1
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
2
|
Opallage PM, De Silva M, Kariuki SM, Raheel AA, Dunn RC. Photothermal Backscatter Interferometry for Enhanced Detection in Capillary Electrophoresis. Anal Chem 2024. [PMID: 39072412 DOI: 10.1021/acs.analchem.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Refractive index (RI) detection using backscatter interferometry (BSI) enables universal detection in capillary electrophoresis (CE). BSI detection is a versatile on-capillary approach that is easily integrated with capillary or microfluidic channels, straightforward to miniaturize, and inexpensive. The focused BSI light source can also double as the excitation source for fluorescence, enabling simultaneous universal (BSI) and specific (fluorescence) signals from the same detection volume. To improve BSI detection and expand orthogonal content, we integrate photothermal absorption with BSI detection. Nonradiative relaxation of an excited analyte releases heat into the surroundings, which modifies both the local RI and conductivity (viscosity) of the analyte zone. We recently showed that the BSI signal is sensitive to both RI and conductivity, which makes photothermal absorption a promising route to signal enhancement. Here, we use coaxially delivered BSI and photothermal absorption beams to characterize BSI, photothermal BSI, and fluorescence detection using the separation of test samples. We show that photothermal absorption leads to 3 orders of magnitude improvement in BSI detection limits at the powers studied and provides new opportunities for studying binding interactions with CE.
Collapse
Affiliation(s)
- Prabhavie M Opallage
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Miyuru De Silva
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Stanslaus M Kariuki
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Armina A Raheel
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | - Robert C Dunn
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Liu L, Xiang Y, Shao L, Yuan C, Song X, Sun M, Liu Y, Zhang X, Du S, Hou M, Peng J, Shi Y. E3 ubiquitin ligase casitas B-lineage lymphoma-b modulates T-cell anergic resistance via phosphoinositide 3-kinase signaling in patients with immune thrombocytopenia. J Thromb Haemost 2024; 22:1202-1214. [PMID: 38184203 DOI: 10.1016/j.jtha.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The E3 ubiquitin ligase casitas B-lineage lymphoma-b (CBLB) is a newly identified component of the ubiquitin-dependent protein degradation system and is considered an important negative regulator of immune cells. CBLB is essential for establishing a threshold of T-cell activation and regulating peripheral T-cell tolerance through various mechanisms. However, the involvement of CBLB in the pathogenesis of immune thrombocytopenia (ITP) is unknown. OBJECTIVES We aimed to investigate the expression and role of CBLB in CD4+ T cells obtained from patients with ITP through quantitative proteomics analyses. METHODS CD4+ T cells were transfected with adenoviral vectors overexpressing CBLB to clarify the effect of CBLB on anergic induction of T cells in patients with ITP. DNA methylation levels of the CBLB promoter and 5' untranslated region (UTR) in patient-derived CD4+ T cells were detected via MassARRAY EpiTYPER assay (Agena Bioscience). RESULTS CD4+ T cells from patients with ITP showed resistance to anergic induction, highly activated phosphoinositide 3-kinase-protein kinase B (AKT) signaling, decreased CBLB expression, and 5' UTR hypermethylation of CBLB. CBLB overexpression in T cells effectively attenuated the elevated phosphorylated protein kinase B level and resistance to anergy. Low-dose decitabine treatment led to significantly elevated levels of CBLB expression in CD4+ T cells from 7 patients showing a partial or complete response. CONCLUSION These results indicate that the 5' UTR hypermethylation of CBLB in CD4+ T cells induces resistance to T-cell anergy in ITP. Thus, the upregulation of CBLB expression by low-dose decitabine treatment may represent a potential therapeutic approach to ITP.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Yujiao Xiang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chenglu Yuan
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, Shandong, China
| | - Meng Sun
- Jinan Vocational College of Nursing, Jinan, Shandong, China
| | - Yanfeng Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xianlei Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shenghong Du
- Department of Hematology, Taian Central Hospital, Taian, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center in Hematological Diseases, Jinan, Shandong, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Characterization and exploration of an artifact in the reducing capillary electrophoresis-sodium dodecyl sulfate analysis of the 'me-too' drug zuberitamab related to rituximab. J Pharm Biomed Anal 2023; 228:115347. [PMID: 36934619 DOI: 10.1016/j.jpba.2023.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
For monoclonal antibody (mAb) drugs, the 'me-too' drug is a pharmacologically active compound that is structurally similar to the first-in-class drugs, acting on the same target and is used for the same therapeutic purposes, but it may differ in drug-drug interactions and adverse drug reactions. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) has been widely used for quality evaluation of mAb drugs. The properties of the detected substances can interfere with the credibility and accuracy of the method. In the routine comparison analysis for both innovator rituximab and 'me-too' drug zuberitamab samples, an uncommon artifact related to the heavy chain (HC) of zuberitamab was observed in reducing CE-SDS and interfered with our identification of the purity of samples. In this work, the overall hydrophobicity of the HCs of rituximab, zuberitamab, and several other common mAbs was characterized and determined by reversed-phase high-performance liquid chromatography. Additionally, the local hydrophobicity and surface charge were compared using Expasy ProtScale and PyMOL software simulations. We concluded that noncovalent protein aggregation can be related to strong hydrophobicity and low electrostatic repulsion of local amino acid regions, which complicates drug quality control. These findings shed light on the relationship between protein aggregation and the local hydrophobicity region, and broaden the way to analyze the detection 'artifacts' in reducing CE-SDS studies of therapeutic proteins.
