1
|
Uwaezuoke O, Kumar P, du Toit LC, Ally N, Choonara YE. Design Characteristics of a Neoteric, Superhydrophilic, Mechanically Robust Hydrogel Engineered To Limit Fouling in the Ocular Environment. ACS OMEGA 2024; 9:31410-31426. [PMID: 39072132 PMCID: PMC11270697 DOI: 10.1021/acsomega.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/30/2024]
Abstract
Current challenges with ocular drug delivery and the chronic nature of many ocular ailments render the use of traditional ocular devices for additional drug delivery purposes very attractive. To achieve this feat, there is the need to develop biomaterials that are biocompatible, mechanically robust for ocular applications, highly transparent (depending on the targeted ocular device), and with ultralow protein adhesion potential (the primary step in processes that lead to fouling and potential device failure). Herein is reported the facile synthesis of a novel, highly transparent, mechanically robust, nontoxic, bulk functionalized hydrogel with characteristics suited to scalable fabrication of ocular implantable and nonimplantable devices. Synergistic superhydrophilicity between methacrylated poly(vinyl alcohol) (PVAGMA) and zwitterionic sulfobetaine methacrylate was exploited to obtain a superhydrophilic polymer conjugate through facile photoinitiated cross-linking polymerization. Proton nuclear magnetic resonance (1H NMR), attenuated total reflectance-Fourier transform infrared spectroscopy (ATF-FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) were used to confirm the synthesis and establish the physicochemical parameters for both the starting materials, the conjugated polymer, and the hydrogels. Cytotoxicity and cell adhesion potential evaluated in primary human retinal epithelial cells showed no toxicity or adhesion of the ocular cells. Biofilm adhesion studies in Escherichia coli and Staphylococcus aureus showed over 85% reduction in biofilm adhesion for the best-modified polymer compared to the unconjugated PVAGMA, highlighting its antifouling potential.
Collapse
Affiliation(s)
- Onyinye
J. Uwaezuoke
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Naseer Ally
- Department
of Neurosciences, Division of Ophthalmology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, School of Therapeutic
Sciences, Faculty of Health Sciences, University
of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
2
|
Kral M, Dendisova M, Svoboda J, Cernescu A, Svecova M, Johnson CM, Pop-Georgievski O, Matejka P. Nano-FTIR spectroscopy of surface confluent polydopamine films - What is the role of deposition time and substrate material? Colloids Surf B Biointerfaces 2024; 235:113769. [PMID: 38306803 DOI: 10.1016/j.colsurfb.2024.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Polydopamine (PDA) is a widely used anchoring layer for multiple purposes. While simple to prepare, PDA is characterized by high chemical and topological diversity, which can limit its versatility. Unraveling the formation mechanism and physicochemical properties of continuous confluent layer and adherent nanoparticles on the nanoscale is crucial to further extend the prospective applications of PDA. Utilizing nano-FTIR spectroscopy, we investigate layers of PDA on three different substrates (silicon/silicon dioxide, nitrogen-doped titanium oxide, and gold substrates) at varying times of deposition (ToD). We observed a good correlation between the nano-FTIR and macroscopic FTIR spectra that reflected the changes in the relative abundance of PDA and polymerization intermediates as ToD increased. To gain analytical power, we utilized the principal component analysis (PCA) and extracted additional information from the resulting loadings spectral curves and data distribution in the score plots. We revealed a higher variability of the spectra of ultrathin surface confluent layers compared to the adherent nanoparticles. While the spectra of nanoparticles showed no apparent dependency on either ToD or the substrate material, the spectra of layers were highly affected by the increasing ToD and exhibited a rise in the absorption of PDA. Concomitantly, the spectra of layers grouped according to the substrate material at the lowest ToD point to the fact that the substrate material affects the PDA's initial physicochemical structure. The observed separation gradually diminished with the increasing ToD as the PDA physicochemical structure became less influenced by the substrate material.
Collapse
Affiliation(s)
- Martin Kral
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic
| | - Marcela Dendisova
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic.
| | - Jan Svoboda
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic
| | - Adrian Cernescu
- Attocube systems AG, Eglfinger Weg 2, D-85540 Haar, Munich, Germany
| | - Marie Svecova
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - C Magnus Johnson
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Interfaces, Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic
| | - Pavel Matejka
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Witzdam L, Vosberg B, Große-Berkenbusch K, Stoppelkamp S, Wendel HP, Rodriguez-Emmenegger C. Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromol Biosci 2024; 24:e2300321. [PMID: 37742317 DOI: 10.1002/mabi.202300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Berlind Vosberg
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Katharina Große-Berkenbusch
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Sandra Stoppelkamp
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Barcelona, Madrid, 28029, Spain
| |
Collapse
|
4
|
Kuzmyn AR, van Galen M, van Lagen B, Zuilhof H. SI-PET-RAFT in flow: improved control over polymer brush growth. Polym Chem 2023; 14:3357-3363. [PMID: 37497044 PMCID: PMC10367056 DOI: 10.1039/d3py00488k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) provides a light-dependent tool to synthesize polymer brushes on different surfaces that tolerates oxygen and water, and does not require a metal catalyst. Here we introduce improved control over SI-PET-RAFT polymerizations via continuous flow conditions. We confirm the composition and topological structure of the brushes by X-ray photoelectron spectroscopy, ellipsometry, and AFM. The improved control compared to no-flow conditions provides prolonged linear growth of the polymer brush (up to 250 nm, where no-flow polymerization maxed out <50 nm), and improved polymerization control of the polymer brush that allows the construction of diblock polymer brushes. We further show the linear correlation between the molecular weight of the polymer brush and its dry thickness by combining ellipsometry and single-molecule force spectroscopy.
