SH, Shin K, Kim BG, Hwang NS, Hyeon T. Dual action of a tyrosinase-mesoporous silica nanoparticle complex for synergistic tissue adhesion. Chem Commun (Camb) 2022; 59:94-97. [PMID: 36472163 DOI: 10.1039/d2cc05678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bridging biological tissues for immediate adhesion and long-term sustainability was accomplished using a combination of mesoporous silica nanoparticles (MSNs) and tyrosinase. Tyrosinase-loaded MSNs provided rapid physical adsorption, while tyrosinase within MSNs induced enzymatic chemical bond gluing of tissues. This synergistic strategy has robust potential in tissue adhesives for clinical settings.
Collapse
Affiliation(s)
- Su-Hwan Kim
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, Busan, 49315, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Institute of Molecular Biology and Genetics, Institute for Sustainable Development (ISD), Seoul National University, Seoul, 08826, Republic of Korea.,Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul, 08826, Republic of Korea
| |
Collapse
|
14
|
Kheirkhah S, Abedi M, Zare F, Salmanpour M, Abolmaali SS, Tamaddon AM. Surface engineered palmitoyl-mesoporous silica nanoparticles with supported lipid bilayer coatings for high-capacity loading and prolonged release of dexamethasone: A factorial design approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Zarkesh K, Heidari R, Iranpour P, Azarpira N, Ahmadi F, Mohammadi-Samani S, Farjadian F. Theranostic Hyaluronan Coated EDTA Modified Magnetic Mesoporous Silica Nanoparticles for Targeted Delivery of Cisplatin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Kim EH, Choi S, Kim D, Park HJ, Bian Y, Choi SH, Chung HY, Bae ON. Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Part Fibre Toxicol 2022; 19:60. [PMID: 36104730 PMCID: PMC9472436 DOI: 10.1186/s12989-022-00500-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Background Microplastics (MPs) and nanoplastics (NPs) formed from decomposed plastic are increasing environmental threats. Although MPs and NPs exposed through various routes enter the systemic circulation, the potential toxicity of those is largely unknown. We investigated whether polystyrene NPs (PS-NPs) promote the coagulation activity of red blood cells (RBCs). Results We tested several types of PS-NPs using human RBCs and found that amine-modified 100 nm PS-NPs were the most potent. We measured the uptake of PS-NPs using flow cytometry and confocal microscopy. Electron microscopy revealed morphological changes of RBCs by PS-NPs. PS-NPs induced the externalization of phosphatidylserine, generation of microvesicles in RBCs, and perturbations in the intracellular microenvironment. PS-NPs increased the activity of scramblases responsible for phospholipid translocation in RBCs. PS-NPs modulated the functional interaction to adjacent tissues and coagulation cascade, enhancing RBC adhesion and thrombin generation. Our observations in human RBCs were consistent with those in isolated rat RBCs, showing no inter-species differences. In rat venous thrombosis models, the intravenous administration of PS-NPs enhanced thrombus formation.
Conclusion Amine-modified PS-NPs induce the prothrombotic activation of RBCs causing thrombus formation. We believe that our study will contribute to understanding the potential toxicity of amine-modified polystyrene particles in blood cells and cardiovascular systems. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00500-y.
Collapse
|
17
|
Mallik R, Khannam M, Saha M, Marandi S, Kumar S, Mukherjee C. The electrostatic confinement of aquated monocationic Gd(III) complex-molecules within the inner core of porous silica nanoparticles creates a highly efficient T1 contrast agent for magnetic resonance imaging. Dalton Trans 2022; 51:14138-14149. [PMID: 36043989 DOI: 10.1039/d2dt02272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrast-agent enhanced magnetic resonance imaging (MRI) has been under continuous investigation for the conspicuous imaging of lesions and the early-stage detection of tumors. To achieve the development of a T1-weighted contrast agent with a high relaxivity value, herein, porous silica nanoparticles that had internalized about 20 aquated cationic Gd(III) complexes (1) of the hexadentate hydroxyethyl-appended picolinate-based ligand H2hbda were demonstrated. Complex 1 exhibited a longitudinal relaxivity value per mM Gd(III) ions, r1, of 9.05 mM-1 s-1 (pH 7.4, 37 °C, 1.41 T), which increased to 86.41 mM-1 s-1 because of the grafting of complex 1 in the inner core of porous silica nanospheres through electrostatic interactions between the anionic silica surface and the cationic complex 1 molecules. A further augmentation in the relaxivity value to 118.32 mM-1 s-1 was realized because of the interaction of the complex 1@SiO2NPs with serum albumin protein. The synthesized nanosystem was impervious to physiologically available anions (HPO42- and HCO31-) and also kinetically inert, as evidenced via a transmetallation experiment in the presence of Zn(II) ions. The developed complex-incorporated nanomaterial was bio- and hemo-compatible. Cellular uptake measurements employing HeLa cells and the concentration-dependent enhancement in the brightness of in vitro phantom images, recorded under a clinical scanner at 1.5 T, demonstrated that the developed biocompatible 1@SiO2NP complex has promising diagnostic applications as a T1-weighted MRI contrast agent.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Mahmuda Khannam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shivani Marandi
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
18
|
Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicol Res (Camb) 2022; 11:565-582. [PMID: 36051665 PMCID: PMC9424711 DOI: 10.1093/toxres/tfac038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 08/02/2023] Open
Abstract
Humans are regularly exposed to silica nanoparticles in environmental and occupational contexts, and these exposures have been implicated in the onset of adverse health effects. Existing reviews on silica nanoparticle toxicity are few and not comprehensive. There are natural and synthetic sources by which crystalline and amorphous silica nanoparticles are produced. These processes influence physiochemical properties, which are factors that can dictate toxicological effects. Toxicological assessment includes exposure scenario (e.g. environmental, occupational), route of exposure, toxicokinetics, and toxicodynamics. Broader considerations include pathology, risk assessment, regulation, and treatment after injury. This review aims to consolidate the most relevant and up-to-date research in these areas to provide an exhaustive toxicological profile of silica nanoparticles.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States
| | - Christie M Sayes
- Corresponding author: Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States.
