1
|
Attia J, Nir S, Mervinetsky E, Balogh D, Gitlin-Domagalska A, Alshanski I, Reches M, Hurevich M, Yitzchaik S. Non-covalently embedded oxytocin in alkanethiol monolayer as Zn 2+ selective biosensor. Sci Rep 2021; 11:7051. [PMID: 33782419 PMCID: PMC8007701 DOI: 10.1038/s41598-021-85015-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/23/2021] [Indexed: 11/29/2022] Open
Abstract
Peptides are commonly used as biosensors for analytes such as metal ions as they have natural binding preferences. In our previous peptide-based impedimetric metal ion biosensors, a monolayer of the peptide was anchored covalently to the electrode. Binding of metal ions resulted in a conformational change of the oxytocin peptide in the monolayer, which was measured using electrochemical impedance spectroscopy. Here, we demonstrate that sensing can be achieved also when the oxytocin is non-covalently integrated into an alkanethiol host monolayer. We show that ion-binding cause morphological changes to the dense host layer, which translates into enhanced impedimetric signals compared to direct covalent assembly strategies. This biosensor proved selective and sensitive for Zn2+ ions in the range of nano- to micro-molar concentrations. This strategy offers an approach to utilize peptide flexibility in monitoring their response to the environment while embedded in a hydrophobic monolayer.
Collapse
Affiliation(s)
- Jessica Attia
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Sivan Nir
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Evgeniy Mervinetsky
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Dora Balogh
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Agata Gitlin-Domagalska
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- Faculty of Chemistry, Department of Molecular Biochemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland
| | - Israel Alshanski
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel
| | - Meital Reches
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| | - Mattan Hurevich
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| | - Shlomo Yitzchaik
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
- The Harvey M. Krueger Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Israel.
| |
Collapse
|
2
|
Heine V, Kremers T, Menzel N, Schnakenberg U, Elling L. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens 2021; 6:1003-1011. [PMID: 33595293 DOI: 10.1021/acssensors.0c02206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monitoring glycosyltransferases on biosensors is of great interest for pathogen and cancer diagnostics. As a proof of concept, we here demonstrate the layer-by-layer immobilization of a multivalent neoglycoprotein (NGP) as a substrate for a bacterial fucosyltransferase (FucT) and the subsequent binding of the fucose-specific Aleuria aurantia lectin (AAL) on an electrochemical impedance spectroscopy (EIS) sensor. We report for the first time the binding kinetics of a glycosyltransferase in real-time. Highly stable EIS measurements are obtained by the modification of counter and reference electrodes with polypyrrole: polystyrene sulfonate (PPy:PSS). In detail, the N-acetyllactosamine (LacNAc)-carrying NGP was covalently immobilized on the gold working electrode and served as a substrate for the FucT-catalyzed reaction. The LacNAc epitopes were converted to Lewisx (Lex) and detected by AAL. AAL binding to the Lex epitope was further confirmed in a lectin displacement and a competitive lectin binding inhibition experiment. We monitored the individual kinetic processes via EIS. The time constant for covalent immobilization of the NGP was 653 s. The FucT kinetics was the slowest process with a time constant of 1121 s. In contrast, a short time constant of 11.8 s was determined for the interaction of AAL with the modified NGPs. When this process was competed by 400 mM fucose, the binding was significantly slowed down, as indicated by a time constant of 978 s. The kinetics for the displacement of bound AAL by free fucose was observed with a time constant of 424 s. We conclude that this novel EIS biosensor and the applied workflow has the potential to detect FucT and other GT activities in general and further monitor protein-glycan interactions, which may be useful for the detection of pathogenic bacteria and cancer cells in future biomedical applications.