Collapse
Affiliation(s)
- Andriy R Kuzmyn
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Martijn van Galen
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- Laboratory of Biochemistry, Wageningen University and Research Stippeneng 4 6708 WE Wageningen the Netherlands
| | - Barend van Lagen
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
5
|
Jeong J, Bisht H, Park S, Hong Y, Shin G, Hong D. Formation of Antifouling Brushes on Various Substrates Using a Melanin-Inspired Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37216408 DOI: 10.1021/acs.langmuir.3c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we developed a substrate-independent initiator film that can undergo surface-initiated polymerization to form an antifouling brush. Inspired by the melanogenesis found in nature, we synthesized a tyrosine-conjugated bromide initiator (Tyr-Br) that contains phenolic amine groups as the dormant coating precursor and α-bromoisobutyryl groups as the initiator. The resultant Tyr-Br was stable under ambient air conditions and underwent melanin-like oxidation only in the presence of tyrosinase to form an initiator film on various substrates. Subsequently, an antifouling polymer brush was formed using air-tolerant activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of zwitterionic carboxybetaine. The entire surface coating procedure, including the initiator layer formation and ARGET ATRP, occurred under aqueous conditions and did not require organic solvents or chemical oxidants. Therefore, antifouling polymer brushes can be feasibly formed not only on experimentally preferred substrates (e.g., Au, SiO2, and TiO2) but also on polymeric substrates such as poly(ethylene terephthalate) (PET), cyclic olefin copolymer (COC), and nylon.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Himani Bisht
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Suho Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Yubin Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gijeong Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
6
|
Král M, Dendisová M, Matějka P, Svoboda J, Pop-Georgievski O. Infrared imaging of surface confluent polydopamine (PDA) films at the nanoscale. Colloids Surf B Biointerfaces 2023; 221:112954. [DOI: 10.1016/j.colsurfb.2022.112954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
7
|
Kuzmyn A, Teunissen LW, Kroese MV, Kant J, Venema S, Zuilhof H. Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating. ACS OMEGA 2022; 7:38371-38379. [PMID: 36340175 PMCID: PMC9631418 DOI: 10.1021/acsomega.2c03214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N-[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
Collapse
Affiliation(s)
- Andriy
R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucas W. Teunissen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Michiel V. Kroese
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jet Kant
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Sandra Venema
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Riedelová Z, de Los Santos Pereira A, Svoboda J, Pop-Georgievski O, Májek P, Pečánková K, Dyčka F, Rodriguez-Emmenegger C, Riedel T. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol Biosci 2022; 22:e2200247. [PMID: 35917216 DOI: 10.1002/mabi.202200247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Indexed: 12/25/2022]
Abstract
Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.
Collapse
Affiliation(s)
- Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 370 05, Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, D-52074, Aachen, Germany
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
9
|
Douglass M, Garren M, Devine R, Mondal A, Handa H. Bio-inspired hemocompatible surface modifications for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2022; 130:100997. [PMID: 36660552 PMCID: PMC9844968 DOI: 10.1016/j.pmatsci.2022.100997] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When blood first encounters the artificial surface of a medical device, a complex series of biochemical reactions is triggered, potentially resulting in clinical complications such as embolism/occlusion, inflammation, or device failure. Preventing thrombus formation on the surface of blood-contacting devices is crucial for maintaining device functionality and patient safety. As the number of patients reliant on blood-contacting devices continues to grow, minimizing the risk associated with these devices is vital towards lowering healthcare-associated morbidity and mortality. The current standard clinical practice primarily requires the systemic administration of anticoagulants such as heparin, which can result in serious complications such as post-operative bleeding and heparin-induced thrombocytopenia (HIT). Due to these complications, the administration of antithrombotic agents remains one of the leading causes of clinical drug-related deaths. To reduce the side effects spurred by systemic anticoagulation, researchers have been inspired by the hemocompatibility exhibited by natural phenomena, and thus have begun developing medical-grade surfaces which aim to exhibit total hemocompatibility via biomimicry. This review paper aims to address different bio-inspired surface modifications that increase hemocompatibility, discuss the limitations of each method, and explore the future direction for hemocompatible surface research.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Jeong J, Bisht H, Ryu S, Hong D. Development of a versatile, uniform, and stable initiator layer by the functionalization of a polydopamine/polyethyleneimine film. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaehoon Jeong
- Department of Chemistry Pusan National University Busan Korea
| | - Himani Bisht
- Department of Chemistry Pusan National University Busan Korea
| | - Sanghyun Ryu
- Department of Chemistry Pusan National University Busan Korea
| | - Daewha Hong
- Department of Chemistry Pusan National University Busan Korea
| |
Collapse
|
11
|
Riedel T, de Los Santos Pereira A, Táborská J, Riedelová Z, Pop-Georgievski O, Májek P, Pečánková K, Rodriguez-Emmenegger C. Complement Activation Dramatically Accelerates Blood Plasma Fouling On Antifouling Poly(2-hydroxyethyl methacrylate) Brush Surfaces. Macromol Biosci 2021; 22:e2100460. [PMID: 34959255 DOI: 10.1002/mabi.202100460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.
Collapse
Affiliation(s)
- Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Johanka Táborská
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Zuzana Riedelová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | - Klára Pečánková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, Prague, 128 00, Czech Republic
| | | |
Collapse
|
12
|
Yao A, Yan Y, Tan L, Shi Y, Zhou M, Zhang Y, Zhu P, Huang S. Improvement of filtration and antifouling performance of cellulose acetate membrane reinforced by dopamine modified cellulose nanocrystals. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119621] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Chen Y, Schultz AJ, Errington JR. Coupled Monte Carlo and Molecular Dynamics Simulations on Interfacial Properties of Antifouling Polymer Membranes. J Phys Chem B 2021; 125:8193-8204. [PMID: 34259529 DOI: 10.1021/acs.jpcb.1c01966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use molecular simulation to study the wetting behavior of antifouling polymer-tethered membranes. We obtain the interfacial properties (e.g., contact angle) of water at various temperatures for five polymer membranes, including a base polysulfone (PSF) membrane and four other PSF membranes grafted with antifouling polymers (two poly(ethylene glycol) (PEG) tethers and two zwitterionic tethers). We implement a coupled Monte Carlo (MC)/molecular dynamics (MD) approach to determine the interface potentials of water on the membrane surfaces in an efficient manner. Within this method, short MC and MD simulations are performed in cycles to collect the surface excess free energy of a thin water film on polymer membrane surfaces. Simulation results show that the grafting of zwitterionic tethers provides a more significant enhancement in the hydrophilicity of the PSF membrane than that of the PEG tethers. Water completely wets the surface of zwitterionic polymer membranes.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Andrew J Schultz
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| | - Jeffrey R Errington
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14260-4200, United States
| |
Collapse
|
14
|
Söder D, Garay-Sarmiento M, Rahimi K, Obstals F, Dedisch S, Haraszti T, Davari MD, Jakob F, Heß C, Schwaneberg U, Rodriguez-Emmenegger C. Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings. Macromol Biosci 2021; 21:e2100158. [PMID: 34145970 DOI: 10.1002/mabi.202100158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Indexed: 11/07/2022]
Abstract
The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.