Collapse
|
5
|
Kwok T, Chan SL, Shi J, Zhou M, Schaefer A, Bo T, Li V, Huang T, Chen T. Imaged capillary isoelectric focusing employing fluorocarbon and methylcellulose coated fused silica capillary for characterization of charge heterogeneity of protein biopharmaceuticals. SEPARATION SCIENCE PLUS 2023. [DOI: 10.1002/sscp.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - She Lin Chan
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Jessica Shi
- Faculty of Science McGill University Montreal Canada
| | - Mike Zhou
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Anna Schaefer
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Tao Bo
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Victor Li
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| | - Tong Chen
- Advanced Electrophoresis Solutions Ltd. Cambridge Canada
| |
Collapse
|
6
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Olaleye O, Spanov B, Bults P, van der Voort A, Govorukhina N, Sonke GS, Horvatovich P, van de Merbel NC, Bischoff R. Biotransformation of Trastuzumab and Pertuzumab in Breast Cancer Patients Assessed by Affinity Enrichment and Ion-Exchange Chromatography. Drug Metab Dispos 2023; 51:249-256. [PMID: 36379709 DOI: 10.1124/dmd.122.001094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic proteins (TPs) are known to be heterogeneous due to modifications that occur during the production process and storage. Modifications may also occur in TPs after their administration to patients due to in vivo biotransformation. Ligand binding assays, which are widely used in the bioanalysis of TPs in body fluids, are typically unable to distinguish such modifications. Liquid chromatography coupled to mass spectrometry is being increasingly used to study modifications in TPs, but its use to study in vivo biotransformation has been limited until now. We present a novel approach that combines affinity enrichment using Affimer reagents with ion-exchange chromatography (IEX) to analyze charge variants of the TPs trastuzumab and pertuzumab in plasma of patients undergoing therapy for HER2-positive breast cancer. Affimer reagents were immobilized via engineered Cys tags to maleimide beads, and the TPs were eluted under acidic conditions followed by rapid neutralization. The enriched TPs were analyzed by cation-exchange chromatography (IEX) using pH-gradient elution, resulting in the separation of about 20 charge variants for trastuzumab and about five charge variants for pertuzumab. A comparison between in vitro stressed TPs spiked into plasma, and TPs enriched from patient plasma showed that the observed profiles were highly similar. This indicates that in vitro stress testing in plasma can mimic the situation in patient plasma, as far as the generation of charge variants is concerned. SIGNIFICANCE STATEMENT: This research attempts to elucidate the modifications that occur in therapeutic proteins (TPs) after they have been administered to patients. This is important because there is little knowledge about the fate of TPs in this regard, and certain modifications could affect their efficiency. Our results show that the modifications discovered are most likely due to a chemical process and are not patient specific.
Collapse
Affiliation(s)
- Oladapo Olaleye
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Baubek Spanov
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Bults
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna van der Voort
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Natalia Govorukhina
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Gabe S Sonke
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Nico C van de Merbel
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rainer Bischoff
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Wu G, Yu C, Wang W, Du J, Fu Z, Xu G, Li M, Wang L. Mass Spectrometry-Based Charge Heterogeneity Characterization of Therapeutic mAbs with Imaged Capillary Isoelectric Focusing and Ion-Exchange Chromatography as Separation Techniques. Anal Chem 2023; 95:2548-2560. [PMID: 36656605 DOI: 10.1021/acs.analchem.2c05071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Imaged capillary isoelectric focusing (icIEF) and ion-exchange chromatography (IEX) are two essential techniques that are routinely used for charge variant analysis of therapeutic monoclonal antibodies (mAbs) during their development and in quality control. These two techniques that separate mAb charge variants based on different mechanisms and IEX have been developed as front-end separation techniques for online mass spectrometry (MS) detection, which is robust for intact protein identification. Recently, an innovative, coupled icIEF-MS technology has been constructed for protein charge variant analysis in our laboratory. In this study, icIEF-MS developed and strong cation exchange (SCX)-MS were optimized for charge heterogeneity characterization of a diverse of mAbs and their results were compared based on methodological validation. It was found that icIEF-MS outperformed SCX-MS in this study by demonstrating outstanding sensitivity, low carryover effect, accurate protein identification, and higher separation resolution although SCX-MS contributed to higher analysis throughput. Ultimately, integrating our novel icIEF-HRMS analysis with the more common SCX-MS can provide a promising and comprehensive strategy for accelerating the development of complex protein therapeutics.
Collapse
Affiliation(s)
- Gang Wu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Wenbo Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Jialiang Du
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Zhihao Fu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Gangling Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Meng Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Daxing District, Beijing 102629, China
| |
Collapse
|
9
|
Kwok T, Zhou M, Schaefer A, Bo T, Li V, Huang T, Chen T. Fractionation and online mass spectrometry based on imaged capillary isoelectric focusing (icIEF) for characterizing charge heterogeneity of therapeutic antibody. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:411-418. [PMID: 36537584 DOI: 10.1039/d2ay01670b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Imaged capillary isoelectric focusing (icIEF) technology has been proved to be robust for the characterization of protein charge heterogeneity due to its high-resolution pI discrimination and high-throughput. Although high performance liquid chromatography (HPLC) tandem mass spectrometry (MS) and offline fraction collection technologies including isoelectric focusing (IEF), ion exchange chromatography (IEX) and free flow electrophoresis (FFE) have been widely utilized for protein charge variant characterization, there are a few applications of MS coupling with icIEF as a front-separation technique and related fractionation technologies for protein charge heterogeneity. However, the application of icIEF-MS has been much less frequent due to difficulties in MS interface, compatible ampholyte and coated capillary cartridge designation, ultimately impeding the breadth of icIEF applications in protein charge heterogeneity. In this study, a therapeutic monoclonal antibody (mAb-M-AT) was used for its charge variant characterization on an integrated icIEF platform with functions including analytical profiling, MS online coupling and fraction collection for charge heterogeneities. The main protein component and its four charge variants were identified using direct icIEF-MS coupling. Additionally, the two major acidic and basic charge variants were collected using preparative fractionation after the protein focused in the separation capillary. The identity of the fractions was confirmed by LC-MS at intact protein level and the results were consistent with those using icIEF-MS online coupling. The multiple operation modes of the icIEF platform described above can be rapidly and flexibly switched just by changing customized capillary separation cartridges without drastically altering instrument configuration. The whole workflow of icIEF-based profiling, fractionation and MS online coupling for protein heterogeneity is straightforward, reliable, and accurate, thus providing comprehensive solutions for in-depth protein heterogeneity characterization.
Collapse
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Mike Zhou
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Anna Schaefer
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tao Bo
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Victor Li
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tiemin Huang
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| | - Tong Chen
- Advanced Electrophoresis Solution Ltd, Cambridge, Canada.
| |
Collapse
|
10
|
Kwok T, Chan SL, Zhou M, Schaefer A, Bo T, Huang T, Li V, Chen T. High‐efficient characterization of complex protein drugs by imaged capillary isoelectric focusing with high‐resolution ampholytes. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Teresa Kwok
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - She Lin Chan
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Mike Zhou
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Anna Schaefer
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Tao Bo
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Tiemin Huang
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Victor Li
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| | - Tong Chen
- Advanced Electrophoresis Solution Ltd Cambridge Canada
| |
Collapse
|
11
|
Li D, Partin AC, Zhao L, Chen I, Michaels ML, Wang Z, Garces F, Gong D, Riley TP. Protocol for high-throughput cloning, expression, purification, and evaluation of bispecific antibodies. STAR Protoc 2022; 3:101428. [PMID: 35664258 PMCID: PMC9157557 DOI: 10.1016/j.xpro.2022.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Bispecific antibodies are a powerful new class of therapeutics, but their development often requires enormous amounts of time and resources. Here, we describe a high-throughput protocol for cloning, expressing, purifying, and evaluating bispecific antibodies. This protocol enables the rapid screening of large panels of bispecific molecules to identify top candidates for further development. For complete details on the use and execution of this protocol, please refer to Estes et al. (2021).