| |
Collapse
|
19
|
Vélez-Peña E, Morales R, Reyes-Escobar C, Torres CC, Avello M, Marrugo KP, Manzo-Merino J, Alderete JB, Campos CH. Mesoporous mixed oxides prepared by hard template methodology as novel drug delivery carriers for methotrexate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Singh P, Srivastava S, Singh SK. Mesoporous nanosilica: A thromboprotective nanomaterial for biomedical applications. Toxicol In Vitro 2022; 83:105421. [PMID: 35724835 DOI: 10.1016/j.tiv.2022.105421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Nanosilica is widely employed in various biomedical applications because of their tailorable physiochemical properties and excellent biocompatibility. In the present study, we have evaluated interaction of nanosilica with important coagulation components, such as platelets, a highly sensitive cell found in the blood, and coagulation proteins. Mesoporous silica nanoparticles (MSNs) were prepared using sol-gel process and characterized by FESEM and TEM to find out the size and shape of the particles. Different platelet functional parameters including platelet adhesion, aggregation, activation, secretion, clot formation and clot retraction-based studies have been carried out to investigate the impact of synthesized nanosilica on the blood coagulation system. Besides, ROS generation and increase in intracellular calcium was also monitored as they play a pivotal role in regulating platelet functions. The complete detailed study revealed that MSNs neither has stimulatory action towards platelets nor do they show any effective interaction with coagulation proteins.
Collapse
Affiliation(s)
- Priti Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sunil Kumar Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
21
|
Zadeh Mehrizi T, Shafiee Ardestani M. Application of non-metal nanoparticles, as a novel approach, for improving the stability of blood products: 2011-2021. Prog Biomater 2022; 11:137-161. [PMID: 35536502 PMCID: PMC9085557 DOI: 10.1007/s40204-022-00188-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/23/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the importance of the proper quality of blood products for safe transfusion, conventional methods for preparation and their preservation, they lack significant stability. Non-metal nanoparticles with particular features may overcome these challenges. This review study for the first time provided a comprehensive vision of the interaction of non-metal nanoparticles with each blood product (red blood cells, platelets and plasma proteins). The findings of this review on the most effective nanoparticle for improving the stability of RBCs indicate that graphene quantum dots and nanodiamonds show compatibility with RBCs. For increasing the stability of platelet products, silica nanoparticles exhibited a suppressive impact on platelet aggregation. Pristine graphene also shows compatibility with platelets. For better stability of plasma products, graphene oxide was indicated to preserve free human serum albumin from thermal shocks at low ionic strength. For increased stability of Factor VIII, mesoporous silica nanoparticles with large pores exhibit the superb quality of recovered proteins. Furthermore, 3.2 nm quantum dots exhibited anticoagulant effects. As the best promising nanoparticles for immunoglobulin stability, graphene quantum dots showed compatibility with γ-globulins. Overall, this review recommends further research on the mentioned nanoparticles as the most potential candidates for enhancing the stability and storage of blood components.
