1
|
Dorken-Gallastegi A, Naar L, Argandykov D, Lagazzi E, Dowling M, Montero P, Wallace B, Pallotta JB, Beagle J, Breen K, Velmahos GC, Duggan MJ, King DR. Safety of the injectable expanding biopolymer foam for non-compressible truncal bleeding in swine. Surgery 2024; 175:1189-1197. [PMID: 38092635 DOI: 10.1016/j.surg.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/15/2023] [Accepted: 11/07/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND A novel hydrophobically modified chitosan (hm-chitosan) polymer has been previously shown to improve survival in a non-compressible intra-abdominal bleeding model in swine. We performed a 28-day survival study to evaluate the safety of the hm-chitosan polymer in swine. METHODS Female Yorkshire swine (40-50 kg) were used. A mild, non-compressible, closed-cavity bleeding model was created with splenic transection. The hm-chitosan polymer was applied intra-abdominally through an umbilical nozzle in the same composition and dose previously shown to improve survival. Animals were monitored intraoperatively and followed 28 days postoperatively for survival, signs of pain, and end-organ function. Gross pathological and microscopic evaluations were performed at the conclusion of the experiment. RESULTS A total of 10 animals were included (hm-chitosan = 8; control = 2). The 2 control animals survived through 28 days, and 7 of the 8 animals from the hm-chitosan group survived without any adverse events. One animal from the hm-chitosan group required early termination of the study for signs of pain, and superficial colonic ulcers were found on autopsy. Laboratory tests showed no signs of end-organ dysfunction after exposure to hm-chitosan after 28 days. On gross pathological examination, small (<0.5 cm) peritoneal nodules were noticed in the hm-chitosan group, which were consistent with giant-cell foreign body reaction in microscopy, presumably related to polymer remnants. Microscopically, no signs of systemic polymer embolization or thrombosis were noticed. CONCLUSION Prolonged intraperitoneal exposure to the hm-chitosan polymer was tolerated without any adverse event in the majority of animals. In the single animal that required early termination, the material did not appear to be associated with end-organ dysfunction in swine. Superficial colonic ulcers that would require surgical repair were identified in 1 out of 8 animals exposed to hm-chitosan.
Collapse
Affiliation(s)
- Ander Dorken-Gallastegi
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA. https://twitter.com/AnderDorken
| | - Leon Naar
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA. https://twitter.com/lnaar
| | - Dias Argandykov
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA. https://twitter.com/argandykov
| | - Emanuele Lagazzi
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Surgery, Humanitas Research Hospital, Rozzano, Italy. https://twitter.com/EmanueleLagazzi
| | | | | | | | - Jessica B Pallotta
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - John Beagle
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kerry Breen
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - George C Velmahos
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael J Duggan
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - David R King
- Trauma, Emergency Surgery, Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Almeida‐Pinto J, Lagarto MR, Lavrador P, Mano JF, Gaspar VM. Cell Surface Engineering Tools for Programming Living Assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304040. [PMID: 37823678 PMCID: PMC10700290 DOI: 10.1002/advs.202304040] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Indexed: 10/13/2023]
Abstract
Breakthroughs in precision cell surface engineering tools are supporting the rapid development of programmable living assemblies with valuable features for tackling complex biological problems. Herein, the authors overview the most recent technological advances in chemically- and biologically-driven toolboxes for engineering mammalian cell surfaces and triggering their assembly into living architectures. A particular focus is given to surface engineering technologies for enabling biomimetic cell-cell social interactions and multicellular cell-sorting events. Further advancements in cell surface modification technologies may expand the currently available bioengineering toolset and unlock a new generation of personalized cell therapeutics with clinically relevant biofunctionalities. The combination of state-of-the-art cell surface modifications with advanced biofabrication technologies is envisioned to contribute toward generating living materials with increasing tissue/organ-mimetic bioactivities and therapeutic potential.