Collapse
Affiliation(s)
- Danqing Li
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Alexander C Partin
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Liangjun Zhao
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Irwin Chen
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., San Francisco, CA 94080, USA
| | - Mark L Michaels
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Zhulun Wang
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Fernando Garces
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Danyang Gong
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Timothy P Riley
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc., Thousand Oaks, CA 91320, USA
| |
Collapse
|
12
|
Gao H, Wang ST, Hu F, Shen BB, Sun MF, Wang H, Li L, Fang WJ. Investigation of an Uncommon Artifact during Reducing Capillary Electrophoresis-Sodium Dodecyl Sulfate Analysis of a Monoclonal Antibody with Dynamic Light Scattering and Reversed Phase High-Performance Liquid Chromatography. Pharm Res 2022; 39:1959-1968. [PMID: 35701679 DOI: 10.1007/s11095-022-03303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
PURPOSES In reducing capillary electrophoresis sodium dodecyl sulfate (CE-SDS) analysis of a monoclonal antibody (mAb-1), the peak area ratio of heavy chain (HC) to light chain (LC) was out of balance, while multiple artifact peaks were observed following the migration of HC. The main purposes of this study were to describe the techniques utilized to eliminate this artifact and clarify the root cause for this interesting phenomenon. METHODS We optimized the CE-SDS analysis of mAb-1 by a vairety of techniques including changing the concentration of protein or replacing SDS with a more hydrophobic surfactant (i.e., sodium hexadecyl sulfate (SHS) or sodium tetradecyl sulfate (STS) instead of SDS) in sample and/or the sieving gel buffer. Dynamic light scattering (DLS) and reversed phase high-performance liquid chromatography (RP-HPLC) were used to study the protein-surfactant complex. RESULTS The artifact could be partially mitigated by reducing the protein concentration and replacing SDS with SHS or STS in the sample and/or the sieving gel buffer solutions. Due to replacing a more hydrophobic surfactant, the HC-surfactant complex formed was more resistant to dissociation, preventing additional hydrophobic HC-HC interaction and aggregation, thus eliminating the artifact problem. CONCLUSIONS DLS and RP-HPLC are powerful supplementary techniques in characterizing the protein-surfactant complex, and hydrophobic surfactants such as SHS and STS could afford more normal electropherograms during the analysis of mAbs.
Collapse
Affiliation(s)
- Han Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Si-Tao Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feng Hu
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min-Fei Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Haibin Wang
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Lei Li
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
13
|
Susceptibility of Beavers to Chronic Wasting Disease. BIOLOGY 2022; 11:biology11050667. [PMID: 35625395 PMCID: PMC9137852 DOI: 10.3390/biology11050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Chronic wasting disease (CWD) is a contagious, fatal, neurodegenerative prion disease of cervids. The expanding geographical range and rising prevalence of CWD are increasing the risk of pathogen transfer and spillover of CWD to non-cervid sympatric species. As beavers have close contact with environmental and food sources of CWD infectivity, we hypothesized that they may be susceptible to CWD prions. We evaluated the susceptibility of beavers to prion diseases by challenging transgenic mice expressing beaver prion protein (tgBeaver) with five strains of CWD, four isolates of rodent-adapted prions and one strain of Creutzfeldt-Jakob disease. All CWD strains transmitted to the tgBeaver mice, with attack rates highest from moose CWD and the 116AG and H95+ strains of deer CWD. Mouse-, rat-, and especially hamster-adapted prions were also transmitted with complete attack rates and short incubation periods. We conclude that the beaver prion protein is an excellent substrate for sustaining prion replication and that beavers are at risk for CWD pathogen transfer and spillover.
Collapse
|
14
|
Xie H, Ding X. The Intriguing Landscape of Single-Cell Protein Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105932. [PMID: 35199955 PMCID: PMC9036017 DOI: 10.1002/advs.202105932] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Indexed: 05/15/2023]
Abstract
Profiling protein expression at single-cell resolution is essential for fundamental biological research (such as cell differentiation and tumor microenvironmental examination) and clinical precision medicine where only a limited number of primary cells are permitted. With the recent advances in engineering, chemistry, and biology, single-cell protein analysis methods are developed rapidly, which enable high-throughput and multiplexed protein measurements in thousands of individual cells. In combination with single cell RNA sequencing and mass spectrometry, single-cell multi-omics analysis can simultaneously measure multiple modalities including mRNAs, proteins, and metabolites in single cells, and obtain a more comprehensive exploration of cellular signaling processes, such as DNA modifications, chromatin accessibility, protein abundance, and gene perturbation. Here, the recent progress and applications of single-cell protein analysis technologies in the last decade are summarized. Current limitations, challenges, and possible future directions in this field are also discussed.
Collapse
Affiliation(s)
- Haiyang Xie
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
15
|
Kim N, Jeon J, Chen R, Su X. Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Han M, Smith R, Rock DA. Capillary Electrophoresis-Mass Spectrometry (CE-MS) by Sheath-Flow Nanospray Interface and Its Use in Biopharmaceutical Applications. Methods Mol Biol 2022; 2531:15-47. [PMID: 35941476 DOI: 10.1007/978-1-0716-2493-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Both capillary electrophoresis (CE) and mass spectrometry (MS) technologies are powerful analytical tools that have been used extensively in the characterization of biologics in the biopharmaceutical industry. The direct coupling of CE with MS is an attractive approach, in that the high separation capability of CE and the ultrasensitive detection and accurate identification performance of MS can be combined to provide a powerful system for the analysis of complex analytes. In this chapter, we discuss the detailed procedure of carrying out CE-MS analysis using a nano sheath-flow interface and its applications including intact mass analysis of monoclonal antibodies and fusion proteins, and a biotransformation study of two Fc-FGF21 molecules in a single-dose pharmacokinetic mice study. Optimization processes, including the finetuning of CE conditions and MS parameters, are illustrated in this chapter, with focuses on method robustness and assay reproducibility.