Collapse
Affiliation(s)
- Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Tom Kremers
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Nora Menzel
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Uwe Schnakenberg
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Mi F, Guan M, Hu C, Peng F, Sun S, Wang X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 2021; 146:429-443. [DOI: 10.1039/d0an01459a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
- Xinjiang bingtuan Xingxin Vocational and Technical College
| | - Ming Guan
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Fei Peng
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Shijiao Sun
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| | - Xiaomei Wang
- College of Chemistry and Chemical Engineering
- Xinjiang normal University
- Urumqi
- China
| |
Collapse
|
4
|
Yaghoubi M, Rahimi F, Negahdari B, Rezayan AH, Shafiekhani A. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Sci Rep 2020; 10:16017. [PMID: 32994483 PMCID: PMC7525577 DOI: 10.1038/s41598-020-72457-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022] Open
Abstract
Accuracy and speed of detection, along with technical and instrumental simplicity, are indispensable for the bacterial detection methods. Porous silicon (PSi) has unique optical and chemical properties which makes it a good candidate for biosensing applications. On the other hand, lectins have specific carbohydrate-binding properties and are inexpensive compared to popular antibodies. We propose a lectin-conjugated PSi-based biosensor for label-free and real-time detection of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by reflectometric interference Fourier transform spectroscopy (RIFTS). We modified meso-PSiO2 (10–40 nm pore diameter) with three lectins of ConA (Concanavalin A), WGA (Wheat Germ Agglutinin), and UEA (Ulex europaeus agglutinin) with various carbohydrate specificities, as bioreceptor. The results showed that ConA and WGA have the highest binding affinity for E. coli and S. aureus respectively and hence can effectively detect them. This was confirmed by 6.8% and 7.8% decrease in peak amplitude of fast Fourier transform (FFT) spectra (at 105 cells mL−1 concentration). A limit of detection (LOD) of about 103 cells mL−1 and a linear response range of 103 to 105 cells mL−1 were observed for both ConA-E. coli and WGA-S. aureus interaction platforms that are comparable to the other reports in the literature. Dissimilar response patterns among lectins can be attributed to the different bacterial cell wall structures. Further assessments were carried out by applying the biosensor for the detection of Klebsiella aerogenes and Bacillus subtilis bacteria. The overall obtained results reinforced the conjecture that the WGA and ConA have a stronger interaction with Gram-positive and Gram-negative bacteria, respectively. Therefore, it seems that specific lectins can be suggested for bacterial Gram-typing or even serotyping. These observations were confirmed by the principal component analysis (PCA) model.
Collapse
Affiliation(s)
- Mona Yaghoubi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Fereshteh Rahimi
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnoloy, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | |
Collapse
|
5
|
Echeverri D, Garg M, Varón Silva D, Orozco J. Phosphoglycan-sensitized platform for specific detection of anti-glycan IgG and IgM antibodies in serum. Talanta 2020; 217:121117. [PMID: 32498834 DOI: 10.1016/j.talanta.2020.121117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/29/2023]
Abstract
Glycosylphosphatidylinositol anchored proteins (GPI-APs) are natural conjugates in the plasma membrane of eukaryotic cells that result from the attachment of a glycolipid to the C-terminus of many proteins. GPI-APs play a crucial role in cell signaling and adhesion and have implications in health and diseases. GPI-APs and GPIs without protein (free GPIs) are found in abundance on the surface of the protozoan parasite Toxoplasma gondii. The detection of anti-GPI IgG and IgM antibodies allows differentiation between toxoplasmosis patients and healthy individuals using serological assays. However, these methods are limited by their poor efficiency, cross-reactivity and need for sophisticated laboratory equipment and qualified personnel. Here, we established a label-free electrochemical glycobiosensor for the detection of anti-GPI IgG and IgM antibodies in serum from toxoplasmosis seropositive patients. This biosensor uses a synthetic GPI phosphoglycan bioreceptor immobilized on screen-printed gold electrodes through a linear alkane thiol phosphodiester. The antigen-antibody interaction was detected and quantified by electrochemical impedance spectroscopy (EIS). The resultant device showed a linear dynamic range of anti-GPI antibodies in serum ranging from 1.0 to 10.0 IU mL-1, with a limit of detection of 0.31 IU mL-1. This method also holds great potential for the detection of IgG antibodies related to other multiple medical conditions characterized by overexpression of antibodies.
