1
|
Sari AAA, Alzahrani SO, Alatawi ISS, Aljohani MM, Shah R, Saad FA, Khalil MA, El-Metwaly NM. An effective procedure used metal-organic framework for determination of cadmium ions in real tap water and human blood plasma samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124989. [PMID: 39154403 DOI: 10.1016/j.saa.2024.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.
Collapse
Affiliation(s)
- Abdullah Ali A Sari
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Seraj Omar Alzahrani
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia
| | - Ibrahim S S Alatawi
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Meshari M Aljohani
- Department of Chemistry, College of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Shah
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - M A Khalil
- Egyptian Propylene and Polypropylene Company, Port Said 42511, Egypt
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Wang K, Wang L, Shang Z, Yang X, Li H, Wang X, Zhu M, Meng Q. A series of DNA targeted Cu (II) complexes containing 1,8-naphthalimide ligands: Synthesis, characterization and in vitro anticancer activity. J Inorg Biochem 2024; 261:112721. [PMID: 39236444 DOI: 10.1016/j.jinorgbio.2024.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Copper(II) complexes are very promising candidates for platinum-based anticancer agents. Herein, three Cu (II) complexes (1-3) containing 1,8-naphthalimide ligands were synthesized and characterized by FT-IR, elemental analysis, ESI-MS and single crystal X-ray diffraction (complex 3). In addition, a control compound (complex 4) without 1,8-naphthalimide ligand was synthesized and characterized. The in vitro anticancer activity of the synthesized complexes against five cancer cell lines and one normal cell line was evaluated by MTS assay. The results displayed the antitumor activity of complexes 1-3 was controlled by the aliphatic chain length of ligands, their cytotoxicity was in the order 3 > 2 > 1, giving the IC50 values ranging from 2.874 ± 0.155 μM to 31.47 ± 0.29 μM against five cancer cell lines. Complex 4 showed less activity in comparison with complex 1-3. Notably, complexes 1-3 displayed much higher selectivity (SI = 2.65 to 10.16) compared to complex 4 (SI = 1.0), indicated that the introduction of 1,8-naphthalimide group not only increased the activity of this series of compounds but also enhanced their specific selectivity to cancer cells. Compound 3 induced apoptosis in cancer cells and blocked the S-phase and G2/M of cancer cells. The interaction with DNA of complexes 3 and 4 was studied by UV/Vis spectroscopic titrations, competitive DNA-binding experiment, viscometry and CD spectra. The results showed that complex 3 interacted with DNA in an intercalating mode, but the interaction mode of compound 4 with DNA was electrostatic interaction.
Collapse
Affiliation(s)
- Kehua Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, Liaoning 114007, PR China
| | - Ling Wang
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province, Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China
| | - Xingzhi Yang
- Center for Natural Drug Activity Screening, Kunming Institute of Botany, Chinese Academy of Sciences, PR China
| | - Hongmei Li
- Center for Natural Drug Activity Screening, Kunming Institute of Botany, Chinese Academy of Sciences, PR China
| | - Xiaochun Wang
- Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, Anshan Normal University, Anshan, Liaoning 114007, PR China
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-Based Chemistry of Liaoning Province, Department of Coordination Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, PR China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051, PR China.
| |
Collapse
|
3
|
Gao YY, He J, Li XH, Li JH, Wu H, Wen T, Li J, Hao GF, Yoon J. Fluorescent chemosensors facilitate the visualization of plant health and their living environment in sustainable agriculture. Chem Soc Rev 2024; 53:6992-7090. [PMID: 38841828 DOI: 10.1039/d3cs00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Globally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility. However, to date, no comprehensive analysis and systematic summary of fluorescent chemosensors used in monitoring the correlation between plant health and their environment have been reported. Thus, herein, we summarize the current fluorescent chemosensors ranging from their design strategies to applications in monitoring plant-environment interaction processes. First, we highlight the types of fluorescent chemosensors with design strategies to resolve the bottlenecks encountered in monitoring the health and living environment of plants. In addition, the applications of fluorescent small-molecule, nano and supramolecular chemosensors in the visualization of the health and living environment of plants are discussed. Finally, the major challenges and perspectives in this field are presented. This work will provide guidance for the design of efficient fluorescent chemosensors to monitor plant health, and then promote sustainable agricultural development.