Collapse
Affiliation(s)
- Mei Han
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA.
| | - Richard Smith
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| | - Dan A Rock
- Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., South San Francisco, CA, USA
| |
Collapse
|
17
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
18
|
Kumar R, Guttman A, Rathore AS. Applications of capillary electrophoresis for biopharmaceutical product characterization. Electrophoresis 2021; 43:143-166. [PMID: 34591322 DOI: 10.1002/elps.202100182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Capillary electrophoresis (CE), after being introduced several decades ago, has carved out a niche for itself in the field of analytical characterization of biopharmaceutical products. It does not only offer fast separation, high resolution in miniaturized format, but equally importantly represents an orthogonal separation mechanism to high-performance liquid chromatography. Therefore, it is not surprising that CE-based methods can be found in all major pharmacopoeias and are recommended for the analysis of biopharmaceutical products during process development, characterization, quality control, and release testing. Different separation formats of CE, such as capillary gel electrophoresis, capillary isoelectric focusing, and capillary zone electrophoresis are widely used for size and charge heterogeneity characterization as well as purity and stability testing of therapeutic proteins. Hyphenation of CE with MS is emerging as a promising bioanalytical tool to assess the primary structure of therapeutic proteins along with any impurities. In this review, we confer the latest developments in capillary electrophoresis, used for the characterization of critical quality attributes of biopharmaceutical products covering the past 6 years (2015-2021). Monoclonal antibodies, due to their significant share in the market, have been given prioritized coverage.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Andras Guttman
- Horváth Csaba Memorial Laboratories of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Translational Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
19
|
Liu B, Wang W, Gao T, Huang L, Fan H, Chen HX. Separation, identification and quantification of associated impurities in cobratide using sheathless CE-MS and CE-UV. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3845-3851. [PMID: 34378552 DOI: 10.1039/d1ay00717c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cobratide is a peptide drug extracted from the venom of Chinese cobra, and has been widely used in the clinical treatment of chronic, intractable and persistent pain. In a recent study, it was reported that it has the potential to treat COVID-19. In order to control the quality of commercial cobratide drugs, a protocol was established for the separation, identification and quantification of cobratide and its associated impurities, in which sheathless capillary electrophoresis-mass spectrometry (CE-MS) was used for identification and a rapid capillary electrophoresis-ultraviolet-visible detector (CE-UV) method was developed for accurate quantification. Separation conditions that affect the resolution and MS intensities of cobratide and its associated impurities were investigated, including pH value, concentration of background electrolyte (BGE), ratio of organic additive and sample solution. The optimized CE conditions (BGE: 50 mM NH4Ac, pH 4.0; sample solution: deionized water) were used for both sheathless CE-MS and CE-UV methods. Three associated impurities were separated and identified for the first time by sheathless CE-MS. Then, a rapid CE-UV method was validated and used for accurate quantification of cobratide and its associated impurities. The CE-UV method showed good linearity between concentration and corrected peak area of cobratide in the concentration range of 5.36-536.30 μg mL-1. The limit of quantification of the CE-UV method was 4.16 μg mL-1. The relative standard deviations of migration time were less than 1% for both intra-day and inter-day experiments, and those of corrected peak area were less than 5%. Finally, different cobratide drugs were analyzed to evaluate the batch-to-batch consistency. This established protocol combining sheathless CE-MS and CE-UV methods would provide useful information for both quality control and process analysis of peptide drugs.
Collapse
Affiliation(s)
- Bo Liu
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Wentao Wang
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| | - Tie Gao
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| | - Lu Huang
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Huihong Fan
- National Institutes for Food and Drug Control, 31st Huatuo Rd., Daxing Dist., Beijing 102629, P. R. China.
| | - Hong-Xu Chen
- SCIEX China, 5F, Building 1, 24 Yard, Jiuxianqiao Mid Road, Chaoyang District, Beijing 100015, China.
| |
Collapse
|
20
|
Webster CJ, George KL, Woollett GR. Comparability of Biologics: Global Principles, Evidentiary Consistency and Unrealized Reliance. BioDrugs 2021; 35:379-387. [PMID: 34143406 PMCID: PMC8295099 DOI: 10.1007/s40259-021-00488-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
The principles of comparability assessments have been accepted globally as offering sensitive and reliable tools with which to evaluate potential changes to biologics that may arise either through processing changes or through the creation of a copy (biosimilar) by a different sponsor. The comparability approach has evolved through systematic advances in four areas: clear and convergent guidelines for evaluation of potential changes to biologics; risk-based systems of weighting analytical data; progressive improvements in analytical methods; and advanced understanding of post-translational modifications. Routine regulatory expectations for clinical equivalence data are being reevaluated, as they seldom contribute to the assessment of similarity. Similarly, we show that requirements to compare biosimilars and locally sourced versions of their reference products are of questionable scientific value and represent a double standard by comparison with the invariable acceptance of the clinical profiles of novel biologics without reference to their sources. The consistent application of evidentiary standards for comparability to all biologics offers an opportunity for regulators to curtail their own assessments of new biosimilars and instead to recognize comparability assessments made in another jurisdiction (reliance), thereby gaining important efficiencies in the regulatory review of biosimilars and improving the competitiveness of the biosimilars market. Such consistency can also enhance the confidence of all stakeholders, especially patients and their providers, in all biologics.
Collapse
|
21
|
Binkley MM, Cui M, Berezin MY, Meacham JM. Antibody Conjugate Assembly on Ultrasound-Confined Microcarrier Particles. ACS Biomater Sci Eng 2020; 6:6108-6116. [PMID: 33449635 DOI: 10.1021/acsbiomaterials.0c01162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bioconjugates are important next-generation drugs and imaging agents. Assembly of these increasingly complex constructs requires precise control over processing conditions, which is a challenge for conventional manual synthesis. This inadequacy has motivated the pursuit of new approaches for efficient, controlled modification of high-molecular-weight biologics such as proteins, carbohydrates, and nucleic acids. We report a novel, hands-free, semiautomated platform for synthetic manipulation of biomolecules using acoustically responsive microparticles as three-dimensional reaction substrates. The microfluidic reactor incorporates a longitudinal acoustic trap that controls the chemical reactions within a localized acoustic field. Forces generated by this field immobilize the microscale substrates against the continuous flow of participating chemical reagents. Thus, the motion of substrates and reactants is decoupled, enabling exquisite control over multistep reaction conditions and providing high-yield, high-purity products with minimal user input. We demonstrate these capabilities by conjugating clinically relevant antibodies with a small molecule. The on-bead synthesis comprises capture of the antibody, coupling of a fluorescent tag, product purification, and product release. Successful capture and modification of a fluorescently labeled antibody are confirmed via fold increases of 49 and 11 in the green (antibody)- and red (small-molecule dye)-channel median intensities determined using flow cytometry. Antibody conjugates assembled on acoustically responsive, ultrasound-confined microparticles exhibit similar quality and quantity to those prepared manually by a skilled technician.