Collapse
Affiliation(s)
- Tahereh Zadeh Mehrizi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Aquib M, Zhang H, Raza F, Banerjee P, Bavi R, Kesse S, Boakye-Yiadom KO, Filli MS, Farooq MA, Wang B. Delivery of repurposed disulfiram by aminated mesoporous silica nanoparticles for anticancer therapy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
da Silva Filho PM, Andrade AL, Lopes JBAC, Pinheiro ADA, de Vasconcelos MA, Fonseca SGDC, Lopes LGDF, Sousa EHS, Teixeira EH, Longhinotti E. The biofilm inhibition activity of a NO donor nanosilica with enhanced antibiotics action. Int J Pharm 2021; 610:121220. [PMID: 34687814 DOI: 10.1016/j.ijpharm.2021.121220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) has emerged as a promising antibacterial agent, where NO donor compounds have been explored. Here, we investigated the role of a silica nanoparticle containing nitroprusside (MPSi-NP) as a NO donor agent against methicillin-sensitive (ATCC 25,923 and ATCC 12228) and methicillin-resistant (ATCC 700,698 and ATCC 35984) Staphylococcus strains. Biofilm inhibition was studied along with antibiotic activity in combination with standard antibiotics (ampicillin and tetracycline). MPSi-NP exhibited thermal release of 63% of NO within 24 h, while free nitroprusside released only 18% during a dialysis assay, indicating an assisted release of NO mediated by the nanoparticles. This nanomaterial showed only a moderate activity in blocking biofilm production, but exhibited a significant decrease in the number of viable bacterial cells (over 600-fold for Staphylococcus aureus ATCC 700,698 and Staphylococcus epidermidis ATCC 35984). Remarkably, even using MPSi-NP at concentrations below any antibacterial action, its combination with ampicillin promoted a significant decrease in MIC for resistant strains of S. aureus ATCC 700,698 (2-fold) and S. epidermidis ATCC 35,984 (4-fold). A carbopol-based gel formulation with MPSi-NP (0.5% w/w) was prepared and showed a zone of inhibition of 7.7 ± 0.6 mm for S. epidermidis ATCC 35984. Topical use of MPSi-NP in combination with antibiotics might be a manageable strategy to prevent and eventually treat complicated resistant bacterial infections.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE 60440-900, Brazil; Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, Fortaleza, CE 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP, Fortaleza, CE 60430-270, Brazil
| | - Jessica Barros Arrais Cruz Lopes
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP, Fortaleza, CE 60430-270, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP, Fortaleza, CE 60430-270, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP, Fortaleza, CE 60430-270, Brazil; Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN 59610-090, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG 35501-170, Brazil
| | | | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, Fortaleza, CE 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, Fortaleza, CE 60440-900, Brazil.
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP, Fortaleza, CE 60430-270, Brazil.
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Fortaleza, CE 60440-900, Brazil.
| |
Collapse
|
25
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
26
|
Lin X, Wu W, Fu J, Yang Y, Guo B, Yu C, Song H. Asymmetric Silica Nanoparticles with Tailored Spiky Coverage Derived from Silica-Polymer Cooperative Assembly for Enhanced Hemocompatibility and Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50695-50704. [PMID: 34664946 DOI: 10.1021/acsami.1c13517] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Asymmetric mesoporous silica nanoparticles (AMSNs) with one side featuring a spiky nanotopography, while the other side is smooth and solid, were synthesized via an ethylenediamine (EDA)-directed silica-polymer cooperative assembly approach. By simply varying the EDA amount (x), AMSNs-x samples with adjustable spiky surface coverage were obtained. It is demonstrated that a spiky coverage higher than 50% improved the hemocompatibility of AMSN-x, possibly due to the reduced contact area of the smooth side exposed to the red blood cell (RBC) membrane. Moreover, AMSNs-175 and AMSNs-200 with high spiky coverage enhanced their plasmid DNA (pDNA) loading and binding capability, as well as cellular uptake into HEK-293T cells, thus resulting in high transfection performance. The good hemocompatibility and high performance in pDNA delivery of AMSNs-x with high spiky coverage allow them to serve as promising nonviral vectors for potential applications in gene therapies and DNA vaccines.
Collapse
Affiliation(s)
- Xiuzhen Lin
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bing Guo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- College of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
Ndayishimiye J, Cao Y, Kumeria T, Blaskovich MAT, Falconer JR, Popat A. Engineering mesoporous silica nanoparticles towards oral delivery of vancomycin. J Mater Chem B 2021; 9:7145-7166. [PMID: 34525166 DOI: 10.1039/d1tb01430g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vancomycin (Van) is a key antibiotic of choice for the treatment of systemic methicillin resistant Staphylococcus aureus (MRSA) infections. However, due to its poor membrane permeability, it is administered parenterally, adding to the cost and effort of treatment. The poor oral bioavailability of Van is mainly due to its physico-chemical properties that limit its paracellular and transcellular transport across gastrointestinal (GI) epithelium. Herein we report the development of silica nanoparticles (SNPs)-based formulations that are able to enhance the epithelial permeability of Van. We synthesized SNPs of different pore sizes (2 nm and 9 nm) and modified their surface charge and polarity by attaching different functional groups (-NH2, -PO3, and -CH3). Van was loaded within these SNPs at a loading capacity in the range of ca. 18-29 wt%. The Van-loaded SNPs exhibited a controlled release behaviour when compared to un-encapsulated Van which showed rapid release due to its hydrophilic nature. Among Van-loaded SNPs, SNPs with large pores showed a prolonged release compared to SNPs with small pores while SNPs functionalised with -CH3 groups exhibited a slowest release among the functionalised SNPs. Importantly, Van-loaded SNPs, especially the large pore SNPs with negative charge, enhanced the permeability of Van across an epithelial cell monolayer (Caco-2 cell model) by up to 6-fold, with Papp values up to 1.716 × 10-5 cm s-1 (vs. 0.304 × 10-5 cm s-1 for un-encapsulated Van) after 3 h. The enhancement was dependent on both the type of SNPs and their surface functionalisation. The permeation enhancing effect of SNPs was due to its ability to transiently open the tight junctions measured by decrease in transepithelial resistance (TEER) which was reversible after 3 h. All in all, our data highlights the potential of SNPs (especially SNPs with large pores) for oral delivery of Van or other antimicrobial peptides.