Collapse
Affiliation(s)
- José Almeida‐Pinto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Matilde R. Lagarto
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Pedro Lavrador
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO‐Aveiro Institute of Materials University of Aveiro Campus Universitário de SantiagoAveiro3810‐193Portugal
| |
Collapse
|
3
|
Wang Q, Zhang Y, Ma Y, Wang M, Pan G. Nano-crosslinked dynamic hydrogels for biomedical applications. Mater Today Bio 2023; 20:100640. [PMID: 37179534 PMCID: PMC10173301 DOI: 10.1016/j.mtbio.2023.100640] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Hydrogels resemble natural extracellular matrices and have been widely studied for biomedical applications. Nano-crosslinked dynamic hydrogels combine the injectability and self-healing property of dynamic hydrogels with the versatility of nanomaterials and exhibit unique advantages. The incorporation of nanomaterials as crosslinkers can improve the mechanical properties (strength, injectability, and shear-thinning properties) of hydrogels by reinforcing the skeleton and endowing them with multifunctionality. Nano-crosslinked functional hydrogels that can respond to external stimuli (such as pH, heat, light, and electromagnetic stimuli) and have photothermal properties, antimicrobial properties, stone regeneration abilities, or tissue repair abilities have been constructed through reversible covalent crosslinking strategies and physical crosslinking strategies. The possible cytotoxicity of the incorporated nanomaterials can be reduced. Nanomaterial hydrogels show excellent biocompatibility and can facilitate cell proliferation and differentiation for biomedical applications. This review introduces different nano-crosslinked dynamic hydrogels in the medical field, from fabrication to application. In this review, nanomaterials for dynamic hydrogel fabrication, such as metals and metallic oxides, nanoclays, carbon-based nanomaterials, black phosphorus (BP), polymers, and liposomes, are discussed. We also introduce the dynamic crosslinking method commonly used for nanodynamic hydrogels. Finally, the medical applications of nano-crosslinked hydrogels are presented. We hope that this summary will help researchers in the related research fields quickly understand nano-crosslinked dynamic hydrogels to develop more preparation strategies and promote their development and application.
Collapse
Affiliation(s)
- Qinghe Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
- Corresponding author.
| |
Collapse
|
4
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
5
|
Customizing polyelectrolytes through hydrophobic grafting. Adv Colloid Interface Sci 2022; 306:102721. [DOI: 10.1016/j.cis.2022.102721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
|
6
|
Owoseni O, Su Y, Raghavan S, Bose A, John VT. Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets. J Colloid Interface Sci 2022; 620:135-143. [PMID: 35421750 DOI: 10.1016/j.jcis.2022.03.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
The integration of cationic and hydrophobic functionalities into hydrophobically modified chitosan (HMC) biopolymer facilitates complementary emulsion stabilization with negatively charged halloysite clay nanotubes (HNT). Oil-in-water emulsions with smaller droplet sizes and significantly improved interfacial resistance to droplet coalescence are obtained on complementary emulsion stabilization by HNT and HMC compared to the individual emulsifiers alone. Contact angle measurements shows that the adsorption of the cationic HMC onto the negatively charged HNT modifies the surface wettability of the nanotubes, facilitating the attachment of the nanotubes to the oil-water interface. High resolution cryo-SEM imaging reveals that free HMC chains locks the nanotubes together at the oil-water interface, creating a high barrier to droplet coalescence. The emulsion stability is an order of magnitude higher for conditions in which the aqueous HNT dispersion is stabilized by the HMC compared to conditions where the negatively charged HNT is strongly flocculated by the cationic HMC. The hydrophobic interaction between HMC chains, insertion of HMC hydrophobes into the oil phase and electrostatic interactions between HMC and HNT are proposed as key mechanisms driving the increased emulsion stability. For potential application as a dispersant system for crude oil spill treatment, the nanotubular morphology of HNT was further exploited for the encapsulation of the water-insoluble surfactant, sorbitan monooleate (Span 80). The HMC and HNT sterically strengthens the oil-water interfacial layer while release of the Span 80 surfactant from the HNT lumen lowers the oil-water interfacial tension. The concepts advanced here are relevant in the development of environmentally-benign dispersants for oil spill remediation.