Collapse
Affiliation(s)
- Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jie He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Xiao-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Hong Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Ting Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
4
|
Gao Z, Wang Y, Wang H, Li X, Xu Y, Qiu J. Recent Aptamer-Based Biosensors for Cd 2+ Detection. BIOSENSORS 2023; 13:612. [PMID: 37366977 DOI: 10.3390/bios13060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Cd2+, a major environmental pollutant, is heavily toxic to human health. Many traditional techniques are high-cost and complicated; thus, developing a simple, sensitive, convenient, and cheap monitoring approach is necessary. The aptamer can be obtained from a novel method called SELEX, which is widely used as a DNA biosensor for its easy acquisition and high affinity of the target, especially for heavy metal ions detection, such as Cd2+. In recent years, highly stable Cd2+ aptamer oligonucleotides (CAOs) were observed, and electrochemical, fluorescent, and colorimetric biosensors based on aptamers have been designed to monitor Cd2+. In addition, the monitoring sensitivity of aptamer-based biosensors is improved with signal amplification mechanisms such as hybridization chain reactions and enzyme-free methods. This paper reviews approaches to building biosensors for inspecting Cd2+ by electrochemical, fluorescent, and colorimetric methods. Finally, many practical applications of sensors and their implications for humans and the environment are discussed.
Collapse
Affiliation(s)
- Zihan Gao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yin Wang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haijian Wang
- Hangzhou Alltest Biotech Co., Ltd., Hangzhou 310000, China
| | - Xiangxiang Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Youyang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jieqiong Qiu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Bendicho C, Lavilla I, Pena-Pereira F, de la Calle I, Romero V. Nanomaterial-Integrated Cellulose Platforms for Optical Sensing of Trace Metals and Anionic Species in the Environment. SENSORS (BASEL, SWITZERLAND) 2021; 21:E604. [PMID: 33467146 PMCID: PMC7830103 DOI: 10.3390/s21020604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
The development of disposable sensors that can be easily adapted to every analytical problem is currently a hot topic that is revolutionizing many areas of science and technology. The need for decentralized analytical measurements at real time is increasing for solving problems in areas such as environment pollution, medical diagnostic, food quality assurance, etc., requiring fast action. Despite some current limitations of these devices, such as insufficient detection capability at (ultra)trace level and risk of interferent effects due to matrix, they allow low-cost analysis, portability, low sample consumption, and fast response. In the last years, development of paper-based analytical devices has undergone a dramatic increase for on-site detection of toxic metal ions and other pollutants. Along with the great availability of cellulose substrates, the immobilization of receptors providing enhanced recognition ability, such as a variety of nanomaterials, has driven the design of novel sensing approaches. This review is aimed at describing and discussing the different possibilities arisen with the use of different nanoreceptors (e.g., plasmonic nanoparticles, quantum dots, carbon-based fluorescent nanoparticles, etc.) immobilized onto cellulose-based substrates for trace element detection, their advantages and shortcomings.
Collapse
Affiliation(s)
- Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, Grupo QA2, 36310 Vigo, Spain; (I.L.); (F.P.-P.); (I.d.l.C.); (V.R.)