Collapse
Affiliation(s)
- Danilo Echeverri
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Monika Garg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
6
|
Self-Assembled Nanoscaled Metalloporphyrin for Optical Detection of Dimethylmethylphosphonate. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7689183. [PMID: 31011578 PMCID: PMC6442447 DOI: 10.1155/2019/7689183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/04/2018] [Accepted: 01/13/2019] [Indexed: 01/30/2023]
Abstract
The self-assembly approach has been widely adopted in the effort to design and prepare functional materials. Herein, we report the synthesis and optical properties of metalloporphyrin nanoparticles. Nanoscaled particles of 5,10,15,20-tetraphenylporphyrin manganese (MnTPP) and 5,10,15,20-tetraphenylporphyrin indium (InTPP) were produced in the water/dimethylsulfoxide (DMSO) mixed solution by self-assembly approach. The absorbance intensity at the characteristic peak of the monomeric and nanoscaled metalloporphyrins decreased when they interact with dimethylmethylphosphonate (DMMP). Detection limits of MnTPP and InTPP nanoparticles to DMMP were 10−9 and 10−10 L/L, respectively, and detection limits of monomeric MnTPP and InTPP to DMMP were 10−6 and 10−7 L/L, respectively. Density functional theory (DFT) calculations on MnTPP and InTPP with DMMP as axial ligands had been performed in the B3LYP/6-31g (d) approximation. Their optimized geometries and binding energies were found to depend very strongly on the central metal ion, and InTPP was more sensitive for DMMP detection in contract to MnTPP. All the experimental and theoretical results demonstrated that nanoscaled metalloporphyrin have potential prospects in determination for public safety.
Collapse
|
7
|
Microscopy examination of red blood and yeast cell agglutination induced by bacterial lectins. PLoS One 2019; 14:e0220318. [PMID: 31344098 PMCID: PMC6657890 DOI: 10.1371/journal.pone.0220318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Lectins are a group of ubiquitous proteins which specifically recognize and reversibly bind sugar moieties of glycoprotein and glycolipid constituents on cell surfaces. The mutagenesis approach is often employed to characterize lectin binding properties. As lectins are not enzymes, it is not easy to perform a rapid specificity screening of mutants using chromogenic substrates. It is necessary to use different binding assays such as isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), microscale thermophoresis (MST), enzyme-linked lectin assays (ELLA), or glycan arrays for their characterization. These methods often require fluorescently labeled proteins (MST), highly purified proteins (SPR) or high protein concentrations (ITC). Mutant proteins may often exhibit problematic behaviour, such as poor solubility or low stability. Lectin-based cell agglutination is a simple and low-cost technique which can overcome most of these problems. In this work, a modified method of the agglutination of human erythrocytes and yeast cells with microscopy detection was successfully used for a specificity study of the newly prepared mutant lectin RS-IIL_A22S, which experimentally completed studies on sugar preferences of lectins in the PA-IIL family. Results showed that the sensitivity of this method is comparable with ITC, is able to determine subtle differences in lectin specificity, and works directly in cell lysates. The agglutination method with microscopy detection was validated by comparison of the results with results obtained by agglutination assay in standard 96-well microtiter plate format. In contrast to this assay, the microscopic method can clearly distinguish between hemagglutination and hemolysis. Therefore, this method is suitable for examination of lectins with known hemolytic activity as well as mutant or uncharacterized lectins, which could damage red blood cells. This is due to the experimental arrangement, which includes very short sample incubation time in combination with microscopic detection of agglutinates, that are easily observed by a small portable microscope.