Collapse
Affiliation(s)
- John Ndayishimiye
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Yuxue Cao
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, New South Wales, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - James Robert Falconer
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, Queensland 4102, Australia. .,Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
28
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
29
|
Luo Y, Li S, Shen K, Song Y, Zhang J, Su W, Yang X. Study on the Hemostasis Characteristics of Biomaterial Frustules Obtained from Diatom Navicula australoshetlandica sp. MATERIALS 2021; 14:ma14133752. [PMID: 34279325 PMCID: PMC8269914 DOI: 10.3390/ma14133752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Diatoms, known as photosynthetic unicellular algae, can produce natural biosilica frustules that exhibit great biocompatibility, superhydrophilicity, and superhemophilicity. In our study, the diatom Navicula australoshetlandica sp. was isolated from aquaculture wastewater and pretreated to obtain frustules so as to explore their hemostasis characteristics. A special “porous web” (6–8 nm) substructure in the ordered nanopores (165–350 nm) of boat-shaped diatom frustule was observed in Navicula australoshetlandica sp. using SEM and TEM analysis. Moreover, X-ray, N2 adsorption–desorption isotherms, and BET analysis showed that the diatom frustule is a mesoporous material with a surface area of 401.45 m2 g−1 amorphous silica. FTIR analysis showed that Navicula australoshetlandica sp. frustules possessed abundant OH functional groups. A low hemolysis ratio was observed for 1–5 mg mL−1 diatom frustules that did not exceed 1.55 ± 0.06%, which indicates favorable hemocompatibility. The diatom frustules exhibited the shortest clotting time (134.99 ± 7.00 s) with a hemostasis material/blood (mg/μL) ratio of 1:100, which is 1.83 times (112.32 s) shorter than that of chitosan. The activated partial thromboplastin time (aPTT) of diatom frustule was also 44.53 s shorter than the control. Our results demonstrate the potential of Navicula australoshetlandica sp. diatom frustules to be used as medical hemostasis material.
Collapse
Affiliation(s)
- Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Kun Shen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Jiangtao Zhang
- Shenzhen Jawkai Bioengineering R & D Center Co., Ltd., Shenzhen 518120, China;
| | - Wen Su
- Department of Pathology, Shenzhen University Health Science Center, Shenzhen 518055, China;
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (Y.L.); (S.L.); (K.S.); (Y.S.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
- Correspondence: ; Tel.: +86-185-65693989
| |
Collapse
|
30
|
Lactose-Gated Mesoporous Silica Particles for Intestinal Controlled Delivery of Essential Oil Components: An In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13070982. [PMID: 34209675 PMCID: PMC8309014 DOI: 10.3390/pharmaceutics13070982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Mesoporous silica microparticles functionalized with lactose for the specific release of essential oil components (EOCs) in the small intestine are presented. In vitro and in vivo intestinal models were applied to validate the microparticles (M41-EOC-L), in which the presence of lactase acts as the triggering stimulus for the controlled release of EOCs. Among the different microdevices prepared (containing thymol, eugenol and cinnamaldehyde), the one loaded with cinnamaldehyde showed the most significant Caco-2 cell viability reduction. On the other hand, interaction of the particles with enterocyte-like monolayers showed a reduction of EOCs permeability when protected into the designed microdevices. Then, a microdevice loaded with cinnamaldehyde was applied in the in vivo model of Wistar rat. The results showed a reduction in cinnamaldehyde plasma levels and an increase in its concentration in the lumen of the gastrointestinal tract (GIT). The absence of payload release in the stomach, the progressive release throughout the intestine and the prolonged stay of the payload in the GIT-lumen increased the bioavailability of the encapsulated compound at the site of the desired action. These innovative results, based on the specific intestinal controlled delivery, suggest that the M41-payload-L could be a potential hybrid microdevice for the protection and administration of bioactive molecules in the small intestine and colon.
Collapse
|
31
|
Antioxidant and antithrombotic study of novel chitosan-diallyl disulfide inclusion complexes nanoparticles for hemodialysis applications. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Frickenstein AN, Hagood JM, Britten CN, Abbott BS, McNally MW, Vopat CA, Patterson EG, MacCuaig WM, Jain A, Walters KB, McNally LR. Mesoporous Silica Nanoparticles: Properties and Strategies for Enhancing Clinical Effect. Pharmaceutics 2021; 13:570. [PMID: 33920503 PMCID: PMC8072651 DOI: 10.3390/pharmaceutics13040570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations.
Collapse
Affiliation(s)
- Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Jordan M. Hagood
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Collin N. Britten
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Brandon S. Abbott
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Catherine A. Vopat
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
| | - Eian G. Patterson
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (A.N.F.); (C.A.V.); (W.M.M.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
| | - Ajay Jain
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| | - Keisha B. Walters
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA; (C.N.B.); (B.S.A.); (K.B.W.)