Collapse
Affiliation(s)
- Michael M Binkley
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - Mingyang Cui
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - Mikhail Y Berezin
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| | - J Mark Meacham
- Washington University in St. Louis, 1 Brookings Drive, Jubel Hall, Room 203K, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. MICROMACHINES 2020; 11:E593. [PMID: 32549277 PMCID: PMC7344675 DOI: 10.3390/mi11060593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
The last decades of biological, toxicological, and pharmacological research have deeply changed the way researchers select the most appropriate 'pre-clinical model'. The absence of relevant animal models for many human diseases, as well as the inaccurate prognosis coming from 'conventional' pre-clinical models, are among the major reasons of the failures observed in clinical trials. This evidence has pushed several research groups to move more often from a classic cellular or animal modeling approach to an alternative and broader vision that includes the involvement of microfluidic-based technologies. The use of microfluidic devices offers several benefits including fast analysis times, high sensitivity and reproducibility, the ability to quantitate multiple chemical species, and the simulation of cellular response mimicking the closest human in vivo milieu. Therefore, they represent a useful way to study drug-organ interactions and related safety and toxicity, and to model organ development and various pathologies 'in a dish'. The present review will address the applicability of microfluidic-based technologies in different systems (2D and 3D). We will focus our attention on applications of microchip electrophoresis (ME) to biological and toxicological studies as well as in drug discovery and development processes. These include high-throughput single-cell gene expression profiling, simultaneous determination of antioxidants and reactive oxygen and nitrogen species, DNA analysis, and sensitive determination of neurotransmitters in biological fluids. We will discuss new data obtained by ME coupled to laser-induced fluorescence (ME-LIF) and electrochemical detection (ME-EC) regarding the production and degradation of nitric oxide, a fundamental signaling molecule regulating virtually every critical cellular function. Finally, the integration of microfluidics with recent innovative technologies-such as organoids, organ-on-chip, and 3D printing-for the design of new in vitro experimental devices will be presented with a specific attention to drug development applications. This 'composite' review highlights the potential impact of 2D and 3D microfluidic systems as a fast, inexpensive, and highly sensitive tool for high-throughput drug screening and preclinical toxicological studies.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Margherita Grasso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Angelita Costantino
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (N.M.); (G.L.)
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Massimo Gulisano
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy; (M.G.); (F.C.)
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.)
| |
Collapse
|
23
|
Majewska NI, Tejada ML, Betenbaugh MJ, Agarwal N. N-Glycosylation of IgG and IgG-Like Recombinant Therapeutic Proteins: Why Is It Important and How Can We Control It? Annu Rev Chem Biomol Eng 2020; 11:311-338. [DOI: 10.1146/annurev-chembioeng-102419-010001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulatory bodies worldwide consider N-glycosylation to be a critical quality attribute for immunoglobulin G (IgG) and IgG-like therapeutics. This consideration is due to the importance of posttranslational modifications in determining the efficacy, safety, and pharmacokinetic properties of biologics. Given its critical role in protein therapeutic production, we review N-glycosylation beginning with an overview of the myriad interactions of N-glycans with other biological factors. We examine the mechanism and drivers for N-glycosylation during biotherapeutic production and the several competing factors that impact glycan formation, including the abundance of precursor nucleotide sugars, transporters, glycosidases, glycosyltransferases, and process conditions. We explore the role of these factors with a focus on the analytical approaches used to characterize glycosylation and associated processes, followed by the current state of advanced glycosylation modeling techniques. This combination of disciplines allows for a deeper understanding of N-glycosylation and will lead to more rational glycan control.
Collapse
Affiliation(s)
- Natalia I. Majewska
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;,
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland 20878, USA
| | - Max L. Tejada
- Bioassay, Impurities and Quality, AstraZeneca, Gaithersburg, Maryland 20878, USA
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;,
| | - Nitin Agarwal
- Cell Culture and Fermentation Sciences, AstraZeneca, Gaithersburg, Maryland 20878, USA
| |
Collapse
|
24
|
Cruzado-Park ID. Optimization of an IgG1 CIEF separation by using narrow-range ampholytes and DMSO as protein solubilizer. Electrophoresis 2020; 41:1308-1315. [PMID: 32375204 DOI: 10.1002/elps.201900449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
CIEF is a powerful separation tool utilized in the characterization and relative quantitation of therapeutic mAb charged isoforms. However, one CIEF method is not capable of separating all mAbs with high resolution and reproducibility. Optimization of sample composition and separation parameters is expected when developing a CIEF method for a specific mAb. This paper summarizes a root cause investigation into why a validated CIEF separation method for MAK33 (a type of IgG1) was no longer reproducible. In addition, this paper introduces the concept of sample focusing volume, which is defined as the actual capillary volume occupied by the sample after focusing and explains why there is less protein precipitation and aggregation when using narrow-range ampholytes than broad-range ampholytes. The use of DMSO as protein solubilizer and possible replacement of urea is also explored in this work. Finally, this paper demonstrates that a new optimized CIEF method can achieve over 100 reproducible high-resolution separations of MAK33 per neutral-coated capillary.
Collapse
|
25
|
Guan Q, Atsma J, Tulsan R, Voronov S, Ding J, Beckman J, Li ZJ. Minimization of artifact protein aggregation using tetradecyl sulfate and hexadecyl sulfate in capillary gel electrophoresis under reducing conditions. Electrophoresis 2020; 41:1245-1252. [PMID: 32297333 DOI: 10.1002/elps.201900435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 11/05/2022]
Abstract
In the biopharmaceutical industry, CE-SDS assesses the purity, heterogeneity, and stability of therapeutic proteins. However, for mAb-1 and mAb-2, typical CE-SDS under reducing conditions produced atypical protein peak profiles, which led to biased purity results, thus were not acceptable for biologics manufacturing. This bias was caused by the formation of method-induced higher molecular weight artifacts, the levels of which correlated with protein concentration. Here we show that adding sodium tetradecyl and hexadecyl sulfates to the sample and the sieving gel buffer solutions was required to prevent formation of aggregate artifacts and to maintain detergent:protein uniformity, suggesting their importance during the sample preparation steps of heat denaturation and subsequent cooling as well as during capillary migration. For these proteins, we show that this uniformity was likely due to the ability of these detergents to bind proteins with markedly higher affinities compared to SDS. "CE-SCX S" methods (where CE-SCX S is CGE using detergent composed of a sodium sulfate head group and a hydrocarbon tail, with "CX " representing various tail lengths), were developed with a sodium tetradecyl sulfate sample buffer and a sodium hexadecyl sulfate containing sieving gel buffer that minimized artifacts and provided robust characterization and release results for mAb-1 and mAb-2.