Collapse
|
8
|
Masigol M, Fattahi N, Barua N, Lokitz BS, Retterer ST, Platt TG, Hansen RR. Identification of Critical Surface Parameters Driving Lectin-Mediated Capture of Bacteria from Solution. Biomacromolecules 2019; 20:2852-2863. [PMID: 31150217 DOI: 10.1021/acs.biomac.9b00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized. Here, experimental parameters including polymer areal chain density, lectin molecular weight, and lectin coupling buffer were systematically varied to identify parameters driving highest azlactone conversions and corresponding lectin surface densities. To introduce physical nanostructures into the attachment layer, nanopillar arrays (NPAs) of varied heights (300 and 2100 nm) were then used to provide an underlying surface template for the functional polymer layer. Capture of Escherichia coli on lectin-polymer surfaces coated over both flat and NPA surfaces was then investigated. For flat polymer interfaces, bacteria were detected on the surface after incubation at a solution concentration of 103 cfu/mL, and a corresponding detection limit of 1.7 × 103 cfu/mL was quantified. This detection limit was 1 order of magnitude lower than control lectin surfaces functionalized with standard, carbodiimide coupling chemistry. NPA surfaces containing 300 nm tall pillars further improved the detection limit to 2.1 × 102 cfu/mL, but also reduced the viability of captured cells. Finally, to investigate the impact of cell surface parameters on capture, we used Agrobacterium tumefaciens cells genetically modified to allow manipulation of exopolysaccharide adhesin production levels. Statistical analysis of surface capture levels revealed that lectin surface density was the primary factor driving capture, as opposed to exopolysaccharide adhesin expression. These findings emphasize the critical importance of the synthetic interface and the development of surfaces that combine high lectin densities with tailored physical features to drive high levels of capture. These insights will aid in design of biofunctional interfaces with physicochemical surface properties favorable for capture and isolation of bacteria cells from solutions.
Collapse
|
9
|
Bertok T, Lorencova L, Chocholova E, Jane E, Vikartovska A, Kasak P, Tkac J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2018. [DOI: 10.1002/celc.201800848] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomas Bertok
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Lenka Lorencova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Erika Chocholova
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Eduard Jane
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University Doha 2713 Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institution of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
10
|
Abstract
A short description about the importance of glycan biorecognition in physiological (blood cell type) and pathological processes (infections by human and avian influenza viruses) is provided in this review. Glycans are described as much better information storage media, compared to proteins or DNA, due to the extensive variability of glycan structures. Techniques able to detect an exact glycan structure are briefly discussed with the main focus on the application of lectins (glycan-recognising proteins) in the specific analysis of glycans still attached to proteins or cells/viruses. Optical, electrochemical, piezoelectric and micromechanical biosensors with immobilised lectins or glycans able to detect a wide range of analytes including whole cells/viruses are also discussed.
Collapse
|
11
|
Immobilization of concanavalin A lectin on a reduced graphene oxide-thionine surface by glutaraldehyde crosslinking for the construction of an impedimetric biosensor. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
13
|
Kveton F, Blšáková A, Hushegyi A, Damborsky P, Blixt O, Jansson B, Tkac J. Optimization of the Small Glycan Presentation for Binding a Tumor-Associated Antibody: Application to the Construction of an Ultrasensitive Glycan Biosensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2709-2716. [PMID: 28248511 PMCID: PMC5659382 DOI: 10.1021/acs.langmuir.6b04021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The main aim of the study was to optimize the interfacial presentation of a small antigen-a Tn antigen (N-acetylgalactosamine)-for binding to its analyte anti-Tn antibody. Three different methods for the interfacial display of a small glycan are compared here, including two methods based on the immobilization of the Tn antigen on a mixed self-assembled monolayer (SAM) (2D biosensor) and the third one utilizing a layer of a human serum albumin (HSA) for the immobilization of a glycan forming a 3D interface. Results showed that the 3D interface with the immobilized Tn antigen is the most effective bioreceptive surface for binding its analyte. The 3D impedimetric glycan biosensor exhibited a limit of detection of 1.4 aM, a wide linear range (6 orders of magnitude), and high assay reproducibility with an average relative standard deviation of 4%. The buildup of an interface was optimized using various techniques with the visualization of the glycans on the biosensor surface by atomic force microscopy. The study showed that the 3D biosensor is not only the most sensitive compared to other two biosensor platforms but that the Tn antigen on the 3D biosensor surface is more accessible for antibody binding with better kinetics of binding (t50% = 137 s, t50% = the time needed to attain 50% of a steady-state signal) compared to the 2D biosensor configuration with t50% = 354 s. The 3D glycan biosensor was finally applied for the analysis of a human serum sample spiked with an analyte.