| | | | | | | | | |
Collapse
|
6
|
Rashidi R, Alenezi J, Czechowski J, Niver J, Mohammad S. Graphite-on-paper-based resistive sensing device for aqueous chemical identification. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00836-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Maity A, Ghosh U, Giri D, Mukherjee D, Maiti TK, Patra SK. A water-soluble BODIPY based 'OFF/ON' fluorescent probe for the detection of Cd 2+ ions with high selectivity and sensitivity. Dalton Trans 2019; 48:2108-2117. [PMID: 30667002 DOI: 10.1039/c8dt04016h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A water-soluble dilithium salt BODIPY derivative (LiBDP) with appended dicarboxylate pseudo-crown ether [NO4] coordinating sites has been designed, synthesized and characterized successfully for the selective and sensitive recognition of Cd2+ in aqueous media. The chemosensor exhibits a remarkable increase in fluorescence intensity as well as a distinct color change upon the addition of Cd2+ over other environmentally and biologically relevant metal ions in H2O. The fluorometric response of LiBDP is attributed to the metal chelation-enhanced fluorescence (MCHEF) effect which has been confirmed by a strong association constant of 2.57 ± 1.06 × 105 M-1 and Job's plot, indicating 1 : 1 binding stoichiometry between LiBDP and Cd2+. Frontier molecular orbital analysis (obtained from DFT studies) also illustrates the turn-on fluorescence of the probe by blocking photoinduced electron transfer (PET) after coordination to Cd2+. The probe can detect Cd2+ in a competitive environment up to a submicromolar level in a biologically significant pH range. The sensor is proved to be reversible and reusable by the alternative addition of Cd2+ followed by S2-. The OFF/ON/OFF sensing behavior is utilized to construct an INHIBIT molecular logic gate based on the two inputs of Cd2+ and S2- and a fluorescence intensity at 512 nm as an output. The test paper experiment demonstrates the practical utility of LiBDP to monitor Cd2+ in an aqueous sample. Finally, the sensing probe was utilized to monitor Cd2+ in living cells.
Collapse
Affiliation(s)
- Apurba Maity
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | | | | | | | |
Collapse
|
8
|
Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo SK, Kuwar A, Singh N. Chemosensors for biogenic amines and biothiols. J Mater Chem B 2018; 6:4872-4902. [PMID: 32255063 DOI: 10.1039/c8tb00732b] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is burgeoning interest among supramolecular chemists to develop novel molecular systems to detect biogenic amines and bio-thiols in aqueous and non-aqueous media due to their potential role in biological processes. Biogenic amines are biologically important targets because of their involvement in the energy metabolism of human biological systems and their requirement is met through food and nutrition. However, the increasing instances of serious health problems due to food toxicity have raised the quality of food nowadays. Biogenic amines have been frequently considered as the markers or primary quality parameters of foods like antioxidant properties, freshness and spoilage. For instance, these amines such as spermine, spermidine, cadavarine, etc. may originate during microbial decarboxylation of amino acids of fermented foods/beverages. These amines may also react with nitrite available in certain meat products and concomitantly produce carcinogenic nitrosamine compounds. On the other hand, it is also well established that biothiols, particularly, thiol amino acids, provide the basic characteristics to food including flavor, color and texture that determine its acceptability. For instance, the reduction of thiol groups produces hydrogen sulfide which reduces flavour as in rotten eggs and spoiled fish, and the presence of hydrogen sulfide in fish is indicative of spoilage. Thus, biogenic amines and bio-thiols have attracted the profound interest of researchers as analytical tools for their quantification. Much scientific and technological information is issued every year, where the establishment of precise interactions of biogenic amines and bio-thiols with other molecules is sought in aqueous and non-aqueous media. This review summarizes the optical chemosensors developed for the selective detection of biogenic amines and bio-thiols.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University (PU), Chandigarh-160014, India.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Su L, Yang L, Sun Q, Zhao T, Liu B, Jiang C, Zhang Z. A ratiometric fluorescent paper sensor for consecutive color change-based visual determination of blood glucose in serum. NEW J CHEM 2018. [DOI: 10.1039/c8nj00502h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ratiometric fluorescent paper sensor with a dosage-sensitive allochromatic capability for the visual determination of blood glucose in human serum.