Collapse
Affiliation(s)
- Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Khosrow Rahimi
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Fabian Obstals
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Sarah Dedisch
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Felix Jakob
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | - Christoph Heß
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Sciences, 47533, Kleve, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz Institute for Interactive Materials, 52074, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074, Aachen, Germany
| | | |
Collapse
|
15
|
Unraveling the influence of substrate on the growth rate, morphology and covalent structure of surface adherent polydopamine films. Colloids Surf B Biointerfaces 2021; 205:111897. [PMID: 34118533 DOI: 10.1016/j.colsurfb.2021.111897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Polydopamine (PDA), also known as synthetic melanin, is widely used as a biomimetic anchoring layer for the modification of various solid substrates. PDA is utilized for a wide range of biomedical, sensing and tribological applications, even though the polymer's precise covalent structure has not been completely revealed yet. Even more, it is not evident to which extent the chemical nature of the substrate, on which the layer is formed, influences and predetermines the covalent structure of resulting PDA. In this contribution, we have studied the growth of PDA using various surface-sensitive techniques such as spectroscopic ellipsometry, atomic force microscopy and X-ray photoelectron spectroscopy. We supplemented grazing angle attenuated total reflection FTIR spectroscopy with multivariate statistical analysis to further gain analytical power. We have particularly focused on the effects of polymerization time and substrate on the PDA structure. We found notable differences in the chemical composition of PDA formed on gold and on surfaces terminated with oxides/reactive hydroxides such as silicon and N-dopped-TiO2 in the early stages of the layer formation. At the later stages of layer formation, a merely unified chemical structure was observed independently on the type of substrate.
Collapse
|
16
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
17
|
Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design. Drug Deliv Transl Res 2021; 11:1903-1923. [PMID: 33454927 DOI: 10.1007/s13346-020-00879-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
The last 30 years has seen a proliferation of research on protein-resistant biomaterials targeted at designing bio-inert surfaces, which are prerequisite for optimal performance of implantable devices that contact biological fluids and tissues. These efforts have only been able to yield minimal results, and hence, the ideal anti-fouling biomaterial has remained elusive. Some studies have yielded biomaterials with a reduced fouling index among which high molecular weight polyethylene glycols have remained dominant. Interestingly, the field of implantable ocular devices has not experienced an outflow of research in this area, possibly due to the assumption that biomaterials tested in other body fluids can be translated for application in the ocular space. Unfortunately, progression in the molecular understanding of many ocular conditions has brought to the fore the need for treatment options that necessitates the use of anti-fouling biomaterials. From the earliest implanted horsehair and silk seton for glaucoma drainage to the recent mini telescopes for sight recovery, this review provides a concise incursion into the gradual evolution of biomaterials for the design of implantable ocular devices as well as approaches used to overcome the challenges with fouling. The implication of fouling for drug delivery, the design of immune-responsive biomaterials, as well as advanced surface immobilization approaches to support the overall performance of implantable ocular devices are also reviewed.
Collapse
|
18
|
Striebel J, Vorobii M, Kumar R, Liu HY, Yang B, Weishaupt C, Rodriguez-Emmenegger C, Fuchs H, Hirtz M, Riehemann K. Controlled Surface Adhesion of Macrophages via Patterned Antifouling Polymer Brushes. ADVANCED NANOBIOMED RESEARCH 2020. [DOI: 10.1002/anbr.202000029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Johannes Striebel
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Mariia Vorobii
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Hui-Yu Liu
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Carsten Weishaupt
- Department of Dermatology University Hospital of Münster Von-Esmarch-Straße 58 48149 Münster Germany
| | - Cesar Rodriguez-Emmenegger
- DWI – Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry RWTH Aachen University Forckenbeckstraße 50 52074 Aachen Germany
| | - Harald Fuchs
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| |
Collapse
|
19
|
Temperature-responsive and multi-responsive grafted polymer brushes with transitions based on critical solution temperature: synthesis, properties, and applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04750-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Sivkova R, Táborská J, Reparaz A, de los Santos Pereira A, Kotelnikov I, Proks V, Kučka J, Svoboda J, Riedel T, Pop-Georgievski O. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Int J Mol Sci 2020; 21:ijms21186800. [PMID: 32947982 PMCID: PMC7554689 DOI: 10.3390/ijms21186800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide “click” reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
Collapse
|
21
|
Site-Selective Functionalization of Polydopamine Films via Aryl Azide-Based Photochemical Reaction. Macromol Res 2020. [DOI: 10.1007/s13233-020-8083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Kuzmyn AR, Nguyen AT, Teunissen LW, Zuilhof H, Baggerman J. Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4439-4446. [PMID: 32293894 PMCID: PMC7191748 DOI: 10.1021/acs.langmuir.9b03536] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This work presents a new method for the synthesis of antifouling polymer brushes using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with eosin Y and triethanolamine as catalysts. This method proceeds in an aqueous environment under atmospheric conditions without any prior degassing and without the use of heavy metal catalysts. The versatility of the method is shown by using three chemically different monomers: oligo(ethylene glycol) methacrylate, N-(2-hydroxypropyl)methacrylamide, and carboxybetaine methacrylamide. In addition, the light-triggered nature of the polymerization allows the creation of complex three-dimensional structures. The composition and topological structuring of the brushes are confirmed by X-ray photoelectron spectroscopy and atomic force microscopy. The kinetics of the polymerizations are followed by measuring the layer thickness with ellipsometry. The polymer brushes demonstrate excellent antifouling properties when exposed to single-protein solutions and complex biological matrices such as diluted bovine serum. This method thus presents a new simple approach for the manufacturing of antifouling coatings for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Andriy R Kuzmyn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Ai T Nguyen
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Lucas W Teunissen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| |
Collapse
|
23
|
Hafner D, Jordan R. Substrate-independent Cu(0)-mediated controlled radical polymerization: grafting of block copolymer brushes from poly(dopamine) modified surfaces. Polym Chem 2020. [DOI: 10.1039/c9py01343a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method is presented combining poly(dopamine) chemistry and surface-initiated Cu(0)-mediated controlled radical polymerization (SI-CuCRP). Polymer brushes and block copolymer brushes are grafted independent of the original surface properties.