Collapse
Affiliation(s)
- Filip Kveton
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Anna Blšáková
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Andras Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Pavel Damborsky
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, 1871
Frederiksberg, Copenhagen, Denmark
| | - Bo Jansson
- Division of Oncology and Pathology, Department of Clinical
Sciences, Lund, Lund University, Lund, SE 221 85 Sweden
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry,
Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
14
|
Cratylia mollis lectin nanoelectrode for differential diagnostic of prostate cancer and benign prostatic hyperplasia based on label-free detection. Biosens Bioelectron 2016; 85:171-177. [DOI: 10.1016/j.bios.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 01/30/2023]
|
15
|
Klukova L, Filip J, Belicky S, Vikartovska A, Tkac J. Graphene oxide-based electrochemical label-free detection of glycoproteins down to aM level using a lectin biosensor. Analyst 2016; 141:4278-82. [PMID: 27277703 DOI: 10.1039/c6an00793g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A label-free ultrasensitive impedimetric biosensor with lectin immobilised on graphene oxide (GO) for the detection of glycoproteins from 1 aM is shown here. This is the first time a functional lectin biosensor with lectin directly immobilised on a graphene-based interface without any polymer modifier has been described. The study also shows that hydrophilic oxidative debris present on GO has a beneficial effect on the sensitivity of (8.46 ± 0.20)% per decade for the lectin biosensor compared to the sensitivity of (4.52 ± 0.23)% per decade for the lectin biosensor built up from GO with the oxidative debris washed out.
Collapse
Affiliation(s)
- L Klukova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
16
|
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet characterisation of prostate specific antigen using electrochemical lectin-based immunosensor assay and MALDI TOF/TOF analysis: Focus on sialic acid. Proteomics 2016; 16:3085-3095. [PMID: 26920336 DOI: 10.1002/pmic.201500463] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 12/21/2022]
Abstract
The construction of a sensitive electrochemical lectin-based immunosensor for detection of a prostate specific antigen (PSA) is shown here. Three lectins with different carbohydrate specificities were used in this study to glycoprofile PSA, which is the most common biomarker for prostate cancer (PCa) diagnosis. The biosensor showed presence of α-L-fucose and α-(2,6)-linked terminal sialic acid within PSA´s glycan with high abundance, while only traces of α-(2,3)-linked terminal sialic acid were found. MALDI TOF/TOF mass spectrometry was applied to validate results obtained by the biosensor with a focus on determination of a type of sialic acid linkage by two methods. The first direct comparison of electrochemical immunosensor assay employing lectins for PSA glycoprofiling with mass spectrometric techniques is provided here and both methods show significant agreement. Thus, electrochemical lectin-based immunosensor has potential to be applied for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Dominika Pihikova
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Zuzana Pakanova
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Marek Nemcovic
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Barath
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Stefan Belicky
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Tomas Bertok
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Mucha
- Center of Excellence for Glycomics, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| | - Jan Tkac
- Department of Glycobiotechnology, Slovak Academy of Sciences, Institute of Chemistry, Bratislava, Slovak Republic
| |
Collapse
|
17
|
Konopińska K, Pietrzak M, Mazur R, Malinowska E. Analytical characterization of IgG–cTpp and IgG–Mn-cTpp conjugates. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424615500984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herein, the conjugation of carboxylated tetraphenylporphyrin or its derivative containing manganese cation and model protein — immunoglobulin G is presented. The obtained IgG–cTpp and IgG–Mn-cTpp conjugates were subsequently used for model immunoassays construction. The IgG–cTpp formation was confirmed using size-exclusion chromatography. Thanks to the unique properties of applied labels the assay analysis was carried out with both spectrophotometric and spectrofluorimetric detection. The assays were performed creating semi-quantitative detection system using 96-well plates. The incubation time, ensuring full saturation of the surface with secondary antibodies was also optimized. Moreover, in the case of IgG–Mn-cTpp conjugates we present the possibility of both direct and indirect determination of the label, the latter based on the catalytic activity of Mn-cTpp, which allows for amplification of the measured signal. We proved that both cTpp and Mn-cTpp may be successfully used for protein labeling and serve as universal tracers for various formats of affinity assays and sensors.