Collapse
Affiliation(s)
- Olasehinde Owoseni
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Yang Su
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Srinivasa Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Arijit Bose
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States.
| |
Collapse
|
7
|
Naar L, Dorken Gallastegi A, Dowling M, Mashbari HNA, Wallace B, Bankhead-Kendall B, Beagle J, Pallotta JB, Breen K, Velmahos GC, Duggan MJ, King CDR. Chitosan-based lifefoam improves survival in lethal noncompressible abdominal bleeding in swine. Surgery 2022; 172:421-426. [DOI: 10.1016/j.surg.2022.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/19/2021] [Accepted: 01/16/2022] [Indexed: 11/15/2022]
|
8
|
Reversible electroadhesion of hydrogels to animal tissues for suture-less repair of cuts or tears. Nat Commun 2021; 12:4419. [PMID: 34285208 PMCID: PMC8292548 DOI: 10.1038/s41467-021-24022-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
Electroadhesion, i.e., adhesion induced by an electric field, occurs between non-sticky cationic and anionic hydrogels. Here, we demonstrate electroadhesion between cationic gels and animal (bovine) tissues. When gel and tissue are placed under an electric field (DC, 10 V) for 20 s, the pair strongly adhere, and the adhesion persists indefinitely thereafter. Applying the DC field with reversed polarity eliminates the adhesion. Electroadhesion works with the aorta, cornea, lung, and cartilage. We demonstrate the use of electroadhesion to seal cuts or tears in tissues or model anionic gels. Electroadhered gel-patches provide a robust seal over openings in bovine aorta, and a gel sleeve is able to rejoin pieces of a severed gel tube. These studies raise the possibility of using electroadhesion in surgery while obviating the need for sutures. Advantages include the ability to achieve adhesion on-command, and moreover the ability to reverse this adhesion in case of error. The authors demonstrate strong adhesion of cationic hydrogels to bovine tissues under a DC electric field. Such electroadhesion can be reversed by switching the polarity of the field. This approach could enable simpler surgeries, where sutures are not needed.
Collapse
|
9
|
Choudhary H, Rudy MB, Dowling MB, Raghavan SR. Foams with Enhanced Rheology for Stopping Bleeding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13958-13967. [PMID: 33749251 DOI: 10.1021/acsami.0c22818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bleeding from injuries to the torso region is a leading cause of fatalities in the military and in young adults. Such bleeding cannot be stopped by applying direct pressure (compression) of a bandage. An alternative is to introduce a foam at the injury site, with the expansion of the foam counteracting the bleeding. Foams with an active hemostatic agent have been tested for this purpose, but the barrier created by these foams is generally not strong enough to resist blood flow. In this paper, we introduce a new class of foams with enhanced rheological properties that enable them to form a more effective barrier to blood loss. These aqueous foams are delivered out of a double-barrelled syringe by combining precursors that produce bubbles of gas (CO2) in situ. In addition, one barrel contains a cationic polymer (hydrophobically modified chitosan, hmC) and the other an anionic polymer (hydrophobically modified alginate, hmA). Both these polymers function as hemostatic agents due to their ability to connect blood cells into networks. The amphiphilic nature of these polymers also enables them to stabilize gas bubbles without the need for additional surfactants. hmC-hmA foams have a mousse-like texture and exhibit a high modulus and yield stress. Their properties are attributed to the binding of hmC and hmA chains (via electrostatic and hydrophobic interactions) to form a coacervate around the gas bubbles. Rheological studies are used to contrast the improved rheology of hmC-hmA foams (where a coacervate arises) with those formed by hmC alone (where there is no such coacervate). Studies with animal wound models also confirm that the hmC-hmA foams are more effective at curtailing bleeding than the hmC foams due to their greater mechanical integrity.
Collapse
Affiliation(s)
- Hema Choudhary
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael B Rudy
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew B Dowling
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Lü T, Wu Y, Tao Y, Zhang D, Qi D, Zhao H. Facile synthesis of octyl-modified alginate for oil-water emulsification. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
MacIntire IC, Dowling MB, Raghavan SR. How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8357-8366. [PMID: 32678610 DOI: 10.1021/acs.langmuir.0c00409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic biopolymers such as hydrophobically modified chitosan (hmC) have been shown to convert liquid blood into elastic gels. This interesting property could make hmC useful as a hemostatic agent in treating severe bleeding. The mechanism for blood gelling by hmC is believed to involve polymer-cell self-assembly, i.e., insertion of hydrophobic side chains from the polymer into the lipid bilayers of blood cells, thereby creating a network of cells bridged by hmC. Here, we probe the above mechanism by studying dilute mixtures of blood cells and hmC in situ using optical microscopy. Our results show that the presence of hydrophobic side chains on hmC induces significant clustering of blood cells. The extent of clustering is quantified from the images in terms of the area occupied by the 10 largest clusters. Clustering increases as the fraction of hydrophobic side chains increases; conversely, clustering is negligible in the case of the parent chitosan that lacks hydrophobes. Moreover, the longer the hydrophobic side chains, the greater the clustering (i.e., C12 > C10 > C8 > C6). Clustering is negligible at low hmC concentrations but becomes substantial above a certain threshold. Finally, clustering due to hmC can be reversed by adding the supramolecule α-cyclodextrin, which is known to capture hydrophobes in its binding pocket. Overall, the results from this work are broadly consistent with the earlier mechanism, albeit with a few modifications.