Collapse
Affiliation(s)
- Qian Guan
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Jennifer Atsma
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Rekha Tulsan
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Sergey Voronov
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Julia Ding
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Jeff Beckman
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| | - Zheng Jian Li
- Biologics Development, Bristol-Myers Squibb Company, 38 Jackson Road, Devens, MA, 01434, USA
| |
Collapse
|
26
|
Hajba L, Guttman A. Recent Advances in Capillary Electrochromatography of Proteins and Carbohydrates in the Biopharmaceutical and Biomedical Field. Crit Rev Anal Chem 2020; 51:289-298. [PMID: 32022586 DOI: 10.1080/10408347.2020.1720589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Capillary electrochromatography (CEC) is a powerful hybrid separation technique that combines capillary electrophoresis and capillary chromatography, capable to address the analytical challenges of proteomics and glycomics. The focus of this paper is to review the recent developments in capillary electrochromatography of proteins and carbohydrates. The different column types applied in capillary electrochromatography such as packed bed, open tubular and monoliths are conferred in detail with respective separation examples. A comprehensive comparison is also given listing the mostly utilized coating methods, stationary phase materials and column preparation methods. The choice of porogenic solvent combinations for monolithic column fabrication is thoroughly discussed, paying close attention to the fine tuning options for the separation driving electroosmotic flow. Application examples of CEC in process analytical technology for the biopharmaceutical and biomarker discovery in the biomedical fields are also given.
Collapse
Affiliation(s)
- L Hajba
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary
| | - A Guttman
- Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary.,Horváth Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Wang AL, Paciolla M, Palmieri MJ, Hao GG. Comparison of glycoprotein separation reveals greater impact of carbohydrates and disulfides on electrophoretic mobility for CE-SDS versus SDS-PAGE. J Pharm Biomed Anal 2020; 180:113006. [DOI: 10.1016/j.jpba.2019.113006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]
|
28
|
Crihfield C, Kristoff C, Veltri L, Penny W, Holland L. Semi-permanent cationic coating for protein separations. J Chromatogr A 2019; 1607:460397. [DOI: 10.1016/j.chroma.2019.460397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
|
29
|
Römer J, Montealegre C, Schlecht J, Kiessig S, Moritz B, Neusüß C. Online mass spectrometry of CE (SDS)-separated proteins by two-dimensional capillary electrophoresis. Anal Bioanal Chem 2019; 411:7197-7206. [PMID: 31616969 DOI: 10.1007/s00216-019-02102-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/23/2019] [Indexed: 10/25/2022]
Abstract
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is the fundamental technique for protein separation by size. Applying this technology in capillary format, gaining high separation efficiency in a more automated way, is a key technology for size separation of proteins in the biopharmaceutical industry. However, unequivocal identification by online mass spectrometry (MS) is impossible so far, due to strong interference in the electrospray process by SDS and other components of the SDS-MW separation gel buffer. Here, a heart-cut two-dimensional electrophoretic separation system applying an electrically isolated valve with an internal loop of 20 nL is presented. The peak of interest in the CE (SDS) separation is transferred to the CZE-MS, where electrospray-interfering substances of the SDS-MW gel are separated prior to online electrospray ionization mass spectrometry. An online SDS removal strategy for decomplexing the protein-SDS complex is implemented in the second dimension, consisting of the co-injection of organic solvent and cationic surfactant. This online CE (SDS)-CZE-MS system allows MS characterization of proteoforms separated in generic CE (SDS), gaining additional separation in the CZE and detailed MS information. In general, the system can be applied to all kinds of proteins separated by CE (SDS). Here, we present results of the CE (SDS)-CZE-MS system on the analysis of several biopharmaceutically relevant antibody impurities and fragments. Additionally, the versatile application spectrum of the system is demonstrated by the analysis of extracted proteins from soybean flour. The online hyphenation of CE (SDS) resolving power and MS identification capabilities will be a powerful tool for protein and mAb characterization. Graphical abstract Two-dimensional capillary electrophoresis system hyphenated with mass spectrometry for the characterization of CE (SDS)-separated proteins. As first dimension, a generic and high MS-interfering CE (SDS) separation is performed for size separation. After heart-cut transfer of the unknown CE (SDS) protein peak, via a four-port nanoliter valve to a volatile electrolyte system as second dimension, interference-free mass spectrometric data of separated mAb fragments and soybean proteins are obtained.
Collapse
Affiliation(s)
- Jennifer Römer
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Cristina Montealegre
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Steffen Kiessig
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Bernd Moritz
- F. Hoffmann-La Roche Ltd, Grenzacherstraße 124, 4070, Basel, Switzerland
| | - Christian Neusüß
- Faculty of Chemistry, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
30
|
Monitorization of α1-Acid Glycoprotein Deglycosylation Using SU-8 Microchips Electrophoresis with LIF Detection. Methods Mol Biol 2019. [PMID: 30847782 DOI: 10.1007/978-1-4939-9213-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In the last few years, biopharmaceuticals-therapeutic drugs which are generally obtained by using molecular biology techniques-have become a major growing sector in pharmaceutical industry. A large part of these biopharmaceuticals are therapeutic glycoproteins. The production of these drugs and their purification process are implying the development of efficient analytical methods, which allow quick and reliable control of the manufacturing process and ensuring the regulatory compliance about the quality of these drugs. Capillary gel electrophoresis (CGE) in the presence of sodium dodecyl sulfate (SDS) is becoming a method of choice in the quality control of these biopharmaceuticals. On the other hand, CGE can be improved if analyses are carried out in microchip format.This chapter reports a detailed microchips gel electrophoresis (MGE) method to separate glycosylated and deglycosylated forms of α1-acid glycoprotein (AGP) labeled with Chromeo P540, using SU-8 microchips and laser induced fluorescence detection. Due to the analogy between AGP and some therapeutic glycoproteins, we have selected AGP as a model system to illustrate the potential of MGE in the analysis of this type of biopharmaceutical compounds.