Collapse
Affiliation(s)
- Daniel Hafner
- Professur für Makromolekulare Chemie
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Rainer Jordan
- Professur für Makromolekulare Chemie
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
24
|
Manfredini N, Scibona E, Morbidelli M, Moscatelli D, Sponchioni M. 110th Anniversary: Fast and Easy-to-Use Method for Coating Tissue Culture Polystyrene Surfaces with Nonfouling Copolymers To Prevent Cell Adhesion. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolò Manfredini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich, 8093, Switzerland
| |
Collapse
|
25
|
Jeong W, Kang H, Kim E, Jeong J, Hong D. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13268-13274. [PMID: 31573813 DOI: 10.1021/acs.langmuir.9b02219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we developed a uniform initiator layer that can be formed on various surfaces, and formed site-selectively, for the subsequent antifouling polymer brush formation. Initially, metal-organic films composed of tannic acid (TA) and FeIII ions (TA-FeIII) were formed on various surfaces, followed by functionalization with an aryl azide-based initiator (ABI) under photoreaction. In particular, combination with a photolithographic technique enabled the presentation of initiators only on the intended region within a single-surface platform. A resultant initiator film (TF-ABI) was formed under mild reaction conditions and meets the uniformity and transparency requirements concurrently. Subsequently, we showed that TF-ABI can be further utilized to form a polymer brush by proceeding with surface-initiated polymerization using a zwitterionic monomer, namely, sulfobetaine acrylamide (SBAA). Instead of applying a classical, yet air-sensitive atom transfer radical polymerization (ATRP) technique, we utilized an activator regenerated by electron transfer (ARGET) ATRP under air conditions without a cumbersome deoxygenation step. Overall, our initiator layer allowed the antifouling poly(SBAA) brush to be used on various surfaces, and enabled their pattern generation.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Hyeongeun Kang
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Eunseok Kim
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| |
Collapse
|
26
|
Svoboda J, Sedláček O, Riedel T, Hrubý M, Pop-Georgievski O. Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide). Biomacromolecules 2019; 20:3453-3463. [DOI: 10.1021/acs.biomac.9b00751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jan Svoboda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovskeho nam. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
27
|
Pop-Georgievski O, Zimmermann R, Kotelnikov I, Proks V, Romeis D, Kučka J, Caspari A, Rypáček F, Werner C. Impact of Bioactive Peptide Motifs on Molecular Structure, Charging, and Nonfouling Properties of Poly(ethylene oxide) Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6010-6020. [PMID: 29728048 DOI: 10.1021/acs.langmuir.8b00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymer layers capable of suppressing protein adsorption from biological media while presenting extracellular matrix-derived peptide motifs offer valuable new options for biomimetic surface engineering. Herein, we provide detailed insights into physicochemical changes induced in a nonfouling poly(ethylene oxide) (PEO) brush/polydopamine (PDA) system by incorporation of adhesion ligand (RGD) peptides. Brushes with high surface chain densities (σ ≥ 0.5 chains·nm-2) and pronounced hydrophilicity (water contact angles ≤ 10°) were prepared by end-tethering of heterobifunctional PEOs ( Mn ≈ 20 000 g·mol-1) to PDA-modified surfaces from a reactive melt. Using alkyne distal end group on the PEO chains, azidopentanoic-bearing peptides were coupled through a copper-catalyzed Huisgen azide-alkyne "click" cycloaddition reaction. The surface concentration of RGD was tuned from complete saturation of the PEO surface with peptides (1.7 × 105 fmol·cm-2) to values which may induce distinct differences in cell adhesion (<6.0 × 102 fmol·cm-2). Infrared reflection-absorption and X-ray photoelectron spectroscopies proved the PDA-PEO layers covalent structure and the immobilization of RGD peptides. The complete reconstruction of experimental electrohydrodynamics data utilizing mean-field theory predictions further verified the attained brush structure of the end-tethered PEO chains which provided hydrodynamic screening of the PDA anchor. Increasing the surface concentration of immobilized RGD peptides led to increased interfacial charging. Supported by simulations, this observation was attributed to the ionization of functional groups in the amino acid sequence and to the pH-dependent adsorption of water ions (OH- > H3O+) from the electrolyte. Despite the distinct differences observed in the electrokinetic analysis of the surfaces bearing different amounts of RGD, it was found that the peptide presence on PEO(20 000)-PDA layers does not have a significant effect on the nonfouling properties of the system. Notably, the presented PEO(20 000)-PDA layers bearing RGD peptides in the surface concentration range 5.9 to 1.7 × 105 fmol·cm-2 reduced the protein adsorption from fetal bovine serum to less than 30 ng·cm-2, that is, values comparable to the ones obtained for pristine PEO(20 000)-PDA layers.