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.M.H.); (M.W.M.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA;
| |
Collapse
|
33
|
Wang L, Pan K, Zhang L, Zhou C, Li Y, Zhu B, Han J. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule. Biomater Sci 2021; 9:2162-2173. [PMID: 33496686 DOI: 10.1039/d0bm02002h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly essential to develop excellent materials for rapid hemorrhage control. Our previous study showed that centric diatoms such as frustules were superior to QuikClot® in hemostasis, however, related studies in pennate diatoms are still scarce. The morphological and physicochemical properties of pennate diatoms are quite different from those of centric diatoms, meaning that significant differences may also be observed from their hemostatic effects. Thus, the hemostasis effects of four pennate diatom frustules (Cocconeiopsis orthoneoides, Navicula avium, Navicula sp., and Pleurosigma indicum) were investigated in this study. Herein, all diatom frustules demonstrated outstanding hemostasis performance. For example, the in vitro coagulation time of C. orthoneoides (100.33 ± 9.5 s) was 32.4% lower than that of QuikClot®. Meanwhile, the hemostatic times of C. orthoneoides in the rat tail amputation and femoral artery models were 82 s and 180 s, respectively, only around one-half and one-third of the QuikClot® values. Moreover, the blood loss amounts of C. orthoneoides in the rat tail amputation and femoral artery model were 73.4% and 61% less than that of QuikClot®. Besides that, diatom frustules also exhibited favorable biocompatibility (hemolysis ratio <5%, MEFs cell viabilities >80%, and no inflammation). To find out the key factors underlying the hemostatic effect of frustules, Pearson correlation analysis was further performed in this study. The results demonstrated that the coagulation reaction time (R) was negatively correlated with the specific surface area and liquid absorbability but positively with the diatom pore diameter. The angle α, indicating the clot formation rate, was negative to the diatom size and pore diameter. Additionally, MA also showed a negative correlation with the BET value. This study can enrich our knowledge about the application potential of diatoms in the field of bleeding control and is helpful in deepening our understanding about the hemostatic mechanism of frustules.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
34
|
AbouAitah K, Lojkowski W. Delivery of Natural Agents by Means of Mesoporous Silica Nanospheres as a Promising Anticancer Strategy. Pharmaceutics 2021; 13:143. [PMID: 33499150 PMCID: PMC7912645 DOI: 10.3390/pharmaceutics13020143] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Natural prodrugs derived from different natural origins (e.g., medicinal plants, microbes, animals) have a long history in traditional medicine. They exhibit a broad range of pharmacological activities, including anticancer effects in vitro and in vivo. They have potential as safe, cost-effective treatments with few side effects, but are lacking in solubility, bioavailability, specific targeting and have short half-lives. These are barriers to clinical application. Nanomedicine has the potential to offer solutions to circumvent these limitations and allow the use of natural pro-drugs in cancer therapy. Mesoporous silica nanoparticles (MSNs) of various morphology have attracted considerable attention in the search for targeted drug delivery systems. MSNs are characterized by chemical stability, easy synthesis and functionalization, large surface area, tunable pore sizes and volumes, good biocompatibility, controlled drug release under different conditions, and high drug-loading capacity, enabling multifunctional purposes. In vivo pre-clinical evaluations, a significant majority of results indicate the safety profile of MSNs if they are synthesized in an optimized way. Here, we present an overview of synthesis methods, possible surface functionalization, cellular uptake, biodistribution, toxicity, loading strategies, delivery designs with controlled release, and cancer targeting and discuss the future of anticancer nanotechnology-based natural prodrug delivery systems.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), 33 El-Behouth St., Dokki 12622, Giza, Egypt
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
35
|
Li J, Sun X, Zhang K, Yang G, Mu Y, Su C, Pang J, Chen T, Chen X, Feng C. Chitosan/Diatom-Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Adv Healthc Mater 2020; 9:e2000951. [PMID: 33006258 DOI: 10.1002/adhm.202000951] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Uncontrolled hemorrhage is the main reason of possible preventable death after accidental injury. It is necessary to develop a hemostatic agent with rapid hemostatic performance and good biocompatibility. In this study, a chitosan/diatom-biosilica-based aerogel is developed using dopamine as cross-linker by simple alkaline precipitation and tert-butyl alcohol replacement. The chitosan/diatom-biosilica aerogel exhibits favorable biocompatibility and multiscale hierarchical porous structure (from nanometer to micrometer), which can be controlled by the concentration of tert-butyl alcohol. The displacement of tert-butyl alcohol can keep the porosity of diatom-biosilica in aerogel and give it large surface with efficient water absorption ratio. 30% tert-butyl alcohol replacement of aerogel possesses the largest surface area (74.441 m2 g-1 ), water absorption capacity (316.83 ± 2.04%), and excellent hemostatic performance in vitro blood coagulation (≈70 s). Furthermore, this aerogel exhibits the shortest clotting time and lowest blood loss in rat hemorrhage model. The strong interface effect between aerogel and blood is able to promote erythrocytes aggregation, platelets adhesion, and activation, as well as, activate the intrinsic coagulation pathway to accelerate blood coagulation. All the above results demonstrate that chitosan/diatom-biosilica aerogel has great potential to be a safe and rapid hemostatic material.