Collapse
Affiliation(s)
- Ian C MacIntire
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Matthew B Dowling
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Cell membrane engineering with synthetic materials: Applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 2019; 90:21-36. [PMID: 30986529 DOI: 10.1016/j.actbio.2019.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 12/16/2022]
Abstract
Biologically inspired materials with tunable bio- and physicochemical properties provide an essential framework to actively control and support cellular behavior. Cell membrane remodeling approaches benefit from the advances in polymer science and bioconjugation methods, which allow for the installation of un-/natural molecules and particles on the cells' surface. Synthetically remodeled cells have superior properties and are under intense investigation in various therapeutic scenarios as cell delivery systems, bio-sensing platforms, injectable biomaterials and bioinks for 3D bioprinting applications. In this review article, recent advances in the field of cell surface remodeling via bio-chemical means and the potential biomedical applications of these emerging cell hybrids are discussed. STATEMENT OF SIGNIFICANCE: Recent advances in bioconjugation methods, controlled/living polymerizations, microfabrication techniques and 3D printing technologies have enabled researchers to probe specific cellular functions and cues for therapeutic and research purposes through the formation of cell spheroids and polymer-cell chimeras. This review article highlights recent non-genetic cell membrane engineering strategies towards the fabrication of cellular ensembles and microtissues with interest in 3D in vitro modeling, cell therapeutics and tissue engineering. From a wider perspective, these approaches may provide a roadmap for future advances in cell therapies which will expedite the clinical use of cells, thereby improving the quality and accessibility of disease treatments.
Collapse
|
13
|
Mizuta R, Taguchi T. Hemostatic properties of in situ gels composed of hydrophobically modified biopolymers. J Biomater Appl 2018; 33:315-323. [DOI: 10.1177/0885328218790313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hemorrhaging often occurs during cardiac surgery, and postoperative bleeding is associated with medical complications or even death. Medical complications resulting from hemorrhaging can lead to longer hospital stays, thus increasing costs. Hemostatic agents are the main treatment for bleeding. In the present study, hemostatic agents composed of aldehyde groups and hydrophobically modified with hyaluronic acid (ald-hm-HyA) and hydrophobically modified gelatin (hm-ApGltn) were developed and their hemostatic effects were evaluated. These modified hemostatic agents formed more stable blood clots compared with the nonhydrophobically modified HyA-based hemostatic agent. The bulk strength of the whole blood clot using the aldehyde and stearoyl group-modified hyaluronic acid (ald-C18-HyA)/hm-ApGltn-based hemostatic agent was higher than that of the aldehyde group only modified HyA (ald-HyA)/hm-ApGltn-based hemostatic agent. Rheological experiments using α-cyclodextrin showed that hydrophobic modification of HyA with C18 groups effectively enhanced anchoring to the red blood cell surface. Therefore, the ald-hm-HyA/hm-ApGltn-based hemostatic agent has potential applications in cardiac surgery.