Collapse
Affiliation(s)
- Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic
| | - Ralf Zimmermann
- Max Bergmann Center of Biomaterials Dresden , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Ilya Kotelnikov
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic
| | - Vladimir Proks
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic
| | - Dirk Romeis
- Max Bergmann Center of Biomaterials Dresden , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - Jan Kučka
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic
| | - Anja Caspari
- Max Bergmann Center of Biomaterials Dresden , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
| | - František Rypáček
- Institute of Macromolecular Chemistry , Czech Academy of Sciences , Heyrovskeho nam. 2 , 162 06 Prague 6 , Czech Republic
| | - Carsten Werner
- Max Bergmann Center of Biomaterials Dresden , Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , 01069 Dresden , Germany
- Center of Regenerative Therapies Dresden , Technische Universität Dresden , Tatzberg 47 , 01167 Dresden , Germany
| |
Collapse
|
28
|
Catalyst-free “click” functionalization of polymer brushes preserves antifouling properties enabling detection in blood plasma. Anal Chim Acta 2017; 971:78-87. [DOI: 10.1016/j.aca.2017.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
|
29
|
Buzzacchera I, Vorobii M, Kostina NY, de Los Santos Pereira A, Riedel T, Bruns M, Ogieglo W, Möller M, Wilson CJ, Rodriguez-Emmenegger C. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules 2017; 18:1983-1992. [PMID: 28475307 DOI: 10.1021/acs.biomac.7b00516] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Collapse
Affiliation(s)
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Nina Yu Kostina
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andres de Los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wojciech Ogieglo
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
30
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Surface Modification of Water Purification Membranes. Angew Chem Int Ed Engl 2017; 56:4662-4711. [DOI: 10.1002/anie.201601509] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas at Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
31
|
Miller DJ, Dreyer DR, Bielawski CW, Paul DR, Freeman BD. Oberflächenmodifizierung von Wasseraufbereitungsmembranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201601509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel J. Miller
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
- Joint Center for Artificial Photosynthesis Lawrence Berkeley National Laboratory 1 Cyclotron Road, 30-210C Berkeley CA 94702 USA
| | - Daniel R. Dreyer
- Nalco Champion 3200 Southwest Freeway, Ste. 2700 Houston TX 77027 USA
| | - Christopher W. Bielawski
- Center for Multidimensional Carbon Materials (CMCM) Institute for Basic Science (IBS), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
- Department of Chemistry and Department of Energy Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republik Korea
| | - Donald R. Paul
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering and Texas Materials Institute, Center for Energy and Environmental Resources The University of Texas, Austin 10100 Burnet Road, Building 133 Austin TX 78758 USA
| |
Collapse
|
32
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Zieger MM, Pop-Georgievski O, de Los Santos Pereira A, Verveniotis E, Preuss CM, Zorn M, Reck B, Goldmann AS, Rodriguez-Emmenegger C, Barner-Kowollik C. Ultrathin Monomolecular Films and Robust Assemblies Based on Cyclic Catechols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:670-679. [PMID: 28001408 DOI: 10.1021/acs.langmuir.6b03419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We introduce a newly designed catechol-based compound and its application for the preparation of homogeneous monomolecular layers as well as for robust assemblies on various substrates. The precisely defined cyclic catechol material (CyCat) was prepared from ortho-dimethoxybenzene in a phenolic resin-like synthesis and subsequent deprotection, featuring molecules with up to 32 catechol units. The CyCat's chemical structure was carefully assessed via matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), proton nuclear magnetic resonance (1H NMR), diffusion ordered spectroscopy (2D DOSY) and high resolution electrospray ionization mass spectrometry (ESI MS) experiments. The formation of colloidal aggregates of the CyCat material in alkaline solution was followed by dynamic light scattering (DLS) and further verified by dropcasting CyCat from solution on highly oriented pyrolytic graphite (HOPG), which was examined by Kelvin probe force microscopy (KPFM). The adsorption behavior of the CyCat to form monomolecular layers was investigated in real time by surface plasmon resonance (SPR). Formation of these thin CyCat layers (1.6-2.1 nm) on Au, SiO2 and TiO2 substrates was corroborated by spectroscopic ellipsometry (SE) and X-ray photoelectron spectroscopy (XPS). The prepared coating perfectly reflects the surface structure of the underlying substrate and does not exhibit CyCat colloidal aggregates as verified by atomic force microscopy (AFM). The functional nature of the prepared catechol monolayers was evidenced by reaction with 4-bromophenethylamine and bis(3-aminopropyl)-terminated poly(ethylene oxide) (PEO). Multilayer assemblies were prepared by a simple procedure of iterative immersion in solutions of CyCat and a multifunctional amine on Au, SiO2 and TiO2 substrates forming thicker coatings (up to 12 nm). Postmodification with small organic molecules was performed to covalently attach trifluoroacetyl, tetrazole and 2-bromo-2-methylpropanoyl moieties to the amine groups of the multilayer assembly coating. Furthermore, the versatility of the novel multilayer coating was underpinned by "grafting-to" of phenacyl sulfide-terminated PEO and "grafting-from" of poly(methyl methacrylate) via surface-initiated atom transfer radical polymerization (ATRP).
Collapse
Affiliation(s)
- Markus M Zieger
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i. , Heyrovsky sq. 2, 162 06 Prague, Czech Republic
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i. , Heyrovsky sq. 2, 162 06 Prague, Czech Republic
| | - Elisseos Verveniotis
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Corinna M Preuss
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Bernd Reck
- BASF SE, Registered Office , Ludwigshafen, Germany
| | - Anja S Goldmann
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Brisbane, Queensland 4000, Australia
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic v.v.i. , Heyrovsky sq. 2, 162 06 Prague, Czech Republic
- DWI - Leibniz-Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Christopher Barner-Kowollik
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstraße 18, 76128 Karlsruhe, Germany
- Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
34
|
Mázl Chánová E, Pop-Georgievski O, Kumorek MM, Janoušková O, Machová L, Kubies D, Rypáček F. Polymer brushes based on PLLA-b-PEO colloids for the preparation of protein resistant PLA surfaces. Biomater Sci 2017; 5:1130-1143. [DOI: 10.1039/c7bm00009j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deposition of PLLA-b-PEO colloidal nanoparticles from selective solvents onto a polylactide surface resulting in an anti-fouling and cell repulsive surface.