Collapse
|
31
|
Coceancigh H, Higgins DA, Ito T. Optical Microscopic Techniques for Synthetic Polymer Characterization. Anal Chem 2018; 91:405-424. [PMID: 30350610 DOI: 10.1021/acs.analchem.8b04694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Herman Coceancigh
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Daniel A Higgins
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| | - Takashi Ito
- Department of Chemistry , Kansas State University , 213 CBC Building , Manhattan , Kansas 66506-0401 , United States
| |
Collapse
|
32
|
García-Carmona L, Rojas D, González MC, Escarpa A. Microchip in situ electrosynthesis of silver metallic oxide clusters for ultra-FAST detection of galactose in galactosemic newborns' urine samples. Analyst 2018; 141:6002-6007. [PMID: 27704089 DOI: 10.1039/c6an01716a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This work describes for the first time the coupling of microfluidic chips (MC) to electrosynthetized silver metallic oxide clusters (AgMOCs). As an early demonstration of this novel approach, the ultrafast detection of galactose in galactosemic newborns' urine samples is proposed. AgMOCs were in situ electrosynthetized on integrated microchip platinum electrodes using a double pulse technique and characterized in full using scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques revealing the presence of silver oxides and electrocatalysis towards galactose as a galactosemia biomarker. Galactose detection in galactosemic newborns' urine samples proceeded in less than 30 s, differentiating between ill and healthy urine samples and requiring negligible urine sample consumption. The significance of the newborns' urine samples confirmed the analytical potency of the MC-AgMOCs approach for future implementation of screening for rare disease diagnosis such as galactosemia.
Collapse
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
33
|
Nys G, Fillet M. Microfluidics contribution to pharmaceutical sciences: From drug discovery to post marketing product management. J Pharm Biomed Anal 2018; 159:348-362. [DOI: 10.1016/j.jpba.2018.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
|
34
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
35
|
Dengler-Crish CM, Smith MA, Wilson GN. Early Evidence of Low Bone Density and Decreased Serotonergic Synthesis in the Dorsal Raphe of a Tauopathy Model of Alzheimer's Disease. J Alzheimers Dis 2018; 55:1605-1619. [PMID: 27814296 PMCID: PMC5181667 DOI: 10.3233/jad-160658] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reduced bone mineral density (BMD) and its clinical sequelae, osteoporosis, occur at a much greater rate in patients with Alzheimer’s disease (AD), often emerging early in the disease before significant cognitive decline is seen. Reduced BMD translates to increased bone fracture risk, decreased quality of life, and increased mortality for AD patients. However, the mechanism responsible for this observation is unclear. We hypothesize that bone loss is an additional component of an AD prodrome-changes that emerge prior to dementia and are mediated by dysfunction of the central serotonergic pathways. We characterized the skeletal phenotype of htau mice that express human forms of the microtubule-associated protein tau that become pathologically hyperphosphorylated in AD. Using radiographic densitometry, we measured BMD in female and male htau mice from 2–6 months of age–time-points prior to the presence of significant tauopathy in the hippocampal/entorhinal regions characteristic of this model. We found a significantly reduced BMD phenotype in htau mice that was most pronounced in males. Using western blotting and immunofluorescence, we showed overall reduced tryptophan hydroxylase (TPH) protein in htau brainstem and a 70% reduction in TPH-positive cells in the dorsal raphe nucleus (DRN)–a pivotal structure in the regulation of the adult skeleton. Elevations of hyperphosphorylated tau (ptau) proteins were also measured in brainstem, and co-labeled immunofluorescence studies showed presence of ptau in TPH-positive cells of the DRN as early as 4 months of age in htau mice. Together, these findings demonstrate that reduced BMD occurs earlier than overt degeneration in a tau-based AD model and that pathological changes in tau phosphorylation occur in the serotonin-producing neurons of the brainstem raphe in these mice. This illuminates a need to define a mechanistic relationship between bone loss and serotonergic deficits in early AD.
Collapse
Affiliation(s)
| | - Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Gina N Wilson
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA.,Biomedical Sciences Graduate Program, Kent State University, Kent, OH, USA
| |
Collapse
|
36
|
Hoy CFO, Kushiro K, Takai M. Fabrication and assessment of an electrospun polymeric microfiber-based platform under bulk flow conditions with rapid and efficient antigen capture. Analyst 2018; 143:865-873. [DOI: 10.1039/c7an01366c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A sensitive and rapid membrane capable of antigen capture in 5 seconds compared to a conventional method in 60 minutes.
Collapse
Affiliation(s)
- Carlton F. O. Hoy
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Keiichiro Kushiro
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| | - Madoka Takai
- Department of Bioengineering
- School of Engineering
- The University of Tokyo
- Tokyo
- Japan
| |
Collapse
|
37
|
Clayton KN, Lee D, Wereley ST, Kinzer-Ursem TL. Measuring biotherapeutic viscosity and degradation on-chip with particle diffusometry. LAB ON A CHIP 2017; 17:4148-4159. [PMID: 29115357 DOI: 10.1039/c7lc00507e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the absence of efficient ways to test drug stability and efficacy, pharmaceuticals that have been stored outside of set temperature conditions are destroyed, often at great cost. This is especially problematic for biotherapeutics, which are highly sensitive to temperature fluctuations. Current platforms for assessing the stability of protein-based biotherapeutics in high throughput and in low volumes are unavailable outside of research and development laboratories and are not efficient for use in production, quality control, distribution, or clinical settings. In these alternative environments, microanalysis platforms could provide significant advantages for the characterization of biotherapeutic degradation. Here we present particle diffusometry (PD), a new technique to study degradation of biotherapeutic solutions. PD uses a simple microfluidic chip and microscope setup to calculate the Brownian motion of particles in a quiescent solution using a variation of particle image velocimetry (PIV) fundamentals. We show that PD can be used to measure the viscosity of protein solutions to discriminate native protein from degraded samples as well as to determine the change in viscosity as a function of therapeutic concentration. PD viscosity analysis is applied to two particularly important biotherapeutic preparations: insulin, a commonly used protein for diabetic patients, and monoclonal antibodies which are an emerging class of biotherapeutics used to treat a variety of diseases such as autoimmune disorders and cancer. PD-based characterization of solution viscosity is a new tool for biotherapeutic analysis, and owing to its easy setup could readily be implemented at key points of the pharmaceutical delivery chain and in clinical settings.