Collapse
Affiliation(s)
- Kamila Konopińska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Mariusz Pietrzak
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Elżbieta Malinowska
- Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
18
|
Anik Ü, Timur S. Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 2016. [DOI: 10.1039/c6ra23686c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, nanomaterial based electrochemical biosensors including electrochemical immunosensors and cytosensors towards cancer detection are covered.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000 Mugla
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- İzmir
- Turkey
| |
Collapse
|
19
|
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst 2015; 141:1044-51. [PMID: 26647853 DOI: 10.1039/c5an02322j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study presents a proof-of-concept for the development of an impedimetric biosensor for ultra-sensitive glycoprofiling of prostate specific antigen (PSA). The biosensor exhibits three unique characteristics: (1) analysis of PSA with limit of detection (LOD) down to 4 aM; (2) analysis of the glycan part of PSA with LOD down to 4 aM level and; (3) both assays (i.e., PSA quantification and PSA glycoprofiling) can be performed on the same interface due to label-free analysis.
Collapse
Affiliation(s)
- D Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic.
| | | | | | | | | |
Collapse
|
20
|
Bertok T, Šedivá A, Filip J, Ilcikova M, Kasak P, Velic D, Jane E, Mravcová M, Rovenský J, Kunzo P, Lobotka P, Šmatko V, Vikartovská A, Tkac J. Carboxybetaine Modified Interface for Electrochemical Glycoprofiling of Antibodies Isolated from Human Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7148-57. [PMID: 26048139 PMCID: PMC4489201 DOI: 10.1021/acs.langmuir.5b00944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Impedimetric lectin biosensors capable of recognizing two different carbohydrates (galactose and sialic acid) in glycans attached to antibodies isolated from human serum were prepared. The first step entailed the modification of a gold surface by a self-assembled monolayer (SAM) deposited from a solution containing a carboxybetaine-terminated thiol applied to the subsequent covalent immobilization of lectins and to resist nonspecific protein adsorption. In the next step, Sambucus nigra agglutinin (SNA) or Ricinus communis agglutinin (RCA) was covalently attached to the SAM, and the whole process of building a bioreceptive layer was optimized and characterized using a diverse range of techniques including electrochemical impedance spectroscopy, cyclic voltammetry, quartz crystal microbalance, contact angle measurements, zeta-potential assays, X-ray photoelectron spectroscopy, and atomic force microscopy. In addition, the application of the SNA-based lectin biosensor in the glycoprofiling of antibodies isolated from the human sera of healthy individuals and of patients suffering from rheumatoid arthritis (RA) was successfully validated using an SNA-based lectin microarray. The results showed that the SNA lectin, in particular, is capable of discriminating between the antibodies isolated from healthy individuals and those from RA patients based on changes in the amount of sialic acid present in the antibodies. In addition, the results obtained by the application of RCA and SNA biosensors indicate that the abundance of galactose and sialic acid in antibodies isolated from healthy individuals is age-related.