Collapse
Affiliation(s)
- E. Mázl Chánová
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - O. Pop-Georgievski
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - M. M. Kumorek
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - O. Janoušková
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - L. Machová
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - D. Kubies
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| | - F. Rypáček
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague 6
- Czech Republic
| |
Collapse
|
35
|
Woehlk H, Steinkoenig J, Lang C, Goldmann AS, Barner L, Blinco JP, Fairfull-Smith KE, Barner-Kowollik C. Oxidative polymerization of catecholamines: structural access by high-resolution mass spectrometry. Polym Chem 2017. [DOI: 10.1039/c7py00506g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce an avenue for the structural elucidation of bio-inspired functional poly(catecholamines) via high-resolution electrospray ionization mass spectrometry.
Collapse
Affiliation(s)
- Hendrik Woehlk
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Jan Steinkoenig
- Preparative Macromolecular Chemistry
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | - Christiane Lang
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Anja S. Goldmann
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Leonie Barner
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Christopher Barner-Kowollik
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| |
Collapse
|
36
|
Zhang P, Chen YP, Wang W, Shen Y, Guo JS. Surface plasmon resonance for water pollutant detection and water process analysis. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Hepatitis B plasmonic biosensor for the analysis of clinical serum samples. Biosens Bioelectron 2016; 85:272-279. [PMID: 27179568 DOI: 10.1016/j.bios.2016.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
A plasmonic biosensor for rapid detection of protein biomarkers in complex media is reported. Clinical serum samples were analyzed by using a novel biointerface architecture based on poly[(N-(2-hydroxypropyl) methacrylamide)-co-(carboxybetaine methacrylamide)] brushes functionalized with bioreceptors. This biointerface provided an excellent resistance to fouling even after the functionalization and allowed for the first time the direct detection of antibodies against hepatitis B surface antigen (anti-HBs) in clinical serum samples using surface plasmon resonance (SPR). The fabricated SPR biosensor allowed discrimination of anti-HBs positive and negative clinical samples in 10min. Results are validated by enzyme-linked immunoassays of the sera in a certified laboratory. The sensor could be regenerated by simple treatment with glycine buffer.
Collapse
|
38
|
Knorr DB, Tran NT, Gaskell KJ, Orlicki JA, Woicik JC, Jaye C, Fischer DA, Lenhart JL. Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4370-4381. [PMID: 27055091 DOI: 10.1021/acs.langmuir.6b00531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polydopamine coatings are of interest due to the fact that they can promote adhesion to a broad range of materials and can enable a variety of applications. However, the polydopamine-substrate interaction is often noncovalent. To broaden the potential applications of polydopamine, we show the incorporation of 3-aminopropyltriethoxysilane (APTES), a traditional coupling agent capable of covalent bonding to a broad range of organic and inorganic surfaces, into polydopamine coatings. High energy X-ray photoelectron spectroscopy (HE-XPS), conventional XPS, near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), and ellipsometry measurements were used to investigate changes in coating chemistry and thickness, which suggest covalent incorporation of APTES into polydopamine. These coatings can be deposited either in Tris buffer or by using an aqueous APTES solution as a buffer without Tris. APTES-dopamine hydrochloride deposition from solutions with molar ratios between 0:1 and 10:1 allowed us to control the coating composition across a broad range.
Collapse
Affiliation(s)
- Daniel B Knorr
- U.S. Army Research Laboratory , Aberdeen Proving Ground, Maryland 21005, United States
| | - Ngon T Tran
- U.S. Army Research Laboratory , Aberdeen Proving Ground, Maryland 21005, United States
| | - Karen J Gaskell
- Department of Chemistry and Biochemistry, University of Maryland College Park , College Park, Maryland 20742, United States
| | - Joshua A Orlicki
- U.S. Army Research Laboratory , Aberdeen Proving Ground, Maryland 21005, United States
| | - Joseph C Woicik
- Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Cherno Jaye
- Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Daniel A Fischer
- Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - Joseph L Lenhart
- U.S. Army Research Laboratory , Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
39
|
Greene GW, Duffy E, Shallan A, Wuethrich A, Paull B. Electrokinetic Properties of Lubricin Antiadhesive Coatings in Microfluidic Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1899-1908. [PMID: 26814794 DOI: 10.1021/acs.langmuir.5b03535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lubricin is a glycoprotein found in articular joints which has long been recognized as being an important biological boundary lubricant molecule and, more recently, an impressive antiadhesive that readily self-assembles into a well ordered, polymer brush layer on virtually any substrate. The lubricin molecule possesses an overabundance of anionic charge, a property that is atypical among antiadhesive molecules, that enables its use as a coating for applications involving electrokinetic processes such as electrophoresis and electroosmosis. Coating the surfaces of silica and polymeric microfluidic devices with self-assembled lubricin coatings affords a unique combination of excellent fouling resistance and high charge density that enables notoriously "sticky" biomolecules such as proteins to be used and controlled electrokinetically in the device without complications arising from nonspecific adsorption. Using capillary electrophoresis, we characterized the stability, uniformity, and electrokinetic properties of lubricin coatings applied to silica and PTFE capillaries over a range of run buffer pHs and when exposed to concentrated solutions of protein. In addition, we demonstrate the effectiveness of lubricin as a coating to minimize nonspecific protein adsorption in an electrokinetically controlled polydimethylsiloxane/silica microfluidic device.