Collapse
Affiliation(s)
- Ryo Mizuta
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Tetsushi Taguchi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Athas JC, Nguyen CP, Kummar S, Raghavan SR. Cation-induced folding of alginate-bearing bilayer gels: an unusual example of spontaneous folding along the long axis. SOFT MATTER 2018; 14:2735-2743. [PMID: 29565078 DOI: 10.1039/c8sm00321a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The spontaneous folding of flat gel films into tubes is an interesting example of self-assembly. Typically, a rectangular film folds along its short axis when forming a tube; folding along the long axis has been seen only in rare instances when the film is constrained. Here, we report a case where the same free-swelling gel film folds along either its long or short axis depending on the concentration of a solute. Our gels are sandwiches (bilayers) of two layers: a passive layer of cross-linked N,N'-dimethylyacrylamide (DMAA) and an active layer of cross-linked DMAA that also contains chains of the biopolymer alginate. Multivalent cations like Ca2+ and Cu2+ induce these bilayer gels to fold into tubes. The folding occurs instantly when a flat film of the gel is introduced into a solution of these cations. The likely cause for folding is that the active layer stiffens and shrinks (because the alginate chains in it get cross-linked by the cations) whereas the passive layer is unaffected. The resulting mismatch in swelling degree between the two layers creates internal stresses that drive folding. Cations that are incapable of cross-linking alginate, such as Na+ and Mg2+, do not induce gel folding. Moreover, the striking aspect is the direction of folding. When the Ca2+ concentration is high (100 mM or higher), the gels fold along their long axis, whereas when the Ca2+ concentration is low (40 to 80 mM), the gels fold along their short axis. We hypothesize that the folding axis is dictated by the inhomogeneous nature of alginate-cation cross-linking, i.e., that the edges get cross-linked before the faces of the gel. At high Ca2+ concentration, the stiffer edges constrain the folding; in turn, the gel folds such that the longer edges are deformed less, which explains the folding along the long axis. At low Ca2+ concentration, the edges and the faces of the gel are more similar in their degree of cross-linking; therefore, the gel folds along its short axis. An analogy can be made to natural structures (such as leaves and seed pods) where stiff elements provide the directionality for folding.
Collapse
Affiliation(s)
- Jasmin C Athas
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Catherine P Nguyen
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Shailaa Kummar
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA and Department of Bioengineering, University of Toledo, Toledo, Ohio, USA
| | - Srinivasa R Raghavan
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, USA. and Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
15
|
Vo DT, Lee CK. Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydr Polym 2018; 187:1-7. [PMID: 29486833 DOI: 10.1016/j.carbpol.2018.01.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
Hydrophobically modified chitosan (HMCS) prepared by reacting chitosan with dodecyl aldehyde can generate very stable foam when dissolved in mild acidic condition under vigorous mechanical stirring. A durable and lightweight (density of 32 mg/ml) sponge was obtained by freeze-drying the stably formed HMCS foam. In addition to the cationic nature of chitosan, the grafted C12 alkyl chains were also able to help HMCS sponge for capturing E. coli cells (∼4.0 × 108 cells/mg sponge) by intercalating into the outer membrane of E. coli cells. E. coli cells captured on HMCS sponge were found to be mostly dead and easily released into the bulk solution so that the active surface could be continuously regenerated for capturing and killing the rest of alive cells. In comparison with its counterpart (chitosan sponge), HMCS sponge maintained a higher operational stability for the removal of E. coli cells. After 5 repeated cells removal operation, the removal capacity of HMCS sponge could be regenerated back to >90% by thorough washing with ethanol.
Collapse
Affiliation(s)
- Duc-Thang Vo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec.4, Taipei 106, Taiwan.
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd., Sec.4, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Arya C, Saez Cabesas CA, Huang H, Raghavan SR. Clustering of Cyclodextrin-Functionalized Microbeads by an Amphiphilic Biopolymer: Real-Time Observation of Structures Resembling Blood Clots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37238-37245. [PMID: 28994570 DOI: 10.1021/acsami.7b05435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal particles can be induced to cluster by adding polymers in a process called bridging flocculation. For bridging to occur, the polymer must bind strongly to the surfaces of adjacent particles, such as via electrostatic interactions. Here, we introduce a new system where bridging occurs due to specific interactions between the side chains of an amphiphilic polymer and supramolecules on the particle surface. The polymer is a hydrophobically modified chitosan (hmC) while the particles are uniform polymeric microbeads (∼160 μm in diameter) made by a microfluidic technique and functionalized on their surface by α-cyclodextrins (CDs). The CDs have hydrophobic binding pockets that can capture the n-alkyl hydrophobes present along the hmC chains. Clustering of CD-coated microbeads in water by hmC is visualized in real time using optical microscopy. Interestingly, the clustering follows two distinct stages: first, the microbeads are bridged into clusters by hmC chains, which occurs by the interaction of individual chains with the CDs on adjacent particles. Thereafter, additional hmC from the solution adsorbs onto the surfaces of the microbeads and an hmC "mesh" grows around the clusters. This growing nanostructured mesh can trap surrounding microsized objects and sequester them within the overall cluster. Such clustering is reminiscent of blood clotting where blood platelets initially cluster at a wound site, whereupon they induce growth of a protein (fibrin) mesh around the clusters, which entraps other passive cells. Clustering does not occur with the native chitosan (lacking hydrophobes) or with the bare particles (lacking CDs); these results confirm that the clustering is indeed due to hydrophobic interactions between the hmC and the CDs. Microbead clustering via amphiphilic biopolymers could be applicable in embolization, which is a surgical technique used to block blood flow to a particular area of the body, or in agglutination assays.