Collapse
Affiliation(s)
- Jing Li
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Xiaojie Sun
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Kaichao Zhang
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Guoning Yang
- Heze Institute for Food and Drug Control Heze 274000 China
| | - Yuzhi Mu
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Chang Su
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Jianhui Pang
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Tongtong Chen
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| | - Xiguang Chen
- College of Marine Life Science Ocean University of China Qingdao 266000 China
- Qingdao National Laboratory for Marine Science and Technology Qingdao 266000 China
| | - Chao Feng
- College of Marine Life Science Ocean University of China Qingdao 266000 China
| |
Collapse
|
36
|
Ribeiro TP, Monteiro FJ, Laranjeira MS. PEGylation of iron doped hydroxyapatite nanoparticles for increased applicability as MRI contrast agents and as drug vehicles: A study on thrombogenicity, cytocompatibility and drug loading. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Salinas Y, Brüggemann O, Monkowius U, Teasdale I. Visible Light Photocleavable Ruthenium-Based Molecular Gates to Reversibly Control Release from Mesoporous Silica Nanoparticles. NANOMATERIALS 2020; 10:nano10061030. [PMID: 32481603 PMCID: PMC7352806 DOI: 10.3390/nano10061030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022]
Abstract
Herein we present hybrid mesoporous silica nanomaterials (MSN) with visible light-sensitive ruthenium complexes acting as gates. Two different [Ru(bpy)2L1L2]2+ complexes were investigated by grafting [Ru(bpy)2(4AMP)2](PF6)2 (RC1) and [Ru(bpy)2(PPh3)Cl]Cl (RC2) via two or one ligands onto the surface of mesoporous silica nanoparticles (MSNs), to give MSN1-RC1 and MSN2-RC2, respectively. The pores were previously loaded with a common dye, safranin O, and release studies were conducted. The number and position of the ligands were shown to influence the photocages behavior and thus the release of the cargo. Release studies from MSN1-RC1 in acetonitrile showed that in the dark the amount of dye released was minimal after 300 min, whereas a significant increase was measured upon visible light irradiation (ca. 90%). While successful as a photochemically-controlled gated system, RC1 was restricted to organic solvents since it required cleavage of two ligands in order to be cleaved from the surface, and in water only one is cleaved. Release studies from the second nanomaterial MSN2-RC2, where the complex RC2 was bound to the MSN via only one ligand, showed stability under darkness and in aqueous solution up to 180 min and, rapid release of the dye when irradiated with visible light. Furthermore, this system was demonstrated to be reversible, since, upon heating to 80 °C, the system could effectively re-close the pores and re-open it again upon visible light irradiation. This work, thus, demonstrates the potential reversible gate mechanism of the ruthenium-gated nanomaterials upon visible light irradiation, and could be envisioned as a future design of photochemically-driven drug delivery nanosystems or on/off switches for nanorelease systems.
Collapse
Affiliation(s)
- Yolanda Salinas
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
- Correspondence: ; Tel.: +43-732-2468-9075
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
| | - Uwe Monkowius
- Linz School of Education, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria;
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria; (O.B.); (I.T.)
| |
Collapse
|
38
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
39
|
Zhang K, Li J, Wang Y, Mu Y, Sun X, Su C, Dong Y, Pang J, Huang L, Chen X, Feng C. Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control. Carbohydr Polym 2020; 236:116051. [DOI: 10.1016/j.carbpol.2020.116051] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 11/27/2022]
|
40
|
Abedi M, Abolmaali SS, Abedanzadeh M, Farjadian F, Mohammadi Samani S, Tamaddon AM. Core-Shell Imidazoline-Functionalized Mesoporous Silica Superparamagnetic Hybrid Nanoparticles as a Potential Theranostic Agent for Controlled Delivery of Platinum(II) Compound. Int J Nanomedicine 2020; 15:2617-2631. [PMID: 32368044 PMCID: PMC7182466 DOI: 10.2147/ijn.s245135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction As widely used chemotherapeutic agents, platinum compounds have several therapeutic challenges, such as drug resistance and adverse effects. Theranostic systems, macromolecular or colloidal therapeutics with companion diagnostics, not only address controlled drug delivery but also enable real-time monitoring of tumor sites. Methods Synthesis of magnetic mesoporous silica nanoparticles (MMSNs) was performed for dual magnetic resonance imaging and drug delivery. MMSN surfaces were modified by imidazoline groups (MMSN-Imi) for cisplatin (Cis-Pt) conjugation via free N-termini to achieve well-controlled drug-release kinetics. Cis-Pt adsorption isotherms and drug-release profile at pH 5 and 7.4 were investigated using inductively coupled plasma atomic emission spectroscopy. Results MMSN-Imi showed a specific surface area of 517.6 m2 g−1, mean pore diameter of 3.26 nm, and saturated magnetization of 53.63 emu/g. A relatively high r2/r1 relaxivity value was obtained for MMSN-Imi. The nanoparticles provided high Cis-Pt loading with acceptable loading capacity (~30% w:w). Sustained release of Cis-Pt under acidic conditions led to specific inhibitory effects on the growth of human epithelial ovarian carcinoma cells, determined using MTT assays. Dual acridine orange–propidium iodide staining was investigated, confirming induction of apoptosis and necrotic cell death. Conclusion MMSN-Imi exhibited potential for applications in cancer chemotherapy and combined imaging.