Collapse
Affiliation(s)
- George W Greene
- Institute for Frontier Materials and ARC Centre of Excellence for Electromaterials Science, Deakin University , Geelong, VIC Australia
| | - Emer Duffy
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Aliaa Shallan
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Alain Wuethrich
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, School of Physical Sciences, University of Tasmania , Hobart, Australia
| |
Collapse
|
40
|
Vonhören B, Langer M, Abt D, Barner-Kowollik C, Ravoo BJ. Fast and Simple Preparation of Patterned Surfaces with Hydrophilic Polymer Brushes by Micromolding in Capillaries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13625-13631. [PMID: 26599822 DOI: 10.1021/acs.langmuir.5b03924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Micropatterns of hydrophilic polymer brushes were prepared by micromolding in capillaries (MIMIC). The polymers are covalently bound to the surfaces by a rapid hetero Diels-Alder reaction, constituting the first example of polymers grafted to surfaces in a defined pattern by MIMIC. The polymers [poly(acrylic acid), poly(hydroxyethyl acrylate), and poly(tetraethylene glycol acrylate) ranging in molecular weight from 1500 to 6000 g mol(-1)] were prepared with narrow dispersities via the reversible addition-fragmentation chain transfer (RAFT) process using a highly electron deficient RAFT agent that can react with surface-anchored dienes such as cyclopentadiene. We demonstrate that the anchoring method is facile to perform and highly suitable for preparing patterned surfaces that are passivated against biological impact in well-defined areas.
Collapse
Affiliation(s)
- Benjamin Vonhören
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| | - Marcel Langer
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18, 76128 Karlsruhe, Germany
| | - Doris Abt
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18, 76128 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Soft Matter Synthesis Laboratory, Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstrasse 18, 76128 Karlsruhe, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster , Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
41
|
Musilkova J, Kotelnikov I, Novotna K, Pop-Georgievski O, Rypacek F, Bacakova L, Proks V. Cell adhesion and growth enabled by biomimetic oligopeptide modification of a polydopamine-poly(ethylene oxide) protein repulsive surface. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:253. [PMID: 26449443 PMCID: PMC4598348 DOI: 10.1007/s10856-015-5583-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/21/2015] [Indexed: 05/16/2023]
Abstract
Protein-repulsive surfaces modified with ligands for cell adhesion receptors have been widely developed for controlling the cell adhesion and growth in tissue engineering. However, the question of matrix production and deposition by cells on these surfaces has rarely been addressed. In this study, protein-repulsive polydopamine-poly(ethylene oxide) (PDA-PEO) surfaces were functionalized with an RGD-containing peptide (RGD), with a collagen-derived peptide binding fibronectin (Col), or by a combination of these peptides (RGD + Col, ratio 1:1) in concentrations of 90 fmol/cm(2) and 700 fmol/cm(2) for each peptide type. When seeded with vascular endothelial CPAE cells, the PDA-PEO surfaces proved to be completely non-adhesive for cells. On surfaces with lower peptide concentrations and from days 1 to 3 after seeding, cell adhesion and growth was restored practically only on the RGD-modified surface. However, from days 3 to 7, cell adhesion and growth was improved on surfaces modified with Col and with RGD + Col. At higher peptide concentrations, the cell adhesion and growth was markedly improved on all peptide-modified surfaces in both culture intervals. However, the collagen-derived peptide did not increase the expression of fibronectin in the cells. The deposition of fibronectin on the material surface was generally very low and similar on all peptide-modified surfaces. Nevertheless, the RGD + Col surfaces exhibited the highest cell adhesion stability under a dynamic load, which correlated with the highest expression of talin and vinculin in the cells on these surfaces. A combination of RGD + Col therefore seems to be the most promising for surface modification of biomaterials, e.g. vascular prostheses.
Collapse
Affiliation(s)
- Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic
| | - Ilya Kotelnikov
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Katarina Novotna
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic
| | - Ognen Pop-Georgievski
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Frantisek Rypacek
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 14220, Prague 4 - Krc, Czech Republic.
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky Sq. 1888/2, 16206, Prague 6, Czech Republic.
| |
Collapse
|
42
|
Kostina NY, Pop-Georgievski O, Bachmann M, Neykova N, Bruns M, Michálek J, Bastmeyer M, Rodriguez-Emmenegger C. Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering. Macromol Biosci 2015; 16:83-94. [DOI: 10.1002/mabi.201500252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Nina Yu. Kostina
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Michael Bachmann
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
| | - Neda Neykova
- Institute of Physics; Academy of Sciences of the Czech Republic; Cukrovarnicka 10 Prague 16253 Czech Republic
- Faculty of Nuclear Science and Physical Engineering; Czech Technical University in Prague; Trojanova 13 Prague 12000 Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Jiří Michálek
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| | - Martin Bastmeyer
- Zoological Institute; Cell and Neurobiology; Karlsruhe Institute of Technology (KIT); Haid-und-Neu-Straße 9 Karlsruhe 76131 Germany
- Institute for Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1; Eggenstein-Leopoldshafen 76344 Germany
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i., Heyrovsky sq.2 Prague 162 06 Czech Republic
| |
Collapse
|
43
|
de los Santos Pereira A, Kostina NY, Bruns M, Rodriguez-Emmenegger C, Barner-Kowollik C. Phototriggered functionalization of hierarchically structured polymer brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5899-5907. [PMID: 25961109 DOI: 10.1021/acs.langmuir.5b01114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The precise design of bioactive surfaces, essential for the advancement of many biomedical applications, depends on achieving control of the surface architecture as well as on the ability to attach bioreceptors to antifouling surfaces. Herein, we report a facile avenue toward hierarchically structured antifouling polymer brushes of oligo(ethylene glycol) methacrylates via surface-initiated atom transfer radical polymerization (SI-ATRP) presenting photoactive tetrazole moieties, which permitted their functionalization via nitrile imine-mediated tetrazole-ene cyclocloaddition (NITEC). A maleimide-functional ATRP initiator was photoclicked to the side chains of a brush enabling a subsequent polymerization of carboxybetaine acrylamide to generate a micropatterned graft-on-graft polymer architecture as evidenced by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Furthermore, the spatially resolved biofunctionalization of the tetrazole-presenting brushes was accessed by the photoligation of biotin-maleimide and subsequent binding of streptavidin. The functionalized brushes bearing streptavidin were able to resist the fouling from blood plasma (90% reduction with respect to bare gold). Moreover, they were employed to demonstrate a model biosensor by immobilization of a biotinylated antibody and subsequent capture of an antigen as monitored in real time by surface plasmon resonance.