Collapse
Affiliation(s)
- Tomas Bertok
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Alena Šedivá
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Jaroslav Filip
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Marketa Ilcikova
- Centre
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Peter Kasak
- Centre
for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Dusan Velic
- Department
of Physical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska Dolina, Bratislava, 842 15, Slovak Republic
- International
Laser Centre, Ilkovičova
3, Bratislava 841 04, Slovak Republic
| | - Eduard Jane
- International
Laser Centre, Ilkovičova
3, Bratislava 841 04, Slovak Republic
| | - Martina Mravcová
- Laboratory
of Human Endocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, Bratislava, 833 06, Slovak Republic
| | - Jozef Rovenský
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešt’any, Slovak Republic
| | - Pavol Kunzo
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Peter Lobotka
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Vasilij Šmatko
- Department
of Sensors and Detectors, Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 841 04, Slovak Republic
| | - Alica Vikartovská
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
| | - Jan Tkac
- Department
of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovak Republic
- Tel.: +421 2 5941 0263. E-mail:
| |
Collapse
|
21
|
Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromol Rapid Commun 2015; 36:1472-8. [DOI: 10.1002/marc.201500118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| | - Hyunji Park
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| |
Collapse
|
22
|
Hushegyi A, Bertok T, Damborsky P, Katrlik J, Tkac J. An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chem Commun (Camb) 2015; 51:7474-7. [PMID: 25828081 PMCID: PMC4883646 DOI: 10.1039/c5cc00922g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An impedimetric glycan biosensor with optimised glycan density was applied for the detection of lectins and influenza hemagglutinins down to attomolar concentrations (aM).
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
23
|
Moh ES, Thaysen-Andersen M, Packer NH. Relative versus absolute quantitation in disease glycomics. Proteomics Clin Appl 2015; 9:368-82. [DOI: 10.1002/prca.201400184] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/21/2014] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Edward S.X. Moh
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| | | | - Nicolle H. Packer
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney Australia
| |
Collapse
|
24
|
Filip J, Kasák P, Tkac J. Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors. CHEMICKE ZVESTI 2015; 69:112-133. [PMID: 27242391 PMCID: PMC4884446 DOI: 10.1515/chempap-2015-0051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene's unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.
Collapse
Affiliation(s)
- Jaroslav Filip
- Slovak academy of sciences, Institute of Chemistry, Department of
Glycobiotechnology, Dúbravská cesta 9, Bratislava, SK-84538
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha,
Qatar
| | - Jan Tkac
- Slovak academy of sciences, Institute of Chemistry, Department of
Glycobiotechnology, Dúbravská cesta 9, Bratislava, SK-84538
| |
Collapse
|
25
|
Abstract
Glycans are chains of carbohydrates attached to proteins (glycoproteins and proteoglycans) or lipids (glycolipids). Glycosylation is a posttranslational modification and glycans have a wide range of functions in a human body including involvement in oncological diseases. Change in a glycan structure cannot only indicate presence of a pathological process, but more importantly in some cases also its stage. Thus, a glycan analysis has a potential to be an effective and reliable tool in cancer diagnostics. Lectins are proteins responsible for natural biorecognition of glycans, even carbohydrate moieties still attached to proteins or whole cells can be recognized by lectins, what makes them an ideal candidate for designing label-free biosensors for glycan analysis. In this review we would like to summarize evidence that glycoprofiling of biomarkers by lectin-based biosensors can be really helpful in detecting prostate cancer.
Collapse
Affiliation(s)
- Štefan Belický
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK - 845 38, Slovakia
| | - Jan Tkac
- Department of Glycobiotechnology, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK - 845 38, Slovakia
| |
Collapse
|
26
|
Pihíková D, Kasák P, Tkac J. Glycoprofiling of cancer biomarkers: Label-free electrochemical lectin-based biosensors. OPEN CHEM 2015; 13:636-655. [PMID: 27275016 PMCID: PMC4892350 DOI: 10.1515/chem-2015-0082] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycosylation of biomolecules is one of the most prevalent post- and co-translational modification in a human body, with more than half of all human proteins being glycosylated. Malignant transformation of cells influences glycosylation machinery resulting in subtle changes of the glycosylation pattern within the cell populations as a result of cancer. Thus, an altered terminal glycan motif on glycoproteins could provide a warning signal about disease development and progression and could be applied as a reliable biomarker in cancer diagnostics. Among all highly effective glycoprofiling tools, label-free electrochemical impedance spectroscopy (EIS)-based biosensors have emerged as especially suitable tool for point-of-care early-stage cancer detection. Herein, we highlight the current challenges in glycoprofiling of various cancer biomarkers by ultrasensitive impedimetric-based biosensors with low sample consumption, low cost fabrication and simple miniaturization. Additionally, this review provides a short introduction to the field of glycomics and lectinomics and gives a brief overview of glycan alterations in different types of cancer.