Collapse
Affiliation(s)
- Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mozhgan Abedanzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Fatemeh Farjadian
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Soliman Mohammadi Samani
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
41
|
Jacinto TA, Rodrigues CF, Moreira AF, Miguel SP, Costa EC, Ferreira P, Correia IJ. Hyaluronic acid and vitamin E polyethylene glycol succinate functionalized gold-core silica shell nanorods for cancer targeted photothermal therapy. Colloids Surf B Biointerfaces 2020; 188:110778. [DOI: 10.1016/j.colsurfb.2020.110778] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 01/04/2020] [Indexed: 01/10/2023]
|
42
|
Wrońska N, Anouar A, El Achaby M, Zawadzka K, Kędzierska M, Miłowska K, Katir N, Draoui K, Różalska S, Piwoński I, Bryszewska M, El Kadib A, Lisowska K. Chitosan-Functionalized Graphene Nanocomposite Films: Interfacial Interplay and Biological Activity. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E998. [PMID: 32102202 PMCID: PMC7078879 DOI: 10.3390/ma13040998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Graphene oxide (GO) has recently captured tremendous attention, but only few functionalized graphene derivatives were used as fillers, and insightful studies dealing with the thermal, mechanical, and biological effects of graphene surface functionalization are currently missing in the literature. Herein, reduced graphene oxide (rGO), phosphorylated graphene oxide (PGO), and trimethylsilylated graphene oxide (SiMe3GO) were prepared by the post-modification of GO. The electrostatic interactions of these fillers with chitosan afforded colloidal solutions that provide, after water evaporation, transparent and flexible chitosan-modified graphene films. All reinforced chitosan-graphene films displayed improved mechanical, thermal, and antibacterial (S. aureus, E. coli) properties compared to native chitosan films. Hemolysis, intracellular catalase activity, and hemoglobin oxidation were also observed for these materials. This study shows that graphene functionalization provides a handle for tuning the properties of graphene-reinforced nanocomposite films and customizing their functionalities.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (N.W.); (K.Z.); (S.R.)
| | - Aicha Anouar
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, Fès 30070, Morocco; (A.A.); (N.K.)
- Materials and Interfacial Systems Laboratory (MSI), Faculty of Sciences, Abdel Malek Essaadi University, B.P. 2121, M’hannech II, Tetouan 930000, Morocco;
| | - Mounir El Achaby
- Materials Science and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660–Hay Moulay Rachid, Benguerir 43150, Morocco;
| | - Katarzyna Zawadzka
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (N.W.); (K.Z.); (S.R.)
| | - Marta Kędzierska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.K.); (K.M.); (M.B.)
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.K.); (K.M.); (M.B.)
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, Fès 30070, Morocco; (A.A.); (N.K.)
| | - Khalid Draoui
- Materials and Interfacial Systems Laboratory (MSI), Faculty of Sciences, Abdel Malek Essaadi University, B.P. 2121, M’hannech II, Tetouan 930000, Morocco;
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (N.W.); (K.Z.); (S.R.)
| | - Ireneusz Piwoński
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, 163 Pomorska Street, 90-236 Lodz, Poland;
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (M.K.); (K.M.); (M.B.)
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, Fès 30070, Morocco; (A.A.); (N.K.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-236 Lodz, Poland; (N.W.); (K.Z.); (S.R.)
| |
Collapse
|
43
|
Tsamesidis I, Pouroutzidou GK, Lymperaki E, Kazeli K, Lioutas CB, Christodoulou E, Perio P, Reybier K, Pantaleo A, Kontonasaki E. Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes. Chem Biol Interact 2020; 318:108974. [PMID: 32032594 DOI: 10.1016/j.cbi.2020.108974] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/17/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
AIM The aim of this study was the synthesis of ion doped silica-based nanoparticles and the evaluation of their toxic effect on erythrocytes. MATERIALS & METHODS Their synthesis was performed using the sol-gel method, by the progressive addition of calcium, magnesium and copper ions on pure silica nanoparticles. The toxicity evaluation was based on hemolysis, lipid peroxidation, ROS, H2O2 species and antioxidant enzyme production. RESULTS The addition of Mg and Cu in the SNs presented better hemocompatibility by protecting erythrocytes from oxidative stress. CONCLUSION Ion doping with magnesium in the investigated calcium silicate system induces a protective effect in erythrocyte membrane in compare with pure silica nanoparticles.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy; Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France.