Collapse
Affiliation(s)
- Andres de los Santos Pereira
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, 162 06 Prague, Czech Republic
| | - Nina Yu Kostina
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, 162 06 Prague, Czech Republic
| | - Michael Bruns
- ‡Institut für Angewandte Materialien (IAM), Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Cesar Rodriguez-Emmenegger
- †Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, 162 06 Prague, Czech Republic
| | - Christopher Barner-Kowollik
- ∥Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76131 Karlsruhe, Germany
- §Institut für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Anal Bioanal Chem 2015; 407:3927-53. [DOI: 10.1007/s00216-015-8606-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 12/31/2022]
|
45
|
Pop-Georgievski O, Kubies D, Zemek J, Neykova N, Demianchuk R, Chánová EM, Šlouf M, Houska M, Rypáček F. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:617-631. [PMID: 25821702 PMCID: PMC4362089 DOI: 10.3762/bjnano.6.63] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/05/2015] [Indexed: 05/20/2023]
Abstract
Composite materials based on a titanium support and a thin, alginate hydrogel could be used in bone tissue engineering as a scaffold material that provides biologically active molecules. The main objective of this contribution is to characterize the activation and the functionalization of titanium surfaces by the covalent immobilization of anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate immobilization, as well as the stability upon immersion under physiological-like conditions, are demonstrated by different surface sensitive techniques such as spectroscopic ellipsometry, infrared reflection-absorption spectroscopy and X-ray photoelectron spectroscopy. The changes in morphology and the established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry.
Collapse
Affiliation(s)
- Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - Josef Zemek
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6, Czech Republic
| | - Neda Neykova
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16253 Prague 6, Czech Republic
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 12000 Prague 2, Czech Republic
| | - Roman Demianchuk
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - Eliška Mázl Chánová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - Milan Houska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| | - František Rypáček
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky sq. 2, 16206 Prague 6, Czech Republic
| |
Collapse
|
46
|
Surman F, Riedel T, Bruns M, Kostina NY, Sedláková Z, Rodriguez-Emmenegger C. Polymer Brushes Interfacing Blood as a Route Toward High Performance Blood Contacting Devices. Macromol Biosci 2015; 15:636-46. [DOI: 10.1002/mabi.201400470] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 11/28/2014] [Indexed: 12/31/2022]
Affiliation(s)
- František Surman
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i. Prague 162 06 Czech Republic
| | - Tomáš Riedel
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i. Prague 162 06 Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM); Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nina Yu. Kostina
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i. Prague 162 06 Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i. Prague 162 06 Czech Republic
| | - Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry; Academy of Sciences of the Czech Republic; v.v.i. Prague 162 06 Czech Republic
| |
Collapse
|
47
|
Blaszykowski C, Sheikh S, Thompson M. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids. Biomater Sci 2015. [DOI: 10.1039/c5bm00085h] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fouling of artificial surfaces by biofluids is a plague Biotechnology deeply suffers from. Herein, we inventory the state-of-the-art surface chemistries developed to minimize this effect from both human and animal biosamples.
Collapse
Affiliation(s)
| | - Sonia Sheikh
- University of Toronto
- Department of Chemistry – St. George campus
- Toronto
- Canada M5S 3H6
| | - Michael Thompson
- Econous Systems Inc
- Toronto
- Canada M5S 3H6
- University of Toronto
- Department of Chemistry – St. George campus
| |
Collapse
|
48
|
Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B 2015; 3:1921-1930. [DOI: 10.1039/c4tb01766h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of well-controlled bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymers were grafted to gold surfaces through an in situ aminolysis reaction to reduce protein adsorption and platelet adhesion.
Collapse
Affiliation(s)
- Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Chong Zhang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Longchao Bai
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Songtao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei, Anhui Province, 230026
- P. R. China
| |
Collapse
|
49
|
Rodriguez-Emmenegger C, Janel S, de los Santos Pereira A, Bruns M, Lafont F. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy. Polym Chem 2015. [DOI: 10.1039/c5py00197h] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adhesion forces between a single bacterial cell and different polymer brushes were measured directly with an atomic force microscope and correlated with their resistance to fouling.
Collapse
Affiliation(s)
- Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- 162 06 Prague
- Czech Republic
| | - Sébastien Janel
- Cellular Microbiology and Physics of Infection Group
- CNRS UMR 8204
- INSERM U1019
- Institut Pasteur de Lille
- Lille University
| | | | - Michael Bruns
- Institute for Applied Materials (IAM)
- Karlsruhe Nano Micro Facility (KNMF)
- Karlsruhe Institute of Technology (KIT)
- 76344 Eggenstein-Leopoldshafen
- Germany
| | - Frank Lafont
- Cellular Microbiology and Physics of Infection Group
- CNRS UMR 8204
- INSERM U1019
- Institut Pasteur de Lille
- Lille University
| |
Collapse
|
50
|
Liu Y, Qiu WZ, Yang HC, Qian YC, Huang XJ, Xu ZK. Polydopamine-assisted deposition of heparin for selective adsorption of low-density lipoprotein. RSC Adv 2015. [DOI: 10.1039/c4ra16700g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Low-density lipoprotein (LDL) is the main carrier of blood cholesterol, with elevated levels of LDL increasing the risk of atherosclerosis.
Collapse
Affiliation(s)
- Yang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wen-Ze Qiu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Hao-Cheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yue-Cheng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao-Jun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|