Collapse
Affiliation(s)
- Dominika Pihíková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak
Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava,
Slovakia
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O.Box 2713 Doha,
Qatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak
Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava,
Slovakia
| |
Collapse
|
27
|
Klukova L, Bertok T, Petrikova M, Sediva A, Mislovicova D, Katrlik J, Vikartovska A, Filip J, Kasak P, Andicsová-Eckstein A, Mosnáček J, Lukáč J, Rovenský J, Imrich R, Tkac J. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: a comparative study with three bioanalytical methods. Anal Chim Acta 2014; 853:555-562. [PMID: 25467503 DOI: 10.1016/j.aca.2014.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/18/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease seriously affecting patient's quality of life. The heterogeneity of the disease also means that identification and subsequent validation of biomarkers of the disease is quite challenging. A fully validated single biomarker for diagnosis, prognosis, disease activity and assessment of response to therapy is not yet available. The main aim of this study was to apply an alternative assay protocol to the immunoassay-based analysis of this disease by employment of sialic acid recognizing lectin Sambucus nigra agglutinin (SNA) to glycoprofile serum samples. To our best knowledge this is the first study describing direct lectin-based glycoprofiling of serum SSc samples. Three different analytical methods for glycoprofiling of serum samples relying on application of lectins are compared here from a bioanalytical point of view including traditional ELISA-like lectin-based method (ELLA), novel fluorescent lectin microarrays and ultrasensitive impedimetric lectin biosensors. Results obtained by all three bioanalytical methods consistently showed differences in the level of sialic acid present on glycoproteins, when serum from healthy people was compared to the one from patients having SSc. Thus, analysis of sialic acid content in human serum could be of a diagnostic value for future detection of SSc, but further work is needed to enhance selectivity of assays for example by glycoprofiling of a fraction of human serum enriched in antibodies for individual diagnostics.
Collapse
Affiliation(s)
- Ludmila Klukova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Miroslava Petrikova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Alena Sediva
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Danica Mislovicova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Jaroslav Filip
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar; Department for Biomaterial Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 41, Slovakia
| | - Anita Andicsová-Eckstein
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 41, Slovakia
| | - Jaroslav Mosnáček
- Department of Synthesis and Characterization of Polymers, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 41, Slovakia
| | - Jozef Lukáč
- National Institute of Rheumatic Diseases, Nábr. I. Krasku 4, Piešt'any 921 12, Slovakia
| | - Jozef Rovenský
- National Institute of Rheumatic Diseases, Nábr. I. Krasku 4, Piešt'any 921 12, Slovakia
| | - Richard Imrich
- Laboratory of Human Endocrinology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, Bratislava 833 06, Slovakia
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|
28
|
Hushegyi A, Tkac J. Are glycan biosensors an alternative to glycan microarrays? ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:6610-6620. [PMID: 27231487 PMCID: PMC4878710 DOI: 10.1039/c4ay00692e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Complex carbohydrates (glycans) play an important role in nature and study of their interaction with proteins or intact cells can be useful for understanding many physiological and pathological processes. Such interactions have been successfully interrogated in a highly parallel way using glycan microarrays, but this technique has some limitations. Thus, in recent years glycan biosensors in numerous progressive configurations have been developed offering distinct advantages compared to glycan microarrays. Thus, in this review advances achieved in the field of label-free glycan biosensors are discussed.
Collapse
Affiliation(s)
- A Hushegyi
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - J Tkac
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| |
Collapse
|