Collapse
Affiliation(s)
- Chandamany Arya
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Camila A Saez Cabesas
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Hubert Huang
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
17
|
Iohara D, Okubo M, Anraku M, Uramatsu S, Shimamoto T, Uekama K, Hirayama F. Hydrophobically Modified Polymer/α-Cyclodextrin Thermoresponsive Hydrogels for Use in Ocular Drug Delivery. Mol Pharm 2017; 14:2740-2748. [DOI: 10.1021/acs.molpharmaceut.7b00291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Daisuke Iohara
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Masanori Okubo
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Makoto Anraku
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shunji Uramatsu
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Toshio Shimamoto
- Daido Chemical Corporation, 4-4-28 Takeshima,
Nishiyodogawa-ku, Osaka 555-0011, Japan
| | - Kaneto Uekama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty
of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
18
|
Vo DT, Lee CK. Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydr Polym 2017; 164:109-117. [PMID: 28325306 DOI: 10.1016/j.carbpol.2017.01.093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 01/26/2023]
Abstract
Hydrophobically modified chitosan (HMCS), prepared by reacting alkyl aldehyde with chitosan was demonstrated to be an effective antimicrobial and transparent coating. The grafted alkyl chains exist as protruded hydrophobic tails on the HMCS coating surface. In contact with E. coli cells, HMCS coating captured and immobilized the cells via these hydrophobic tails. The hydrophobic tails could also kill the cells captured on the coating surface as visualized by fluorescence microscope. More than 50% of the initially loaded cells (2.5×104 CFU) could be killed after 2h contact with HMCS coating. The cells capture and killing effects of the coating surface could be completely neutralized by treating with α-cyclodextrin to sequester the protruded hydrophobic tails. The facile coating of antimicrobial HMCS on surface also enabled the easy fabrication of patterned E. coli cells arrays.
Collapse
Affiliation(s)
- Duc-Thang Vo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan.
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Dowling MB, Chaturvedi A, MacIntire IC, Javvaji V, Gustin J, Raghavan SR, Scalea TM, Narayan M. Determination of efficacy of a novel alginate dressing in a lethal arterial injury model in swine. Injury 2016; 47:2105-2109. [PMID: 27423307 DOI: 10.1016/j.injury.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/30/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Alginate is a biocompatible polysaccharide that is commonly used in the pharmaceutical, biomedical, cosmetic, and food industries. Though solid dressings composed of alginate can absorb water and promote wound healing, they are not effective hemostatic materials, particularly against massive hemorrhage. The purpose of this study is to attempt to increase the hemostatic capabilities of alginate by means of hydrophobic modification. Previous studies have illustrated that modifying a different polysaccharide, chitosan, in this way enhances its hemostatic efficacy as well as its adhesion to tissue. Here, it was hypothesized that modifying alginate with hydrophobic groups would demonstrate analogous effects. METHODS Fifteen Yorkshire swine were randomized to receive hydrophobically-modified (hm) alginate lyophilized sponges (n=5), unmodified alginate lyophilized sponges (n=5), or standard Kerlix™ gauze dressing (n=5) for hemostatic control. Following a splenectomy, arterial puncture (6mm punch) of the femoral artery was made. Wounds were allowed to freely bleed for 30s, at which time dressings were applied and compressed for 3min in a randomized fashion. Fluid resuscitation was given to preserve the baseline mean arterial pressure. Wounds were monitored for 180min after arterial puncture, and surviving animals were euthanized. RESULTS Blood loss for the hm-alginate group was significantly less than the two control groups of (1) alginate and (2) Kerlix™ gauze (p=<0.0001). Furthermore, 80% of hm-alginate sponges were able to sustain hemostasis for the full 180min, whereas 0% of dressings from the control groups were able to achieve initial hemostasis. CONCLUSIONS Hm-alginate demonstrates a greatly superior efficacy, relative to unmodified alginate and Kerlix™ gauze dressings, in achieving hemostasis from a lethal femoral artery puncture in swine. This is a similar result as has been previously described when performing hydrophobic modification to chitosan. The current study further suggests that hydrophobic modification of a hydrophilic biopolymer backbone can significantly increase the hemostatic capabilities relative to the native biopolymer.