Collapse
Affiliation(s)
- Lei Su
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Liang Yang
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Qin Sun
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Tingting Zhao
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Bianhua Liu
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Changlong Jiang
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| | - Zhongping Zhang
- CAS Center for Excellence in Nanoscience
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei
- China
| |
Collapse
|
10
|
Hafuka A, Takitani A, Suzuki H, Iwabuchi T, Takahashi M, Okabe S, Satoh H. Determination of Cadmium in Brown Rice Samples by Fluorescence Spectroscopy Using a Fluoroionophore after Purification of Cadmium by Anion Exchange Resin. SENSORS 2017; 17:s17102291. [PMID: 28991211 PMCID: PMC5677403 DOI: 10.3390/s17102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 02/05/2023]
Abstract
Simple analytical methods are needed for determining the cadmium (Cd) content of brown rice samples. In the present study, we developed a new analytical procedure consisting of the digestion of rice using HCl, Cd purification using anion exchange resin, and then determining the Cd content using fluorescence spectroscopy. Digestion with 0.1 M HCl for 10 min at room temperature was sufficient to extract Cd from the ground rice samples. The Cd in the extract was successfully purified in preference to other metals using Dowex 1X8 chloride form resin. Low concentrations of Cd in the eluate could be determined using fluorescence spectroscopy with a fluoroionophore. Overall, the actual limit of quantification value for the Cd content in rice was about 0.1 mg-Cd/kg-rice, which was sufficiently low compared with the regulatory value (0.4 mg-Cd/kg-rice) given by the Codex Alimentarius Commission. We analyzed authentic brown rice samples using our new analytical procedure and the results agreed well with those determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Since the fluoroionophore recognized Zn2+ and Hg2+ as well as Cd2+, a sample containing high concentration of Zn2+ or Hg2+ might cause a false positive result.
Collapse
Affiliation(s)
- Akira Hafuka
- Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan.
| | - Akiyoshi Takitani
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Hiroko Suzuki
- Department of Research and Development, Metallogenics Co., Ltd., Chiba 260-0856, Japan.
| | - Takuya Iwabuchi
- Department of Research and Development, Metallogenics Co., Ltd., Chiba 260-0856, Japan.
| | - Masahiro Takahashi
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Hisashi Satoh
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
11
|
Zhu YF, Wang YS, Zhou B, Yu JH, Peng LL, Huang YQ, Li XJ, Chen SH, Tang X, Wang XF. A multifunctional fluorescent aptamer probe for highly sensitive and selective detection of cadmium(II). Anal Bioanal Chem 2017; 409:4951-4958. [DOI: 10.1007/s00216-017-0436-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/13/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022]
|
12
|
Jiang TJ, Guo Z, Ma MJ, Fang L, Yang M, Li SS, Liu JH, Zhao NJ, Huang XJ, Liu WQ. Electrochemical laser induced breakdown spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-by-layer assembly of graphene oxides. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Zhang Z, Chen Z, Cheng F, Zhang Y, Chen L. Iodine-mediated etching of gold nanorods for plasmonic sensing of dissolved oxygen and salt iodine. Analyst 2016; 141:2955-61. [DOI: 10.1039/c5an02633d] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A plasmonic sensing method for detection of dissolved oxygen and salt iodine based on iodine-mediated etching of gold nanorods is developed.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
- Yantai Shandong 264003
| | - Zhaopeng Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
- Yantai Shandong 264003
| | - Fangbin Cheng
- Ocean school
- Yantai University
- Yantai 264005
- P. R. China
| | - Yaowen Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
- Yantai Shandong 264003
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research (YIC)
- Chinese Academy of Sciences (CAS); Shandong Provincial Key Laboratory of Coastal Environmental Processes
- YICCAS
- Yantai Shandong 264003
| |
Collapse
|
14
|
Cheng F, Chen Z, Zhang Z, Chen L. A highly sensitive colorimetric metalloimmunoassay based on copper-mediated etching of gold nanorods. Analyst 2016; 141:1918-21. [DOI: 10.1039/c5an02276b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive colorimetric metalloimmunoassay based on copper-mediated etching of gold nanorods was developed.
Collapse
Affiliation(s)
| | - Zhaopeng Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Zhiyang Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
15
|
Chen PZ, Zheng HR, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. A BODIPY analogue from the tautomerization of sodium 3-oxide BODIPY. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|