Collapse
Affiliation(s)
- K N Clayton
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, 47907, USA
| | | | | | | |
Collapse
|
38
|
Sehgal P, Kirby BJ. Separation of 300 and 100 nm Particles in Fabry–Perot Acoustofluidic Resonators. Anal Chem 2017; 89:12192-12200. [DOI: 10.1021/acs.analchem.7b02858] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Prateek Sehgal
- Sibley
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Brian J. Kirby
- Sibley
School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Department of Medicine, Division of Hematology & Medical Oncology, Weill−Cornell Medicine, New York, New York 10021, United States
| |
Collapse
|
39
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
40
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
41
|
Hajba L, Guttman A. Recent advances in column coatings for capillary electrophoresis of proteins. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Ha JW. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:7495348. [PMID: 28326222 PMCID: PMC5343277 DOI: 10.1155/2017/7495348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS) microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI) technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE) separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.
Collapse
Affiliation(s)
- Ji Won Ha
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
43
|
Sánchez-Hernández L, Montealegre C, Kiessig S, Moritz B, Neusüß C. In-capillary approach to eliminate SDS interferences in antibody analysis by capillary electrophoresis coupled to mass spectrometry. Electrophoresis 2017; 38:1044-1052. [DOI: 10.1002/elps.201600464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/14/2023]
|
44
|
Espinosa-de la Garza CE, Salazar-Flores RD, Pérez NO, Flores-Ortiz LF, Medina-Rivero E. Capillary Electrophoresis Separation of Monoclonal Antibody Isoforms Using a Neutral Capillary. J Vis Exp 2017:55082. [PMID: 28117815 PMCID: PMC5352263 DOI: 10.3791/55082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biotherapeutic proteins, such as monoclonal antibodies (mAbs), are feasible alternatives for the treatment of chronic-degenerative diseases. The biological activity of these proteins depends on their physicochemical properties. The use of high-performance techniques like chromatography and capillary electrophoresis has been described for the analysis of physicochemical heterogeneity of mAbs. Nowadays, capillary zone electrophoresis (CZE) technique constitutes one of the most resolutive and sensitive assays for the analysis of biomolecules. Besides, the electro-driven separation in CZE is governed by extensive properties of matter and offers the advantage of analyzing proteins close to their native state. However, the successful implementation of this technique for routine analysis depends on the skills of the analyst at the critical steps during sample and system preparation. The purpose of this tutorial is to detail the steps to succeed in the CZE analysis of mAbs. Further, this protocol can be used for the development and improvement of skills of the personnel involved in protein analytical chemistry laboratories.
Collapse
|
45
|
Štěpánová S, Kašička V. Analysis of proteins and peptides by electromigration methods in microchips. J Sep Sci 2016; 40:228-250. [PMID: 27704694 DOI: 10.1002/jssc.201600962] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/07/2022]
Abstract
This review presents the developments and applications of microchip electromigration methods in the separation and analysis of peptides and proteins in the period 2011-mid-2016. The developments in sample preparation and preconcentration, microchannel material, and surface treatment are described. Separations by various microchip electromigration methods (zone electrophoresis in free and sieving media, affinity electrophoresis, isotachophoresis, isoelectric focusing, electrokinetic chromatography, and electrochromatography) are demonstrated. Advances in detection methods are reported and novel applications in the areas of proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices, and determination of physicochemical parameters are shown.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
46
|
Sanders BJ, Kim DC, Dunn RC. Recent Advances in Microscale Western Blotting. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:7002-7013. [PMID: 28392839 PMCID: PMC5383213 DOI: 10.1039/c6ay01947a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Western blotting is a ubiquitous tool used extensively in the clinical and research settings to identify proteins and characterize their levels. It has rapidly become a mainstay in research laboratories due to its specificity, low cost, and ease of use. The specificity arises from the orthogonal processes used to identify proteins. Samples are first separated based on size and then probed with antibodies specific for the protein of interest. This confirmatory approach helps avoid pitfalls associated with antibody cross-reactivity and specificity issues. While the technique has evolved since its inception, the last decade has witnessed a paradigm shift in Western blotting technology. The introduction of capillary and microfluidic platforms has significantly decreased time and sample requirements while enabling high-throughput capabilities. These advances have enabled Western analysis down to the single cell level in highly parallel formats, opening vast new opportunities for studying cellular heterogeneity. Recent innovations in microscale Western blotting are surveyed, and the potential for enhancing detection using advances in label-free biosensing is briefly discussed.
Collapse
Affiliation(s)
- Brittany J Sanders
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Daniel C Kim
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| | - Robert C Dunn
- Ralph Adams Institute of Bioanalytical Chemistry, Department of Chemistry, University of Kansas
| |
Collapse
|
47
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
48
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
49
|
Cutting-edge capillary electrophoresis characterization of monoclonal antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:61-78. [PMID: 27265157 DOI: 10.1016/j.jchromb.2016.05.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
Abstract
Out of all categories, monoclonal antibodies (mAbs), biosimilar, antibody-drug conjugates (ADCs) and Fc-fusion proteins attract the most interest due to their strong therapeutic potency and specificity. Because of their intrinsic complexity due to a large number of micro-heterogeneities, there is a crucial need of analytical methods to provide comprehensive in-depth characterization of these molecules. CE presents some obvious benefits as high resolution separation and miniaturized format to be widely applied to the analysis of biopharmaceuticals. CE is an effective method for the separation of proteins at different levels. capillary gel electrophoresis (CGE), capillary isoelectric focusing (cIEF) and capillary zone electrophoresis (CZE) have been particularly relevant for the characterization of size and charge variants of intact and reduced mAbs, while CE-MS appears to be a promising analytical tool to assess the primary structure of mAbs and related products. This review will be dedicated to detail the current and state-of-the-art CE-based methods for the characterization of mAbs and related products.
Collapse
|
50
|
Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C, Edvinsson L. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience 2016; 328:165-83. [PMID: 27155150 DOI: 10.1016/j.neuroscience.2016.04.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology.
Collapse
Affiliation(s)
- Silke Miller
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA.
| | - Hantao Liu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Karin Warfvinge
- University of Lund, Institute of Clinical Sciences at Lund University Hospital, House A13, Sölvegatan, Lund 22184, Sweden
| | - Licheng Shi
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Mary Dovlatyan
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Cen Xu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Lars Edvinsson
- University of Lund, Institute of Clinical Sciences at Lund University Hospital, House A13, Sölvegatan, Lund 22184, Sweden
| |
Collapse
|