Collapse
Affiliation(s)
- Matthew B Dowling
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States
| | - Apurva Chaturvedi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Ian C MacIntire
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Vishal Javvaji
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - John Gustin
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Srinivasa R Raghavan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States; Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
| | - Thomas M Scalea
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Mayur Narayan
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
20
|
The use of polymer-based nanoparticles and nanostructured materials in treatment and diagnosis of cardiovascular diseases: Recent advances and emerging designs. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2016.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Liang Y, Kiick KL. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules 2016; 17:601-14. [PMID: 26751084 PMCID: PMC4992983 DOI: 10.1021/acs.biomac.5b01541] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| |
Collapse
|
22
|
Vo DT, Whiteley CG, Lee CK. Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Duc-Thang Vo
- Department of Chemical Engineering and ‡Graduate Institute of Applied Science & Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chris G. Whiteley
- Department of Chemical Engineering and ‡Graduate Institute of Applied Science & Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Cheng-Kang Lee
- Department of Chemical Engineering and ‡Graduate Institute of Applied Science & Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
23
|
Nalluri SM, Krishnan GR, Cheah C, Arzumand A, Yuan Y, Richardson CA, Yang S, Sarkar D. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:182-95. [PMID: 26046282 PMCID: PMC5201126 DOI: 10.1016/j.msec.2015.05.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/20/2015] [Accepted: 05/11/2015] [Indexed: 12/13/2022]
Abstract
Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Rajesh Krishnan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Calvin Cheah
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Ayesha Arzumand
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yuan Yuan
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Caley A Richardson
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Debanjan Sarkar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
24
|
Dowling MB, MacIntire IC, White JC, Narayan M, Duggan MJ, King DR, Raghavan SR. Sprayable Foams Based on an Amphiphilic Biopolymer for Control of Hemorrhage Without Compression. ACS Biomater Sci Eng 2015; 1:440-447. [PMID: 33445247 DOI: 10.1021/acsbiomaterials.5b00067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemorrhage (severe blood loss) from traumatic injury is a leading cause of death for soldiers in combat and for young civilians. In some cases, hemorrhage can be stopped by applying compression of a tourniquet or bandage at the injury site. However, the majority of hemorrhages that prove fatal are "non-compressible", such as those due to an internal injury in the truncal region. Currently, there is no effective way to treat such injuries. In this initial study, we demonstrate that a sprayable polymer-based foam can be effective at treating bleeding from soft tissue without the need for compression. When the foam is sprayed into an open cavity created by injury, it expands and forms a self-supporting barrier that counteracts the expulsion of blood from the cavity. The active material in this foam is the amphiphilic biopolymer, hydrophobically modified chitosan (hmC), which physically connects blood cells into clusters via hydrophobic interactions (the hemostatic mechanism of hmC is thus distinct from the natural clotting cascade, and it works even with heparinized or citrated blood). The amphiphilic nature of hmC also allows it to serve as a stabilizer for the bubbles in the foam. We tested the hmC-based hemostatic foam for its ability to arrest bleeding from an injury to the liver in pigs. Hemostasis was achieved within minutes after application of the hmC foams (without the need for external compression). The total blood loss was 90% lower with the hmC foam relative to controls.
Collapse
Affiliation(s)
- Matthew B Dowling
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ian C MacIntire
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742-2111, United States
| | - Joseph C White
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742-2111, United States
| | - Mayur Narayan
- R. Adams Cowley Shock/Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland 21202, United States
| | - Michael J Duggan
- Department of Emergency Surgery, Trauma and Critical Care, Massachusetts General Hospital, Boston, Massachusetts 08174, United States
| | - David R King
- Department of Emergency Surgery, Trauma and Critical Care, Massachusetts General Hospital, Boston, Massachusetts 08174, United States
| | - Srinivasa R Raghavan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States.,Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742-2111, United States
| |
Collapse
|