| | - Georgia K Pouroutzidou
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University (ex-Alexander Technological Educational Institute of Thessaloniki), Greece
| | - Konstantina Kazeli
- Department of Biomedical Sciences, International Hellenic University (ex-Alexander Technological Educational Institute of Thessaloniki), Greece
| | - Christos B Lioutas
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evi Christodoulou
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Pierre Perio
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France
| | - Karine Reybier
- Pharmadev, UMR 152, Université de Toulouse, IRD, UPS, Toulouse, 31400, France
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
44
|
Chen J, Cai Z, Wei Q, Wang D, Wu J, Tan Y, Lu J, Ai H. Proanthocyanidin-crosslinked collagen/konjac glucomannan hydrogel with improved mechanical properties and MRI trackable biodegradation for potential tissue engineering scaffolds. J Mater Chem B 2019; 8:316-331. [PMID: 31819938 DOI: 10.1039/c9tb02053e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Collagen (Col) has been intensively exploited as a biomaterial for its excellent biocompatibility, biodegradation and bioactivity. However, the poor mechanical properties and rapid biodegradation of reconstituted collagen hydrogels have always been the bottlenecks for their further development especially for vascular tissue engineering. Herein, based on the self-assembly characteristics of collagen, a ternary hydrogel scaffold, comprising rigid collagen molecules, flexible konjac glucomannan (KGM) chains and biocompatible crosslinkers of proanthocyanidin (PA), has been designed to achieve a synergistic interaction for essentially optimizing the mechanical properties of the so-obtained Col/KGM/PA hydrogel, which possesses not only substantially improved strength but also good elasticity. PA endows these scaffolds with controllable biodegradation and anti-calcification and antioxidant activities. TEM discovered the co-existence of two types of fibrils with distinctly different arrangement patterns, explaining the contribution of KGM macromolecules to elasticity generation. The in vivo variations of Col/KGM/PA implants are visualized in real-time by magnetic resonance imaging (MRI). Moreover, a quantitative technique of MRI T2-mapping combined with histology is designed to visualize the in vivo biodegradation mechanism of layer-by-layer erosion for these hydrogels. Simultaneously, three different relationships between the respective processes of in vivo degradation and in vivo dehydration of these controlled hydrogel implants were clearly revealed by this technique. Such a designed Col/KGM/PA composite hydrogel realizes the essential integration of good biocompatibility, controllable biodegradation and improved mechanical properties for developing a desired scaffold material for tissue engineering applications.
Collapse
Affiliation(s)
- Jinlin Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Qingrong Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Dan Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jun Wu
- School of medical imaging, North Sichuan Medical College, Nanchong, 637000, China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Jian Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
45
|
Liu T, Wu X, Chen S, Wu P, Han H, Zhang H, Li J, Li G, Zhang S. A cationic polymeric prodrug with chemotherapeutic self-sensibilization co-delivering MMP-9 shRNA plasmid for a combined therapy to nasopharyngeal carcinoma. Drug Deliv 2019; 26:1280-1291. [PMID: 31793355 PMCID: PMC6896581 DOI: 10.1080/10717544.2019.1698674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 10/31/2022] Open
Abstract
To obtain a high-efficiency drug and gene co-delivery system to HNE-1 tumor therapy, a polymeric prodrug (PAAs-MTX) with chemotherapeutic sensibilization was synthesized consisting of a GSH-response hyperbranched poly(amido amine) (PAAs) and an antitumor drug of methotrexate (MTX). Then, the targeting molecule to HNE-1 cells, transferrin (Tf), was conjugated to form the Tf-PAAs-MTX. This polymeric prodrug could deliver MMP-9 shRNA plasmid (pMMP-9) again to form the drug and gene co-delivery system of Tf-PAAs-MTX/pMMP-9. The co-delivery system showed the effective drug and gene delivery ability with high cytotoxicity and gene transfection efficiency to HNE-1 cells. Besides that, Tf-PAAs-MTX also showed the chemotherapeutic sensibilization effect, the formulation containing PAAs segments showed much higher cytotoxicity than that of free MTX. Benefiting from the sensibilization effect and MTX/pMMP-9 co-delivery strategy, this Tf-PAAs-MTX/pMMP-9 co-delivery system exhibited the significantly improved therapeutic efficacy to HNE-1 tumor in a combined manner which was confirmed by in vitro and in vivo assays. Moreover, its biocompatibility, especially the blood compatibility was analyzed. This polymeric prodrug provided an easily delivery system combining the drug/gene co-delivery, chemotherapeutic sensibilization and targeting into one single platform, which showed a promising application in nasopharyngeal carcinoma therapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Device, Nanchang, China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peina Wu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junzheng Li
- Department of Otolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guanxue Li
- Department of Pediatric Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
46
|
Abedi M, Abolmaali SS, Abedanzadeh M, Borandeh S, Samani SM, Tamaddon AM. Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe3O4/carboxyl functionalized mesoporous SiO2 hybrid nanoparticles: A-synthesis, physicochemical and biological characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109922. [DOI: 10.1016/j.msec.2019.109922] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
|
47
|
Synthesis and Characterization of Zinc Oxide Nanoparticles Using Cynara scolymus Leaves: Enhanced Hemolytic, Antimicrobial, Antiproliferative, and Photocatalytic Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01686-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale. Int J Biol Macromol 2019; 138:800-809. [DOI: 10.1016/j.ijbiomac.2019.07.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 01/07/2023]
|
49
|
Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems. Int J Biol Macromol 2019; 137:62-68. [DOI: 10.1016/j.ijbiomac.2019.06.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022]
|
50
|
Vinotha V, Iswarya A, Thaya R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Al-Anbr MN, Vaseeharan B. Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111541. [DOI: 10.1016/j.jphotobiol.2019.111541] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|